
Publ. Math. Debrecen
66/3-4 (2005), 257–267

On filial and left filial rings

By M. FILIPOWICZ (Bia�lystok) and E. R. PUCZY�LOWSKI (Warsaw)

Abstract. The prime radical of filial and left filial is studied. It is proved
that prime radical filial rings are left filial and that there exist nilpotent left filial
rings which are not filial. Filial and left filial matrix rings, polynomial rings and
rings being direct sums of copies of a ring are described.

1. Introduction

All rings in this paper are associative but we do not assume that each
ring has an identity element. We denote by R� the usual extension with
identity of the ring R.

The ring of integers is denoted by Z and for a given positive integer
n, Zn denotes the ring Z/nZ. Throughout the paper β denotes the prime
radical.

We use the notation I � R (respectively, I <l R) to mean that I is an
ideal (respectively, a left ideal) of the ring R.

It is well known that A � B � C (respectively, A <l B <l C) does not
imply A � C (respectively, A <l C). Nevertheless in some cases (e.g. for
specific A, B or C) the implication does hold. Systematic studies of this
subject were started by Sands [7] and continued by Veldsman [11].
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In particular Sands characterized the following classes of rings:
• {C | if A � B � C then A � C}
• {C | if A <l B <l C then A <l C}.

Rings satisfying the former condition were studied earlier in [3] (mainly in
the commutative case) and next in [1], [2], [9]. Following the terminology
of [3], we call rings from the first class filial and from the second left filial.
Some results on left filial rings were obtained in [10]. However the studies
of [9], [10] concerned rather the upper radicals determined by the class of
filial and the class of left filial rings than rings of these classes themselves.
Systematic studies of left filial rings were started in [4]. In particular a
structure theorem describing semiprime left filial was obtained there and
it was shown that semiprime left filial rings are filial.

In this paper we concentrate on studying the prime radical of filial
and left filial rings. We show that the twosided annihilator of nonzero β-
radical filial and left filial rings is nonzero. Moreover β-radical filial rings
are sums of their nilpotent ideals. This in particular implies that β-radical
filial rings are left filial. We give an example of a nilpotent left filial ring
which is not filial. Applying some results on the prime radical we describe
filial and left filial matrix rings, polynomial rings and direct sums of rings.

The following very useful characterization of filial and left filial rings
will be used many times in the paper.

Theorem 1 ([2], [7], [9], [10]). A ring R is

(i) filial if and only if for every a ∈ R, Za + (a)2 = (a);

(ii) left filial if and only if for every a ∈ R, Za + R�a2 = R�a.

2. On the prime radical of filial and left filial rings

The following results on the β-radical of filial and left filial rings were
obtained in [4].

Theorem 2 ([4]). (i) Rings which are sums of nilpotent ideals are

filial if and only if their subrings are ideals. In particular filial rings which

are sums of nilpotent ideals are left filial.
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(ii) For every left filial ring R, β(R) coincides with the set of nilpotent

elements of R as well as with the sum of nilpotent ideals of R. Moreover

β-radical rings are left filial if and only if their subrings are left ideals.

In [4], Theorem 5, it was proved that if a left filial ring R satisfies the
condition

if for some x ∈ R and a positive integer n, n2x = 0, then nx = 0 (�)

then (β(R))3 = 0.
The condition (�) is equivalent to say that the additive group of the

torsion part of R is elementary. Thus it is satisfied when R is a torsion-free
ring or an algebra over a field F . In [4], Theorem 18, it was proved that if
for every prime p, F is not isomorphic to Zp, and R is an F -algebra, which
is a left filial ring, then Rβ(R) = 0. In particular if R ∈ β, then R2 = 0.
This property holds also for β-radical left filial torsion-free rings.

Proposition 3. If R ∈ β is a torsion-free left filial ring, then R2 = 0.

Proof. Take any a ∈ R. Since R3 = 0, T = Za+Za2 is a subring of R.
Hence by Theorem 2 (ii), T <l R. Note that Z(2a+2a2)+4T <l 2T <l R,
so Z(2a+ 2a2) + 4T <l R. In particular 2a2 = a(2a+ 2a2) = k(2a+ 2a2) +
4la+4ma2 for some integers k, l, m. Multiplying this equality by a we get
that 0 = 2ka2 + 4la2. Hence, since R is torsion-free, a2 = 0 or 2k + 4l = 0.
In the latter case we get that 2a2 = 2ka2 + 4ma2 = −4la2 + 4ma2. Hence
(2+ 4l−4m)a2 = 0. Obviously 2+ 4l−4m �= 0, so, since R is torsion-free,
a2 = 0. Now Za is a subring of R, so Za <l R. Consequently Ra ⊆ Za.
Hence for every b ∈ R there exists n ∈ Z such that ba = na. However
b2 = 0, so nba = 0. Since R is torsion-free, these imply that ba = 0. Thus
R2 = 0. �

One can easily check that every subgroup of the additive group of the
matrix ring R =

(
Z Z

0 0

)
is a left ideal of R. Hence R is a torsion-free left

filial ring. Obviously β(R) =
(

0 Z

0 0

)
, so Rβ(R) �= 0.

