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Spectral disjointness of dynamical systems related
to some arithmetic functions

By PETER J. GRABNER (Graz), PIERRE LIARDET (Marseille)
and ROBERT F. TICHY (Graz)

Dedicated to the memory of Béla Brindza

Abstract. We present a new and general approach to prove the spectral
disjointness of dynamical systems related to digital expansions of natural numbers
and Gaussian integers. The main tools are ideas from automata theory and rigid
time in ergodic theory. This extends earlier work of T. Kamae and M. Queffélec.

1. Introduction

Let p be an integer, p ≥ 2. An arithmetic function f : N → R is called
p-additive, if it satisfies the relation

f

(
L∑
�=0

ε�p
�

)
=

L∑
�=0

f(ε�p�), (1.1)
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where ε� ∈ {0, . . . , p − 1}. In the sequel we will mainly be concerned
with completely p-additive functions, i.e. p-additive functions which satisfy
f(εp�) = f(ε). A special instance of such a function is the p-ary sum-of-
digits function sp(n) defined by

sp

(
L∑
�=0

ε�p
�

)
=

L∑
�=0

ε�.

We will also be concerned with p-multiplicative unimodular arithmetic
functions F : N → U = {z ∈ C | |z| = 1} which satisfy the following
multiplicative formula in place of (1.1)

F

(
L∑
�=0

ε�p
�

)
=

L∏
�=0

F (ε�p�).

As usual we set e(t) = e2πit, so that e ◦ f is p-multiplicative, if f is p-
additive.

In series of papers [10], [11], [12] T. Kamae has developed a method
(involving Baker’s theory of linear forms in logarithms of algebraic num-
bers) to prove the mutual singularity of the spectral measures related to
the sum-of-digits function.

Let Zp denote the totally disconnected compact group of p-adic in-
tegers (cf. [9]) equipped with its normalized Haar measure µp. For given
p-additive function f we define a function ψf : Z × Zp → R by

ψf (n, x) = lim
m→x
m∈N

f(m+ n) − f(m), (1.2)

if the limit exists and ψ(n, x) = 0 otherwise. For x ∈ {−1, . . . ,−n}, if
n > 0 and for x ∈ {0, . . . ,−n + 1}, if n < 0 the limit does not exist. It is
easy to see that ψf satisfies the following so called cocycle relation for a
Z-action (for this and other basic concepts, see [18])

ψf (m+ n, x) = ψf (n, x) + ψf (m,n+ x)

for µp-almost all x. This means that ψf is a cocycle which is, in addition,
µp-continuous. We define the group Gf = 〈{e(f(n)) | n ∈ N}〉 usually
denoted simply by G and endowed with its normalized Haar measure hG.
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Finally, we consider the transformation Tp,f on Zp ×G given by

Tp,f (x, u) = (x+ 1, ue(ψf (1, x))). (1.3)

It is easy to see that Tp,f is invertible and preserving the Haar measure on
the compact group Zp × G. Thus (Zp × G,Tp,f , µp ⊗ hG) is a dynamical
system, which is an extension of the odometer on Zp. Obviously, we have

T np,f (x, u) = (x+ n, ue(ψf (n, x))).

We shall study the spectral decomposition E of the unitary operator
on L2(Zp ×G) associated to Tp,f . By general theory it is enough to study

〈γ ◦ T np,f , γ〉 =
∫

U

xn〈E(dx)γ, γ〉

for all functions γ ∈ L2(Zp×G). Thus, by the Bochner–Herglotz theorem,
to every γ ∈ L2(Zp × G) we associate a measure ργ on U, which is given
by its Fourier coefficients

ρ̂γ(n) = 〈γ ◦ T np,f , γ〉
and our aim will be to determine the spectral type of Tp,f i.e., the Borel
measure Ξp,f on U (defined modulo equivalence of measures), such that
ργ � Ξp,f for any γ ∈ L2 and there exists a γ0 ∈ L2 such that ργ0 ∼ Ξp,f .
The following decomposition

L2(Zp ×G) =
⊕
ξ∈Ĝ

L2(Zp) ⊗ ξ, (1.4)

is invariant under the action of Tp,f , so that Ξp,f can be written as (∗
denotes the convolution on U)

Ξp,f = ∆p + ∆p ∗ Λp,f , (1.5)

where ∆p is discrete and comes from the action of addition by 1 on
L2(Zp) and Λp,f comes from the action of Tp,f on the orthocomplement of
L2(Zp)⊗1. We shall see that ∆p and Λp,f are mutually singular (see Corol-
lary 3). The action of Tp,f on L2(Zp)⊗ ξ, through the isometry ϕ �→ ϕ⊗ ξ,
corresponds to the unitary representation Vf,ξ of Z on L2(Zp) defined by

V n
f,ξ(h)(x) = ξ(e(ψf (n, x)))h(x + n) (1.6)
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and the spectral measure ρϕ⊗ξ is the one associated to ϕ with respect to
Vf,ξ. Hence we first can restrict ourselves to the computation of ρ̂γ(n) for
γ(x, u) = χ(x)ξ(u) (= χ⊗ ξ(x, u)) with χ ∈ Ẑp and ξ ∈ Ĝ, thus

ρ̂γ(n) = χ(1)n
∫

Zp

ξ(e(ψf (n, x)))µp(dx) (γ = χ⊗ ξ). (1.7)

Therefore, ργ = δ{χ(1)} ∗ ρ1⊗ξ, where δ{z} denotes the Dirac measure
supported in z. Let us write νf for the spectral measure ρ1⊗ξ1, setting
ξ1 : u �→ u, so that

ν̂f (n) =
∫

Zp

e(ψf (n, x)) dµp(x), n ∈ Z.

Notice that this equals the correlation coefficients

lim
N→∞

1
N

N∑
k=1

e(f(n+ k) − f(k))

by unique ergodicity of the dynamical system (Zp, · + 1, µp) and µp-conti-
nuity of the functions ψf (n, ·). Such correlation coefficients were studied
in [1], [2] in the context of pseudo-randomness of sequences. If ξ : u �→ us

(s ∈ Z), then ρ1⊗ξ = νsf .
M. Queffélec [16] proved by means of Riesz-products that given ξ

such that ξ ◦ ψf is not periodic, all spectral measures ρχ⊗ξ are equivalent
to νsf which is continuous and singular (with respect to the Lebesgue
measure). The fact that νsf is singular continuous is also a consequence
of the “principle of purity” (cf. [8]) implying that the spectral measure νf
is either atomic, purely singular continuous, or absolutely continuous.

In our main result we will prove spectral disjointness of Λp,f and Λq,g
provided that p, q ≥ 2 are multiplicatively independent integers and f

(or g) is not trivial, that is to say ξ(e(f)) �= e( k
p−1sp) for any non trivial

character ξ ∈ Ĝ and any integer k. This is an extension of the above men-
tioned work of Kamae concerning the sum-of-digits function. Queffélec

[17] applied general results about Riesz-products and Šrĕıder characters
(cf. [20]) to give a more conceptual approach to the results of Kamae. We
develop a new method for the proof which avoids Baker’s theory on linear
forms in logarithms as well as Šrĕıder characters. In a concluding section
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we extend our method to more complicated digital expansions, namely to
canonical number systems for the Gaussian integers. A main ingredient of
our approach is the application of addition automata and ζ-rigid time in
ergodic theory.

2. Spectral disjointness

The following theorem is due to Kamae [10], [11], [12], [17] who proved
it under the assumption that p and q are coprime. In this case even the
measures Ξp,αsp and Ξq,βsq are mutually singular.

Theorem 1. Let p, q ≥ 2 be two multiplicatively independent integers

and let α and β be two irrational real numbers. Then the two measures

Λp,αsp and Λq,βsq are mutually singular.

We will prove a more general theorem here.

Theorem 2. Let p, q ≥ 2 be two multiplicatively independent integers

and let f and g be completely p-additive and q-additive functions. Assume

that f is not trivial (i.e., ξ(e(f)) �= e( k
p−1sp) for any non trivial character

ξ on Gf and for any integer k), then the spectral measures Λp,f and Λq,g
are mutually singular.

We shall see that ξ ◦ e(f) is periodic if and only if ξ ◦ e(f) = e( k
p−1sp)

(see Proposition 2).
Addition of n =

∑K
k=0 εkp

k to x =
∑∞

�=0 δ�p
� ∈ Zp can be described

in terms of automata. For any digit 0 ≤ ε ≤ p − 1 we introduce the
automaton Aε defined by Figure 1.

0 1
0.     ..     ..     .

p-1-       p-1

p-     0.    ..    ..    .
p-1      -1

p-1-       0.     ..     ..     .
p-1

0     +1.    ..    ..    .
p-2-     p-1

ε

ε
ε

ε

ε

ε

ε

ε

Figure 1. The automaton Aε
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The addition n+x =
∑∞

k=0 ηkp
k can be performed as follows: read the

digit δ0 and feed it into the automaton Aε0 starting at the initial state.
Denote the state reached after this operation by S0. The digit written
by the transducer is the digit η0. Now read the digit δ1 and feed it into
the automaton Aε1 this time starting in the state S0. Denote the state
reached after this operation by S1. The digit written by the transducer is
the digit η1. Iterating this procedure gives all digits ηk.

To each automaton and each p-additive function, we attach the ma-
trices

A(m)
ε =

1
p


p−ε−1∑

�=0

e(fm(ε+ �) − fm(�))
p−1∑

�=p−ε

e(fm(ε+ �− p) − fm(�))

p−ε−2∑
�=0

e(fm(ε+ �+ 1) − fm(�))
p−1∑

�=p−ε−1

e(fm(ε+ �−p+1)− fm(�))


where, for any non negative integer m, fm denotes the p-additive function
defined by

fm(n) = f(pmn).
Then we have

Proposition 1. For any p-additive function f the following product

formula

ν̂f

(
K∑
k=0

εkp
k

)
= (1, 0)A(0)

ε0 . . . A
(K)
εK

(
1

ν̂fK
(1)

)
(2.1)

holds.

Proof. Set for short Fm(n, x) = e(ψfm(n, x)). Using the p-multiplica-
tivity of e(f) one gets for n = ε0 + pn′:∫

Zp

F (n, x)µp(dx) =
∑

a+ε0<p

F (ε0, a)
1
p

∫
Zq

F1(n′, x)µp(dx)

+
∑

a+ε0≥p
F (ε0 + a− p, a)

1
p

∫
Zp

F1(n′ + 1, x)µq(dx)

and an analogous equation for
∫

Zp
F (n+1, x)µp(dx), replacing e0 by e0 +1

(with the usual convention that a sum over an empty set is equal to 0).
Consequently (

ν̂f (n)
ν̂f (n+ 1)

)
= A(0)

ε0

(
ν̂f1(n

′)
ν̂f1(n

′ + 1)

)
(2.2)
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and (2.1) follows by induction. �

Remark 1. By the known fact (cf. [3]) that p-additive functions which
satisfy the hypotheses of Theorem 2 are pseudo-random, it follows that the
corresponding spectral measure is not atomic. Furthermore, an application
of (2.1) shows that for any a ∈ {0, . . . , p− 1}

ν̂f (a) =
1
p

p−a−1∑
�=0

e(f(a+ �) − f(�)) +
1
p

p−1∑
�=p−a

e(f(a+ �− p) − f(�))ν̂f (1)

ν̂f (1) =
∑p−2

�=0 e(f(�+ 1) − f(�))
p− e(f(0) − f(p− 1))

. (2.3)

If ν̂f (1) = 0 (this cannot happen for p = 2), then (2.3) shows that ν̂f (p−
1) �= 0. Moreover, ν̂f (mpn) = ν̂f (m) for m ∈ N; this implies that νf is not
absolutely continuous.

Lemma 1. Let p ≥ 2 be an integer and f be a completely p-additive

function, which does not satisfy f(n) ≡ k
p−1sp(n) (mod 1) for some inte-

ger k. Then there exists a constant θ, 0 < θ < 1, and a finite block of

digits B (which contains at least two distinct digits) such that

|ν̂f (n)| ≤ θσB(n), (2.4)

where σB(n) denotes the number of (non-overlapping) occurrences of the

block B in the p-ary digital expansion of n.

Proof. We notice that the entries of the matrices (a(ε)
ij ) = Aε satisfy

|a(ε)
ij | ≤ b

(ε)
ij for Bε = (b(ε)ij ) =

1
p

(
p− ε ε

p− ε− 1 ε+ 1

)
. (2.5)

If one of the above inequalities is strict for one ε (this cannot happen
for p = 2), we see that all the entries of the matrix AδAεAη are strictly
bounded by the corresponding entries of the matrix BδBεBη. Thus we
have ‖AδAεAη‖ < 1, where ‖ ·‖ denotes the matrix norm associated to the
maximum norm on C

2.
It remains to treat the case that there is equality in (2.5) for all i, j, ε.

From ε = 1 and i = j = 1 we conclude that f(δ + 1) − f(δ) ≡ C (mod 1)
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for some constant C. Therefore f(δ) ≡ Cδ (mod 1), which implies that
f(n) ≡ Csp(n) (mod 1). In this case the matrix Aε takes the form

Aε =
1
p

(
(p− ε)ζε εζε−p

(p − ε− 1)ζε+1 (ε+ 1)ζε−p+1

)
with ζ = e(C). Computing the entries of the product of two matrices
shows that ‖AεAη‖ < 1 for any pair (ε, η) /∈ {(0, 0), (p − 1, p − 1)} except
if ζp−1 = 1.

Taking any of the blocks considered in the two cases as the block
B mentioned in the lemma and setting θ the norm of the corresponding
matrix product, (2.1) gives the proof of the lemma. �

Remark 2. Observe that ‖Am0 ‖ = ‖Amp−1‖ = 1 for any integers m ≥ 0.
For p > 2 and f �≡ Csp (mod 1) the above proof shows that there is a
digit ε �= 0 such that σB(n) can be replaced by the counting function of
all occurrences of ε with at least 2 digits in between.

Proposition 2. The measure νf is discrete if and only if f ≡ k
p−1sp

(mod 1) for k ∈ Z. Otherwise, νf is singular continuous.

Proof. Assume first that f �≡ k
p−1sp (mod 1) and apply Lemma 1

to bound the Fourier coefficients of νf in terms of the counting function
of some block B of length L. Since B �= 0L, we can estimate σB(n) in
Lemma 1 from below by the number of occurrences of the “digit” B in the
pL-ary expansion of n. We apply Tschebysheff’s inequality to obtain

#
{
n < N

∣∣ σB(n) ≤ 1
2pL

logpN
}

≤ 4Lp2LN

logpN
.