By Theorem 2 (i) every nilpotent filial ring is left filial. Hence if R is
a filial ring satisfying (�), then for every nilpotent ideal I of R, I3 = 0.
This, Proposition 3 and Theorem 18 from [4] give the following corollary.
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Corollary 4. If a filial ring R satisfies (�), then (β(R))3 = 0. If R is

torsion-free or an algebra over a field F such that for every prime p, F is

not isomorphic to Zp, then (β(R))2 = 0.

For every prime p, the Zp-algebra, xZp[x]/x3
Zp[x] is a filial ring which

is nilpotent of index 3. Not all β-radical filial and left filial rings are
nilpotent (as an example one can take the ring

⊕
p−prime(pZpp)) but they

are S-nilpotent.

A ring R will be called S-nilpotent (cf. [8]) if for every nonzero homo-
morphic image R′ of R, Ann(R′) = {x ∈ R′ | R′x = xR′ = 0} �= 0.

Theorem 5. If R ∈ β is filial or left filial, then R is S-nilpotent.

Proof. Clearly one can reduce the proof to show that if R �= 0, then
Ra = aR = 0 for some 0 �= a ∈ R. If R is torsion-free then this a
consequence of Proposition 3 and Corollary 4. Thus we can assume that
there is a prime p and 0 �= x ∈ R such that px = 0. Then pRx = xpR = 0.
Now R/pR ∈ β is a filial or left filial Zp-algebra. Hence by the above
quoted Theorem 5 from [4], R3 ⊆ pR. Consequently R3x = xR3 = 0.

Clearly if i, j are non-negative integers such that i + j ≥ 5, then
RixRj = 0 (we follow the convention that R0 = R�). Let k be the minimal
positive integer such that if for some non-negative integers i and j, i+j = k,
then RixRj = 0. Then for some non-negative integers n and m with
n + m = k − 1, T = RnxRm �= 0. Clearly RT = TR = 0. The result
follows. �

Note that if an S-nilpotent ring R is idempotent then R = 0. Indeed,
if R = R2, then {x∈R | Rx + xR ⊆ Ann R}⊆{x∈R | R2x = 0 = xR2} =
Ann R. Hence Ann(R/ Ann R) = 0 and S-nilpotency of R implies that
R = Ann R, so R = R2 = 0. This and Theorem 5 give in particular
another proof of the following result obtained in [9] and in [10].

Corollary 6 (cf. [9], Proposition 26, and [10], Proposition 3.8). There

is no nonzero idempotent β-radical filial or left filial ring.

As it was mentioned above not all β-radical filial rings are nilpotent.
However it turns out that they are sums of nilpotent ideals.
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Corollary 7. Every β-radical filial ring R is the sum of its nilpotent

ideals.

Proof. By Theorem 1, (a)2 + Za = (a). This implies that for every
positive integer n, (a)n+1 + Zan ⊆ (a)n = ((a)2 + Za)n ⊆ (a)n+1 + Zan.
Consequently (a)n+1 +Zan = (a)n. However R ∈ β, so for some n, an = 0.
Then (a)n = (a)n+1 and (a)n is an idempotent β-radical filial ring. By
Corollary 6, (a)n = 0. Hence each principal ideal of R is nilpotent. This
obviously gives the result. �

In [4] it was proved that β-semisimple left filial rings (which in fact
are reduced rings) are filial. From Theorem 2 (i) and Corollary 7 we get
in particular that for β-radical rings the converse implication holds.

Corollary 8. A β-radical ring is filial if and only if all its subrings

are ideals. In particular every β-radical filial ring is left filial.

Rings in which subrings are ideals were studied in [6]. Corollary 8
shows that the results obtained there apply to β-radical filial rings.

In [4] it was proved that left filial β-radical rings which are algebras
over fields are filial. By Proposition 3 also torsion-free β-radical left filial
rings are filial. Thus it is rather surprising that there are nilpotent left
filial rings which are not filial. Now we give an example of such a ring.

Example. If A is a ring and V is a left A-module, then the set
(

A V
0 0

)
of 2 × 2-matrices of the form

( a v
0 0

)
, where a ∈ A and v ∈ V , is a ring

with respect to canonical matrix addition and multiplication. Let p be
a prime. Obviously pZp3 is a left pZp3/p2

Zp3-module and pZp3/p2
Zp3 �

pZp2. These define the respective structure of pZp2-module on pZp3 and

the ring R =
(

pZp2 pZp3

0 0

)
. Obviously R3 = 0. Note that R is not filial.

Indeed,
(

pZp2 0

0 0

)
�

(
pZp2 p2

Zp3

0 0

)
�

(
pZp2 pZp3

0 0

)
= R, but

(
pZp2 0

0 0

)
is not

an ideal of R.
Now we will show that every additive subgroup S of R is a left ideal.

Let I =
(

pZp2 p2
Zp3

0 0

)
. If S ⊆ I, then RS = 0 and consequently S <l R.