Thus we have∑
n<N

|ν̂f (n)|2 ≤
∑
n<N

σ(n)> 1

2pL logp N

θ
1

2pL logp N +
∑
n<N

σ(n)≤ 1

2pL logp N

1

≤ N
1+ 1

2pL logp θ +
4Lp2LN

logpN
,

(2.6)

which implies

lim
N→∞

1
N

∑
n<N

|ν̂f (n)|2 = 0.
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By the Wiener–Schoenberg theorem [19], [21] this means that νf has
no point masses. By the principle of purity, νf is singular or absolutely
continuous with respect to the Haar measure on U. The latter case never
occurs since νf (pk�) = νf (�) for all integers k ≥ 0 and any � ∈ Z while
νf �= 0.

In the case f ≡ k
p−1sp (mod 1) we use the congruence sp(n) ≡ n

mod (p − 1) to see that e(f(n)) is periodic and therefore the measure is
equal to the uniform distribution on the points 〈e( k

p−1 )〉. �

Remark 3. Notice that e(ψf ) is periodic if and only if f(n) ≡ k
p−1sp(n)

(mod 1) for an integer k.

Remark 4. The support of the measure in the discrete case is the
finite group 〈e( k

p−1 )〉. This shows that [16, Proposition 3] is not correct
as stated there. Queffélec’s proof can be corrected to show that the
discrete measure is supported on an at most countable union of classes of
the group 〈{e(p−k) | k ∈ N}〉 for general additive functions f .

In the following we will need the notation

Bq(n; εs . . . ε0) = #{i; 0 ≤ i ≤ logq n, di−s+j(n) = εj , and 0 ≤ j ≤ s},

where dj(n) denotes the j-th digit of n in base q representation and εs . . . ε0
is an arbitrary block of digits in {0, . . . , p− 1}.

Lemma 2. Let p, q ≥ 2 be multiplicatively independent integers and

r ∈ N, r > 0. Then, for any given block εs . . . ε0, there exists an increasing

sequence of integers nk such that

lim
k→∞

Bq(rpnk , εs . . . ε0) = ∞.

Proof. We imitate the proof of [4, Theorem 2]. Let us consider the
sum

1
N

N∑
n=1

Bq(rpn, εs . . . ε0). (2.7)

We have to show that this sum tends to ∞ as N → ∞. Let K = [Nα ] and
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m =
∑s

i=0 εiq
i. For a positive integer � ≤ N we consider

A� = #

{
(n, k); 1 ≤ n; s ≤ k ≤ K and

�+
m

qs+1
≤ rpn

qk+1
< �+

m+ 1
qs+1

}
.

(2.8)

Notice that the inequalities in (2.8) involving � are equivalent to the occur-
rence of the block εs . . . ε0 in the q-adic digital expansion of rpn at some
position k. Taking logarithms in (2.8) and setting α = log q

log p we obtain

A� = #

{
k ≤ K − s+ 1; ∃n, 1 ≤ n ≤ N,

log(�+ m
qs+1 )

log p
≤ n− (k + 1)α+

log r
log p

<
log(�+ m+1

qs+1 )

log p

}

= # {k 1 ≤ k ≤ K and {−(k + 1)α} ∈ I�} +O(log(�+ 1)),

where I� denotes the interval[
log(�+ m

qs+1 ) − log r

log p
,
log(�+ m+1

qs+1 ) − log r

log p

)
modulo 1 of Lebesgue measure |I�|. By the irrationality of α the sequence
(kα)k∈N is uniformly distributed modulo 1 and thus we have

A� = K|I�| + o(N) +O(log(�+ 1)),

where the o(N)-term is uniform in �. Summing up we obtain for 2 ≤
ψ(N) < N

ψ(N)∑
�=1

A� = K

ψ(N)∑
�=1

|I�| + o(Nψ(N)) +O(ψ(N) log ψ(N)).

Now choose the function ψ(N) such that limN→∞ ψ(N) = ∞ and the
o(Nψ(N)) term above is still O(N). We now observe that the series

∞∑
�=1

|I�|
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is divergent and since

1
N

N∑
n=1

Bq(rpn, εs . . . ε0) ≥ 1
N

ψ(N)∑
�=1

A�,

the sequence (Bq(rpn, εs . . . ε0))n is unbounded. Thus the proof of the
lemma is complete. �

3. Rigid times and proof of Theorem 2

For the proof of the main result we now introduce tools from ergodic
theory. Let Γ be an infinite, countable discrete Abelian group, let V : γ →
V γ be a unitary representation of Γ on a Hilbert space H and let ζ be a
complex number such that |ζ| ≤ 1. An infinite subset S of Γ will be said
a ζ-rigid time for V if the family (V s)s∈S weakly converges to ζI (where
I is the identity map) with respect to the filter of co-finite sets. In other
words, for all h, h′ in H and for all ε > 0, there exists a finite subset F of
S such that |〈V sh|h′〉 − ζ〈h|h′〉| ≤ ε holds for any s ∈ S \ F . For short we
write lims∈S〈V sh|h′〉 = ζ〈h|h′〉. By polarization, S is a ζ-rigid time for V
if and only if for any h ∈ H

lim
s∈S

〈V sh|h〉 = ζ‖h‖2. (3.1)

Now we state the following general

Theorem 3. Let V be a unitary representation of Γ on H and let

ζ be a complex number of modulus ≤ 1. An infinite subset S ⊂ Γ is a

ζ-rigid time for V if and only if for any h ∈ H and any ϕ ∈ L1(Γ̂, ρh),

lim
s∈S

∫
Γ̂
ϕ(u)u(s)ρh(du) = ζ

∫
Γ̂
ϕ(u)ρh(du), (3.2)

where ρh denotes the spectral measure of h associated to V which is given

by

ρ̂h(s) = 〈V sh, h〉, s ∈ Γ.
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Proof. Assume that S is a ζ-rigid time for V . For any γ ∈ Γ, let Cγ
be the character on Γ̂ defined by Cγ(u) = u(γ); one has by definition

〈V s+γh|h〉 =
∫

Γ̂
Cs+γ(u)ρh(du) =

∫
Γ̂
u(s)u(γ)ρh(du).

On the other hand,

lim
s∈S

〈V s+γh|h〉 = ζ〈V γh|h〉 = ζ

∫
Γ̂
Cγ(u)ρh(du).

Therefore (3.2) holds for ϕ = Cγ . Clearly (3.2) also holds for any linear
combination of characters and a straightforward density argument shows
that (3.2) is also true for any ϕ ∈ L1(Γ̂, ρh). Conversely, assuming that
(3.2) is true for any h inH, ϕ in L1(Γ̂, ρh) and taking ϕ = 1 we immediately
get (3.1). �

The notion of ζ-rigid time furnishes the following simple test to derive
the mutual singularity of two unitary representations:

Theorem 4. Let V and V ′ be two unitary representations of Γ (on

Hilbert spaces H and H ′, respectively) and assume that S ⊂ Γ is a ζ-rigid

time for V and a ζ ′-rigid time for V ′ with ζ �= ζ ′. Then the spectral

measures of V and V ′ are mutually singular.

Proof. Let h ∈ H, h′ ∈ H ′ be of norm 1 and let νh, νh′ be the corre-
sponding spectral measures (which are both probability measures on Γ̂).
Let σ be a probability measure on Γ̂ and assume that σ is absolutely
continuous with respect to ρh and ρh′ . By definition

σ̂(γ) =
∫

Γ̂

dσ

dρh
(u)u(γ)ρh(du) =

∫
Γ̂

dσ

dρh′
(u)u(γ)ρh′(du),

and passing to the limit along S we obtain from Theorem 3

lim
s∈S

σ̂(s) = ζ = ζ ′.

This contradiction means that σ does not exist or, equivalently that ρh
and ρh′ are mutually singular. �

Now we introduce particular weighted unitary representations related
to multiplicative Γ-cocycles. Let K be a compact metrisable Abelian group
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with group law denoted additively and assume that Γ acts on K by means
of translations. For any γ ∈ Γ, let τγ denote the translation which realizes
the action of γ. We assume that this τ -action is ergodic and aperiodic on
K endowed with its Haar probability measure µ. Aperiodicity of τ implies
that γ �→ τγ(0K) is one-one. For this reason we will identify γ by the
group element τγ(0K). We will also view τ as a unitary representation
of Γ on the Hilbert space L2(K,µ) and since Γ is infinite, we notice that
there always exists a 1-rigid time S for τ .

As above, U denotes the group of complex numbers of modulus 1
equipped with its Haar measure λ and let ϕ : Γ ×K → U be a τ -cocycle
i.e. a measurable map such that

ϕ(γ + γ′, x) = ϕ(γ, τγ
′
x)ϕ(γ′, x) µ-a.e.

We then define the skew product action τϕ of Γ on the product space
(K × U, µ⊗ λ) by

(τϕ)γ(x, ζ) = (x+ γ, ζϕ(γ, x)).

Finally, we define the unitary representation Uϕ of Γ on L2(K) by

Uγϕ(h)(x) = ϕ(γ, x)h(τγx). (3.3)

Theorem 5. Assume that S is a 1-rigid time for τ . Then for any

τ -cocycle ϕ : Γ×K → U, the set S is a ζ-rigid time for the representation

Uϕ if and only if for any χ ∈ K̂,

lim
s∈S

∫
K
ϕ(s, x)χ(x)µ(dx) =

{
ζ if χ is trivial,

0 otherwise.
(3.4)

Proof. For characters χ and χ′ on K, we have

〈Uγϕχ|χ′〉 = χ(γ)
∫
K
ϕ(γ, x)χ(x)χ′(x)µ(dx).

Assume that S is a ζ-rigid time for Uϕ, then lims∈S〈U sϕχ|χ′〉 = ζ〈χ|χ′〉.
This proves (3.4). Conversely, assume (3.4) for any χ ∈ K̂, then
lims∈S χ(s)〈U sϕχ|χ′〉 = ζ〈χ|χ′〉 for any characters χ and χ′ on K whereas
lims∈S χ(s) = 1 due to the 1-rigidity of τ along S, hence

lim
s∈S

〈U sϕχ|χ′〉 = ζ〈χ|χ′〉.
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By bilinearity, the same formula holds for any linear combinations of char-
acters. We finally obtain by continuity, lims∈S〈U sϕh|h′〉 = ζ〈h|h′〉 for all h,
h′ in L2(K,µ), as expected. �

Readily, for any integer � �= 0, the set S = {�pn; n ∈ N} is a 1-rigid
time for the Z-action x �→ x+m (m ∈ Z) on Zp. Going back to the cocycle
ψf and the unitary representation Vf,ξ we get the following consequence:

Theorem 6. Assume that f is a completely p-additive arithmetic

function. Then for any integer � �= 0 the set S := {�pn; n ∈ N} is a ζ-rigid

time for Vf,ξ, with ξ : u �→ um (u ∈ G, m ∈ Z) and

ζ = ν̂mf (�).

Proof. In order to apply Theorem 5, notice that ξ ◦ e ◦ ψf is a τ -
cocycle. We compute

I(n) =
∫

Zp

ξ(e(ψf (�pn, x)))χ(x)µ(dx)

for any χ ∈ Ẑp. Associated to χ, there exists an integer k such that
χ(ypk) = 1 for any y ∈ Zp and due to the p-additivity of f , one gets for
any integer n ≥ k

I(n) =
1
pn

pn−1∑
j=0

∫
Zp

ξ(e(ψfn(�, y)))χ(j + pny)µ(dy)

=

(∫
Zp

χ(x)µ(dx)

)(∫
Zp

ξ(e(ψfn(�, x)))µ(dx)

)
.

The complete p-additivity of f implies

I(n) = 〈χ|1〉ν̂mf (�)
so that conditions (3.4) are fulfilled. �

Corollary 1. Let m,n ∈ Z, then the two measures νmf and νnf are

either equal or mutually singular.

Proof. Assume that νnf �= νmf . There exists an � ∈ Z such that
ν̂nf (�) �= ν̂mf (�) which implies νmf and νnf mutually singular by using
Theorems 6 and 4. �
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Now we relate the measure ργ given by (1.7) for γ = χ ⊗ ξ to the
measure νmf , where m is given by ξ : u �→um. Recall that ργ=δ{χ(1)} ∗νmf .

Proposition 3. With the above notations, assume that mf �= k
p−1sp

mod 1. Then the measure ργ is equivalent to νmf . Equivalently, all trans-

lations of νmf by pk-th roots of unity are equivalent.

Proof. Let µ be a measure on U and ζ be a primitive K-th root of
unity. Define the measure

κ(dt) =
1
K2

∣∣∣∣∣∣
K−1∑
j=0

a(j)e(−jt)
∣∣∣∣∣∣
2
K−1∑
k=0

µ ∗ δ{ζk}(dt).

If µ is continuous, the two measures are equivalent, since the trigonometric
polynomial vanishes in at most finitely many points. A straightforward
computation shows that the Fourier coefficients of κ and µ are related by
the following formula, for 0 ≤ � < K,

κ̂(�+Kn) =
1
K

K−�−1∑
j=0

a(�+ j)a(j)µ̂(Kn)

+
1
K

K−1∑
j=K−�

a(�+ j −K)a(j)µ̂(K(n+ 1)).

(3.5)

Taking K = pk, where k is the smallest exponent such that χ(1)p
k

= 1,
µ = νmf (which is continuous by Proposition 2) and a(j) = e(mf(j))χ(1)js

in (3.5) (0 ≤ s < pk) we obtain

κ̂(�+ pkn) = χ(1)�s
(

1
pk

pk−�−1∑
j=0

e(m(f(�+ j) − f(j)))ν̂mf (n)

+
1
pk

pk−1∑
j=pk−�

e(m(f(�+ j − pk) − f(j)))ν̂mf (n+ 1)

)

= χ(1)�sν̂mf (�+ pkn).

The last equation holds by an application of (2.2) to the function mf as
a completely pk-additive function. Thus κ = ρχs⊗ξ and in particular ργ
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is equivalent to p−k
∑pk−1

j=0 νmf ∗ δ{χ(1)j}, which by the same argument is
equivalent to νmf . �

Corollary 2. The spectral type of the unitary representation Vf,ξ
defined by (1.6), with ξ : u �→ um such that mf �≡ k

p−1sp (mod 1), is equal

to νmf , and for any h ∈ L2(Zp), any χ ∈ Ẑp the spectral measures ρh⊗ξ
and ρ(χ·h)⊗ξ (= ρh⊗ξ ∗ δ{χ(1)}) are equivalent.

Proof. It is enough to show that for any linear combination h =∑n
j=1 ajχi of characters χj on Zp the measure ρh⊗ξ is absolutely con-

tinuous with respect to νmf , but as a classical result ρh⊗ξ is absolutely
continuous with respect to

∑n
j=1 ρχj⊗ξ, and the result follows from the

above proposition. �

In the next corollary, we sum up results which essentially derive from
Corollary 2 and the decomposition (1.4):

Corollary 3. For any completely p-additive arithmetic function f ,

the dynamical system (Zp × G,Tp,f , µp ⊗ hG) is ergodic. Let ∆p be the

discrete part contribution of the translation T : x �→ x+ 1 on Zp, Λp,f the

part corresponding to the orthocomplement of L2(Zp, µp) ⊗ 1 with Λ(d)
p,f

(resp. Λ(c)
p,f ) its discrete (resp. continuous) part. The spectral type of Tp,f

(cf. (1.5)) has the form

Ξp,f = ∆p ∗ Λ(d)
p,f + Λ(c)

p,f .

Moreover, let Jf be the subgroup of integers m such that mf = k
p−1sp

mod 1 for a suitable integer k ∈ N, and letm0 ≥ 0 be defined by Jf = m0Z.

Then

(i) if G0 is the subgroup of the (p − 1)-st roots of unity generated by

the values of m0f , then the discrete part Λ(d)
p,f of Λp,f is the spectral

type of the translation z �→ zζ0 where ζ0 = e(m0f(1)) is a generator

of G0 and the (ergodic) dynamical system (Zp × G0, T0, µp ⊗ hG0)
with T0(x, z) = (x + 1, zζ0) is a factor of Tp,f under the factor map

(x, y) �→ (x, ym0);
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(ii) if m0 �= 0, G is finite and the continuous part Λ(c)
p,f of Λp,f is given by

the measure ∑
1≤m<#G

m�=0 mod m0

νmf ;

(iii) if m0 = 0, Λp,f (= Λ(c)
p,f) is equivalent to the measure

∞∑
m=1

2−mνmf .

In this case Ξp,f = ∆p + Λp,f .

Remark 5. In case (iii) of Corollary 3, if G is finite of cardinal r, then r
and p− 1 are relatively prime and the infinite sum can be replaced by the
sum

r−1∑
m=1

νmf .

Proof of Theorem 2. From above, we may suppose that g is also
not trivial. By complete p-additivity of f and Theorem 6, the set S =
{�pn; n ∈ N} (� ∈ N, � �= 0) is a ζ-rigid time for Vg,ξ with ζ = ν̂f (�), and
we can choose � such that ν̂f (�) �= 0. Lemma 2 implies that there exists an
increasing sequence of integers nk such that the number of occurrences of
a given non-zero block B in the q-ary expansion of �pnk tends to infinity.
The estimate given in Lemma 1 then implies

lim
k
ν̂g(�pnk) = 0. (3.6)

Let H be the subspace of all h ∈ L2(Zq) such that ρh � νf where ρh
denotes here the spectral measure h with respect to unitary represen-
tation V n

g,e : u �→ e(ψg(n, x))u(x + n) of Z on L2(Zq). The space H

is invariant under Vg,e and the unitary representation χ �→ Mχ of Ẑq

given by Mχ(u)(x) = χ(x)u(x), this latter fact following from Corol-
lary 2. Assume that H �= {0} and choose h �= 0, h ∈ H. For any
function u in the orthocomplement of H we have 〈V n

g,e(h)·u | χ〉 = 0 for
any χ ∈ Zq and n ∈ Z. This implies V n

g,e(h)·u = 0 µq-a.e. or equivalently,
h(x + n)u(x) = 0 for µq-almost all x and any n ∈ Z, and consequently
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u = 0 µq-a.e. Therefore H = L2(Zq), in particular ρ1 = νg � νf . But
ν̂g(�pnk) =

∫
U

dνg

dνf
(t)e(�pnkt)νf (dt), and

lim
k

∫
U

dνg
dνf

(t)e(�pnkt)νf (dt) = ζ �= 0

by Theorem 3, in contradiction with (3.6). Thus H = {0} and we conclude
that νg and νf are mutually singular. The same conclusion holds if we
replace f and g by mf and m′g with any integers m and m′ such the
characters v �→ vm and v �→ vm

′
are not trivial respectively on Gf and

Gg. Now, the mutual singularity of Λp,f and Λq,g is an easy consequence
of Corollary 3 part (iii). �

4. Gaussian integers

In this section we consider radix expansions for the Gaussian integers
Z[i]. It is well known that all bases b for canonical number systems in Z[i]
are of the form b = −a ± i, a ∈ N, a ≥ 1 (cf. [13]). Such numeration
systems were introduced in special cases earlier by D. Knuth [14]. Thus
every Gaussian integer z can be written uniquely in the form

z =
L∑
�=0

ε�b
� with ε� ∈ A (= {0, . . . , a2})

that leads to the classical notion of b-additive arithmetic functions f :
Z[i] → R which, by definition, verify f(z) =

∑L
�=0 f(ε�b�). In the following

we will mainly consider completely b-additive arithmetic functions defined
by

f

(
L∑
�=0

ε�b
�

)
=

L∑
�=0

f(ε�)

and still denote by Gf or simply G the closed subgroup of U generated by
the values of e ◦ f . The corresponding compact group Kb (replacing the
q-adic integers for the classical radix expansions) with Haar measure µb
as well as the related cocycle ψf (see infra) where f is the sum-of-digits
function have been investigated in [7].
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Let (Kb, Tb, µb) be the group action of Z[i] by translation, namely
T zb (x) = x+ z for any Gaussian integer z, and let (Kb ×G,Tb,f , µb ⊗ hG)
be the skew product above Tb defined by

T zb,f (x, u) = (x+ z, ue(ψf (z, x))),

where ψf is the cocycle given by

ψf (z, x) = lim
ξ→x
ξ∈Z[i]

f(z + ξ) − f(ξ),

if the limit exists and ψf (z, x) = 0 otherwise. For any z ∈ Z[i], the map
ψf (z, ·) is continuous almost everywhere. This fact was proved in [7] for the
sum-of-digits function, but since the proof makes use only of the b-additive
property, it is valid in full generality.

Theorem 7. The dynamical system (Kb×G,Tb,f , µb⊗hG) is uniquely

ergodic.

Proof. The ergodicity will be a consequence of our next study. It can
be also derived by arguing along the same lines as in the proof given in
[7] for the sum-of-digits function. The uniqueness of the ergodic measure
follows from the general result [see [7], Corollary 4]. �

Our first aim is the study of the spectral type of Tb,f , taking into
account the decomposition analogous to (1.4), replacing Zp by Kb. The
dual group of Γ is identified with the two-dimensional additive torus Γ̂ =
C/Z[i] so that v ∈ Γ̂ corresponds to a unique character χv(z) = e(�(vz))
of Γ and all characters of Γ are of this form. Moreover, by duality, all
characters of Γ̂ are of the form χz : v �→ χv(z). Now, the dual group of
K(b) is identified with the discrete subgroup

Γ̂(b) := {w ∈ Γ̂; ∃k ∈ N, bkw = 0},

each character χ of K(b) being identified to w(χ) = ω/bk ∈ Γ̂, ω ∈ Z[i],
through the formula χ(x) = χw(x) = e(�(w

∑k−1
j=0 xjb

j)). We use the same
notations as before: ρh represent the spectral measure associated to any
function h in L2(Kb×G) with respect to Tb,f . Recall that ρh is a measure
on Γ̂ and in particular, for h = χ⊗ ξ with χ ∈ K̂b and ξ : u �→ um (∈ Ĝ),
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one has
ρ̂χ⊗ξ(z) = χ(z)

∫
Kb

e(ψmf (z, x))µb(dx);

hence ρχ⊗ξ = δ{w(χ)} ∗ νmf .
An important spectral property related to Tb,f is the existence of rigid

time. It is a simple observation that any set S(�) := {�bn; n ∈ N} (for
any Gaussian integer � �= 0) is a 1-rigid time for the Z[i]-action Tb on
Kb by translation. Now for any character ξ of G, let Vf,ξ be the unitary
representation of Z[i] on L2(Kb) given by

V z
f,ξ(h)(x) = ξ(e(ψf (z, x)))h(x + z).

The following theorem corresponds to Theorem 6 for p-additive function;
the proof is almost identical and is left to the reader:

Theorem 8. The set S(�) is a ζ-rigid time for Vf,ξ, with ξ : u �→ um

and ζ = ν̂mf (�).

The corresponding Corollary 1 holds as well.

As in the case of p-adic integers discussed in Section 2, addition of m+
ni can be performed by a family of transducer automata. They are more
complicated, due to the fact that there are 12 possible carries (including
the carry 0) which form the set Σ of states. These automata are described
in Figure 2. Since the situation is more complicated than in the p-adic
case, we also give a brief verbal description. Let d : Z[i] → {0, 1, . . . , a2}
be the first digit function to base b i.e., d(z) is defined by the relation
z − d(z) ∈ bZ[i] and notice that (a2 + 1)b−1 = −b− 2a = b2 + (2a− 1)b+
(a − 1)2. To add m + ni = ε0 + ε1b + · · · + εrb

r to any x =
∑∞

k=0 xkb
k

(xk ∈ A) in Kb such that y = (m+ ni) + x =
∑∞

k= ykb
k, we first compute

y0 = ε0 + x0 − η(a2 + 1) and report the carry c1 = η(−b − 2a) where η is
equal to 0 or 1 according to ε0 + x0 ≤ a2 or a2 + 1 ≤ ε0 + x0 (< 2a2 + 1).
After computing the digits y0, . . . ys−1, the next one, ys, is obtained by
computing cs + εs + xs where cs is the running carry to be added (and
εs = 0 if s > r). This gives ys = d(cs) + εs + xs − η(a2 + 1) and the next
carry cs+1 = (cs − d(cs)b−1 + η(−b − 2a), where η is equal to 0, 1 or 2 in
such a way that 0 ≤ d(cs)+ εs+xs−η(a2 +1) ≤ a2. If we define the maps

Sη : z �→ (z − d(z))b−1 + η(−b− 2a)
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for 0 ≤ η ≤ 2 then, Σ is the smallest subset of Z[i] containing 0 and
satisfying both

(∀ c ∈ Σ) (d(c) = 0 ⇒ S0(c) ∈ Σ &S1(c) ∈ Σ)

and
(∀ c ∈ Σ) (d(c) �= 0 ⇒ ∀η ∈ {0, 1, 2}, Sη(c) ∈ Σ).

It is easy to see that there exists a positive integer M such that for any
z ∈ Z[i], there is an integer k ≥ 0 verifying for i = 0, 1, 2, |Ski (z)| ≤M and
moreover, |Si(z)| ≤ M if |z| ≤ M . Hence |s| ≤ M for any s ∈ Σ, proving
that Σ is finite. By straightforward computation we obtain

Σ = {0, 1,−A,C,−2, F,B,D,E,−B,A,−1} (4.1)

where

A = b+ 2a, B = b+ 2a− 1, C = −b− 2a− 2,

D = −b− 2a− 1, E = b+ 2a− 2, F = −2b− 4a+ 1.

The automaton corresponding to the addition of the digit ε is depicted
Figure 2.

In the labelled graph of Figure 2, the notation [q] means that q has
to be added to the digit that has just been read, if the result is still in
A (= {0, . . . , a2}), so that if σ is the current state, the next one is the
extremity of the arrow issuing from σ and labeled by [q]. Notice that there
is always exactly one possibility.

Finally, by ordering Σ = {σ0, . . . , σ11} as it is given in (4.1), the corre-
sponding matrices Aε related to the computation of the Fourier coefficient
ν̂f (
∑k

k=0 εkb
k) can be read off as



t(ε) 0 t(ε−a2−1) 0 0 0 . . .
t(ε + 1) 0 t(ε−a2) 0 0 0 . . .

0 0 0 0 0 0 . . .
0 0 0 t(ε−a2−2a−3) 0 0 . . .

t(ε − 2) 0 t(ε−a2−3) 0 0 0 . . .
0 0 0 t(ε−a2−4a) t(ε−4a+1) 0 . . .
0 t(ε+2a−1) 0 0 0 t(ε−2a2+2a−3) . . .
0 0 0 0 0 0 . . .
0 t(ε+2a−2) 0 0 0 t(ε−2a2+2a−4) . . .
0 0 0 0 0 0 . . .
0 t(ε+2a) 0 0 0 t(ε−2a2+2a−2) . . .

t(ε − 1) 0 t(ε−a2−2) 0 0 0 . . .
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0 0 0 0 0 0
0 0 0 0 0 0

t(ε+(a−1)2) t(ε−(a+1)2) 0 0 0 t(ε − 2a)
t(ε+a2−2a−1) 0 0 0 0 t(ε− 2a− 2)

0 0 t(ε+a2−4a+2) 0 0 0
0 0 0 0 t(ε+a2−1) 0
0 0 0 t(ε−(a−1)2−1) 0 0

t(ε+a2−2a) t(ε−a2−2a−2) 0 0 0 t(ε− 2a− 1)
0 0 0 t(ε−(a−1)2−2) 0 0

t(ε+(a−1)2+1) t(ε−a2−2a) 0 0 0 t(ε− 2a +1)
0 0 0 t(ε−(a−1)2) 0 0
0 0 0 0 t(ε+a2) 0



(4.2)

with

t(q) =
1

a2 + 1

∑
k∈A∩−q+A

e(f(k + q) − f(k)) A = {0, . . . , a2},

t(q) being null if A ∩−q + A is empty (i.e., |q| > a2).
In fact, let fm be the general notation for the b-additive function

z �→ f(bmz), set Fm(z, x) = e(ψfm(z, x)) for short and x = x0 + bx′

for any x ∈ Kb. For z ∈ Z[i] with partial b-expansion z = ε + bz′, and
any σ ∈ Σ, using the b-multiplicativity of e(f) and the fact that µb is a
product measure, one has

ν̂f (z + σ) =
∫
Kb

∑
0≤k≤a2

1{x0=k}F (z + σ, x)µb(dx)

=
2∑
η=0

(Aε)σ,Sη(σ)

∫
Kb

F1(z′ + Sη(σ), x′)µb(dx′),

the term in the above summation corresponding to η = 2 being omitted if
ε = 0. This proves the following fundamental formula: ν̂f (z + σ0)

...
ν̂f (z + σ11)

 = Aε

 ν̂f1(z
′ + σ0)
...

ν̂f1(z
′ + σ11)

 . (4.3)

Obviously, for any b-additive function f , ‖A0‖ = ‖Aa2‖ = 1 and if
we denote by Bε = (b(ε)α,β) the matrix Aε but with f = 0, each entry
of (a2 + 1)Bε are non negative integers, the sum of all terms on each
line being equal to a2 + 1, and the entries of the matrix (a(ε)

α,β) = Aε

satisfy |a(ε)
α,β | ≤ b

(ε)
α,β. As in the above discussion, if there is no digit ε such
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Figure 2. The automaton Aε for base −a+ i

that ‖Aε‖ < 1 then the first line of A1 says that f(δ + 1) − f(δ) ≡ C

(mod 1). Assuming in addition that f is completely additive, this implies
that f(z) ≡ Csb(z) (mod 1). In that case ‖Aε‖ = 1 for any digit ε but
there are many triples (ε1, ε2, ε2) ∈ A such that one entries of the product
Aε1Aε2Aε3 is strictly less than the corresponding entry of Bε1Bε2Bε3. For
our purpose, we only need to exhibit one such triple. In fact, choosing
((a − 1)2, 2a, 0) and working with the automata A(a−1)2 , A2a and A0 we
obtain

(A(a−1)2A2aA0)B,B = (2a+ 1)2aζa
2+1 + (a2 − 2)(2a + 1)ζ−2a−1.

where ζ = e(C). Therefore

|(A(a−1)2A2aA0)B,B | < (B(a−1)2B2aB0)B,B = (2a+ 1)2a+ (a2 − 2)(2a+ 1)
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if ζ(a+1)2+1 �= 1 (and |(A(a−1)2A2aA0)B,B | = (B(a−1)2B2aB0)B,B other-
wise). Consequently, for any digits ε and η, the inequality

‖AεA(a−1)2A2aA0Aη‖ < 1

holds if and only if ζ is not a ((a + 1)2 + 1)-th root of unity. The case
where ζ(a+1)2+1 = 1 is very particular as it was observed in [7] where it is
shown that

∀ (z, z′) ∈ Z[i]2, sb(z + z′) ≡ sb(z) + sb(z′) (mod (a+ 1)2 + 1). (4.4)

We have proved the analogue of Lemma 1, namely if f is completely
b-additive and does not satisfy f(z) ≡ k

(a+1)2+1sb(z) (mod 1) for some
integer k then, there exists a constant θ, 0 < θ < 1, such that

|ν̂f (z)| ≤ θσB(z) (4.5)

for some non-overlapping block counting function σB(z) where the digit
block B can be chosen of length at most five. From (4.5) we infer the
following:

Proposition 4. For any completely b-additive function f , the measure

νf is discrete if and only if f ≡ k
(a+1)2+1

sb (mod 1) for some k ∈ Z.

Otherwise, νf is singular continuous and for any w ∈ Γ̂(b), ρχw⊗1 (=
νf ∗ δ{w}) is equivalent to νf .

Proof. Assume that f ≡ k
(a+1)2+1

sb (mod 1), then the map χf :
z �→ e(f(z)) is a character of Z[i] and νf is discrete. In fact, by direct

computation, χf (z) = e
(
�( kz

1+(a+1)i

))
and ν̂f (z) = χf (z) i.e., νf = δ{α},

where α = k
1+(a+1)i + Z[i].

In the case f �≡ k
(a+1)2+1

sb (mod 1), we introduce the set

∆L :=

{
L−1∑
�=0

ε�b
�; (ε0, . . . , εL−1) ∈ AL

}
.

It follows from the geometric considerations in [6] that ∆L satisfies the
condition (4.8) below. Following the proof of Proposition 2 we get

lim
L→∞

1
(a2 + 1)L

∑
z∈∆L

|ν̂f (z)|2 = 0. (4.6)



Spectral disjointness of dynamical systems. . . 237

This, together with Theorem 9 infra, finishes the proof of continuity of the
measure νf .

In order to prove νf ∗ δ{w} ∼ νf for w = ωb−L with ω ∈ ∆L, ω �= 0,
we introduce the probability measure

κ(du)=
1

(a2+1)L

∣∣∣∣ ∑
z∈∆L

e(�(f(z)+wz)χz(−u)
∣∣∣∣2 1

(a2 + 1)L
∑
v∈∆L

µ∗δ{vbL}(du).

which precisely verifies for any y ∈ ∆L and y′ ∈ Z[i]

κ̂(y + bLy′) = χw(y)ν̂f (y + bLy′) (4.7)

that is to say, κ = νf ∗ δ{w}. Equation (4.7) is obtained by iterating
(4.3) with the b-additive function F : z �→ �(f(z) + wz) which verifies
FL ≡ �(fL) mod Z[i]. �

We could not find the following straight forward generalization of the
Wiener–Schoenberg theorem in the literature. Thus we state it and give a
short proof.

Theorem 9. Let G be a compact metrizable abelian group and (An)n
an increasing sequence of finite non empty subsets of Ĝ such that

lim
n→∞

#(χAn�An)
#An

= 0 (4.8)

for all χ ∈ Ĝ. Let ν be a measure on G. Then the limit

lim
n→∞

1
#An

∑
χ∈An

|ν̂(χ)|2 (4.9)

exists and equals ∑
g∈G

ν({g})2.

In particular, the measure has no point masses, if the limit (4.9) is zero.

Proof. The proof runs along the same lines as the proof of the clas-
sical Wiener–Schoenberg theorem [19], [21]. It depends on the fact
that ∑

χ∈An

|ν̂(χ)|2 =
∫∫
G×G

∑
χ∈An

χ(u− v) dν(u) dν(v).
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Define
fn(x) :=

1
#An

∑
χ∈An

χ(x);

if we can show

lim
n→∞ fn(x) =

{
1 for x = 0

0 otherwise,
(4.10)

Lebesgue’s theorem on dominated convergence yields existence of the limit
(4.9) and its value.

In order to prove pointwise convergence in (4.10) we fix x �= 0 (for
x = 0 the convergence is trivial). Assume now that |fn(x)| ≥ ε for some
ε > 0 and infinitely many n. Then there exists a convergent subsequence
fnk

(x), whose limit is �= 0. By our assumption on the sets An the sequence
χ(x)fnk

(x) is convergent to the same limit for any character χ. Taking χ
such that χ(x) �= 1 gives a contradiction. �

From Proposition 4 and previous analysis we can transfer conclusions
of Corollary 2 and Corollary 3 to b-additive arithmetic functions f , but
replacing the index p by b, the function k

p−1sp (mod 1) by k
(a+1)2+1

sb
(mod 1) and the group of (p − 1)-th roots of unity by the (1 + (a + 1)i)-
torsion subgroup of Γ̂ i.e., the group

Γ̂a := {v ∈ Γ̂; (1 + i(a+ 1))v = 0}.
To be complete, we need to know that Tb,f is ergodic if f ≡ k

(a+1)2+1
sb

(mod 1), a result coming from the general theory ([7], Corollary 4), or
simpler, due to the easy fact that Γ̂(b) ∩ Γ̂a = {0} and (4.4) which says
that Tb,f = Tb × Ra where, by definition, Rza : y �→ ye

(
�( z

1+(a+1)i

))
on

the group of ((a+ 1)2 + 1)-th roots of unity.

Let us mention the following simple consequences: first, as we have
already noticed, Tb,f is ergodic by the fact that the above spectral studies
show that the eigenvalue 1 only comes from Tb and so occurs with multiplic-
ity 1. Now, the following corresponds to the case where the eigenfunctions
for Tb,f are only those issuing from Tb:

Corollary 4. Assume that f is completely b-additive and takes an

irrational value. Then G = U and the spectral type Ξb,f of Tb,f has the
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form Ξb,f = ∆b + Λp,f where ∆b, the discrete part, is the spectral type of

Tb and Λp,f , the singular continuous part, is given by
∑∞

m=1 2−mνmf .

A b-additive arithmetic function f will be said trivial if there exists an
integer k and a non trivial character χm : u �→ um of Gf such that

χm(e(f)) = e

(
k

(a+ 1)2 + 1
sb

)
.

According to Proposition 4, this definition is equivalent to have νmf dis-
crete for some m such that 0 < m < #G.

Now we want to prove an analogue of Theorem 2. Our proof will work
only under the assumption of coprimality between the bases and we have
to show that the corresponding Lemma 2 holds in this case. We recall that

Zm
∼=
⊗
p|m

Zp (p prime )

as topological rings. Continuing with b = −a+ i (a > 0), let p be an odd
prime divisor of a2 + 1. Since −1 is a square mod p, it is also a square
in Zp. This means that i ∈ Zp but we have to choose this square root of
−1. We do this in connection with the factorization p = ππ̄ where π and
π̄ are conjugate and non equivalent Gaussian prime numbers. In fact, if
π = −σ + iτ , observe that the rational integers τ and σ are unities in Zp

and fix one square root i′ of −1 in Zp by assuming the relation

−σ + i′τ = 0 mod pZp.

The specialization i→ i′ over Z, allows us to identify Z[i] with Z[i′] (⊂ Zp)
by the ring isomorphism J : x + iy �→ x + i′y. In addition, such a choice
of i′ implies that the p-valuation of J(π) is 1 and for the conjugate prime,
J(π̄) = −σ − i′τ is a unity in Zp. Finally, let

i′ = r0 + r1p+ r2p
2 + . . .

be the p-adic expansion of i′, and set i′[n] =
∑n−1

k=0 rkp
k for any integers

n ≥ 1. Since i′[n] is a square root of −1 mod pn, the map x + iy �→
x+ i′[n]y+ pnZ from Z[i] to Z/pnZ is a ring morphism with kernel πnZ[i]
which induces the ring isomorphism

ϕn : u+ iv + πnZ[i] �→ u+ i′[n]v + pnZ
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from Z[i]/(π)n onto Z/pnZ. Thus, the family of morphisms ϕn defines an
isomorphism ϕ between the projective limits Z[i]π := lim←n

Z[i]/πnZ[i] and
Zp = lim←n

Z/pnZ.

The case b = −1 + i is particular because −1 + i is the unique prime
divisor (up to an equivalence) of 2 and −1 has no square root in Z2. As a
consequence, K−1+i = Z2[i].

Returning to Kb in full generality and let π1 . . . , πr be the distinct
prime divisors of b which are not above 2 (in case a is odd) and let pj be
the rational prime such that πj is above pj. Observe that the primes pj
are distinct, since −a + i is not divisible by a rational prime. Select the
square root i′j of −1 in Zpj in accordance with πj as above leading to the
isomorphism ϕ(j) between Z[i]πj and Zpj , which can be used to produce
the isomorphism

Kb �

⊗r

j=1 Zpj (� Za2+1) if a is even;

Z2[i] ⊗
(⊗r

j=1 Zpj

)
otherwise.

(4.11)

Theorem 10. Let b = −a + i and c = −a′ + i be coprime and f ,

g be completely b-additive, respectively c-additive. Assume that e(f) �=
e
(

k
(a+1)2+1

sb
)

for any integer k, then the spectral measures νf and νg are

mutually singular.

Proof. We assume that e(g) �= e
(

k
(a+1)2+1sb

)
for any k ∈ Z otherwise,

νg is discrete while νf is continuous, and the theorem holds. Without loss
of generality we may also assume that a′ is even. Let π1 . . . , πr be the
distinct prime divisors of c, respectively above the (odd) primes p1, . . . , pr.
Recall that the primes pj are distinct and let ϕ(j) : Z[i]πj → Zpj be the
above isomorphism such that ϕ(j)(πj) is equivalent to pj. Define m to be
the minimal positive integer such that bm ≡ 1 mod c and define dj as
the maximal positive integer such that ϕ(j)(bm) ∈ 1 + p

dj

j Zpj =: Udj
(pj).

From [15, Theorem 5.7, Corollary] we infer that Zpj � U1(pj) from which
we conclude that Zpj � Udj

(pj). Thus every element of Udj
(pj) can be

written as zp
djα
j , where zj is a principal unity and α ∈ Zpj . By definition,

we have

ϕ(j)(b)m = z
p

dj
j αj

j
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where αj is a unity in Zpj ; it follows that 〈ϕ(1)(b)m〉 = Udj
. Since the

primes pj are all distinct, (ϕ(j)(b)m, . . . , ϕ(r)(b)m) generates Ud1(p1)×· · ·×
Udr(pr). Thus from (4.11) we get 1 + cdKc ⊂ 〈bm〉 for any d greater than
max{d1, . . . , dr}. Therefore, for any block B of digits in {0, . . . , a′2}, any
Gaussian integer �, and any k ∈ N, choosing d large enough with respect
to �, there exists a positive integer nk such that σB(�bnk) ≥ k. For a
suitable choice of the digit block B, the bound (4.5) implies that

lim
k
ν̂g(�bnk) = 0.

Following the proof of Theorem 2 with Proposition 4 in hand, we obtain
first that νg is pure with respect to νf , i.e., νg is absolutely continuous or
singular with respect to νf . Since f is completely b-additive, there exists
� ∈ Z[i] such that νf (�) �= 0. Therefore {�bn; n ∈ N} is a ζ-rigid time for
Vf,ξ1 with ζ �= 0, and therefore, by Theorem 3, νg has to be singular with
respect to νf . �

Corollary 5. With the assumptions of Theorem 10, if f and g are

non trivial, then the spectral type of the dynamical systems Tb1,f1 and

Tb2,f2 are mutually singular; in particular the direct product Tb1,f1 ×Tb2,f2
is uniquely ergodic.

We have deliberately paid attention to real valued p-additive or b-
additive functions. This is not a real restriction since we work in fact with
e(f) and then use the corresponding p- or b-multiplicative notion. Indeed,
our choice is motivated by the seminal paper of A. O. Gel’fond [5].

We end this study with an application to uniform distribution which
is a consequence of Corollary 5 with more than two bases, taking into
account the Tempel’man ergodic theorem:

Theorem 11. Let f (i), i = 1, . . . ,m be non trivial, completely bi-

additive functions such that the bases bi are mutually coprime and set

Gi = Gf(i) . Then the sequence

z �→ (e(f (1)(z)), . . . e(f (m)(z)))

is uniformly distributed in G1×· · ·×Gm in the sense that for any increasing

sequence (An)n of finite non empty subsets of Z[i] satisfying (4.8) and for
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all continuous functions γ : G1 × · · · ×Gm → R, one has

lim
n

1
#An

∑
z∈An

γ(e(f (1)(z)), . . . , e(f (m)(z))) =
∫

G1×···×Gm

γ dH (4.12)

where H = hG1 ⊗ · · · ⊗ hGm .

Proof. From Theorem 10, the direct product P := Tb1,f(1) × · · · ×
Tbm,f(m) is ergodic and can be viewed as the skew product above the
(unique) ergodic translation Tb1×· · ·×Tbm , built with the cocycle (e(ψf(1)),
· · · , e(ψf(m) )). Therefore P is uniquely ergodic and since P is (µb1⊗hG1)⊗
· · · ⊗ (µbm ⊗ hGm)-continuous, all points in (Kb1 ×G1)× · · · × (Kbm ×Gm)
are generic for P . Taking Ω := ((0, 1G1), . . . , (0, 1Gm)) one has

P z(Ω) = ((z, e(f (1)(z)), . . . , (z, e(f (m)(z)). �

Clearly an analogous result holds for pi-additive arithmetic functions
in bases pi ≥ 2 which are assumed to be mutually coprime. In that case An
is usually taken to be {0, 1, . . . , n}.
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Soc. Math. France 107 (1979), 385–421.
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INSTITUT FÜR MATHEMATIK A

TECHNISCHE UNIVERSITÄT GRAZ
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