If S �⊆ I, then pS is a nonzero subgroup of the additive group
(

0 p2
Zp3

0 0

)
,
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the order of which is equal p. Hence S ⊇ pS =
(

0 p2
Zp3

0 0

)
. Consequently

RS ⊆ R2 =
(

0 p2
Zp3

0 0

)
⊆ S, so S <l R. �

Though all semiprime left filial rings are filial and β-radical left filial
rings which are algebras over fields are filial, there are algebras over fields
which are left filial but not filial rings.

Let ∆ be a division ring. In [4] it was proved that the matrix ring
M =

(
∆ 0
∆ 0

)
is left filial and it is filial if and only if ∆ � Zp for a prime p.

In [10] it was shown that defining on the group direct sum R = ∆⊕∆ the
multiplication (a, r)(b, s) = (a(b + s), r(b + s)), a, b, r, s ∈ ∆ one obtains a
ring which also is left filial and is filial if and only if ∆ � Zp. It turns out

that in fact M � R. One can easily check that the map (a, r) −→
(

a+r 0
r 0

)

is an isomorphism of these rings.
In the following result we obtain for some fields F a complete classifi-

cation of F -algebras which are simultaneously filial and left filial rings.
Recall that a ring A is called strongly regular ([5]) if for every a ∈ A

there is x ∈ A such that a = xa2. It is well known that the class of all
strongly regular rings is radical.

Theorem 9. Let F be a field, which is not isomorphic to Zp for every

prime p, and R be an F -algebra. Then R is a filial and left filial ring if

and only if R = S ⊕ T , where S is a strongly regular ideal of R and T is

an ideal of R such that T 2 = 0.

Proof. To get the “if ” part it suffices to note that the assumptions
on S and T force that if K <l L <l R, then K = A ⊕ B, where A <l S

and B is a subring of T .
Now we will prove the “only if ” part. Let T = β(R) and S be the

strongly regular radical of R. Obviously T ∩ S = 0. By [4], Theorem 18,
RT = 0 and R̄ = R/T is strongly regular. Note now that for every t ∈ T ,
Zt� tR� �R, so Zt�R. Consequently tR ⊆ Zt. Since tR is an F -subspace
of R, the assumption on F implies that tR = 0. Thus also TR = 0. Let
r ∈ R and r̄ be the image of r in R̄. Since R̄ is strongly regular, there is
an idempotent a in R̄ such that r̄ ∈ aR̄. Lift a to an idempotent e in R.
If for some x ∈ R, ex ∈ T , then ex = e(ex) ∈ RT = 0. Hence eR ∩ T = 0.
Since R̄ is strongly regular, eR is strongly regular and (eR + T )/T � R̄.
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Thus R(eR) ⊆ eR + T and R(eR) = R(eR)2 ⊆ (eR + T )eR ⊆ eR +
TR = eR. These show that eR � R and eR ⊆ S. Consequently r ∈
eR + T ⊆ S + T . Hence R = S ⊕ T . The result follows. �

Note that the conditions on S and T in the above theorem are left-right
symmetric. This shows that the ring R is also right filial (with obvious
meaning of this notion). One may ask whether, generally, a ring which is
filial and left filial must be right filial. Theorem 9 can be also considered
as a result concerning the problem when filiality of a ring R implies its
left filiality. Obviously the necessary condition is that R̄ = R/β(R) is left
filial. One may ask whether this assumption (plus the assumption that R

is filial) is already sufficient. From results in [4] it follows that R̄ is left
filial if and only R̄/S(R̄) is a commutative filial domain, where S(R̄) is the
strongly regular radical of R̄. Now we will show that the answer to the
both above mentioned questions is positive when R̄ = S(R̄).

Proposition 10. If R is a filial ring such that R/β(R) is strongly

regular, then R is left and right filial.

Proof. Since the assumptions are left-right symmetric, it suffices to
prove that R is left filial. Suppose that K <l L <l R. We have to
show that K <l R. Since R is filial, by Theorem 2 (ii) and Corollary 7,
K∩β(R)�R. Passing to the factor ring R/(K∩β(R)) we can assume that
K ∩ β(R) = 0. Now (K + β(R))/β(R) <l (L + β(R))/β(R) <l R/β(R),
so since R/β(R) is strongly regular, (K + β(R))/β(R) <l R/β(R). Hence
RK ⊆ K + β(R) and (K + β(R))/β(R) � K/(K ∩ β(R)) � K. Since
left ideals of strongly regular rings are idempotent, we get that K2 = K.
Consequently RK = RK2 ⊆ K2 + β(R)K = K + β(R)K. Now β(R)K =
β(R)K2 ⊆ β(R) ∩ LK ⊆ β(R) ∩ K = 0. Hence RK ⊆ K, so K <l R. �

3. Filiality and some ring constructions.

In this section we describe direct sums of copies of a ring, matrix rings
and polynomial rings which are filial or left filial rings.

From Theorem 2 it follows that if R is a left filial ring, then every nil
subring of R is a left ideal of R and that if R is filial, then every subring of
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a nilpotent ideal of R is an ideal of R (Theorem 2 (i) and Corollary 7 give
that if R is filial, then every subring of β(R) is an ideal of R. However the
stated weaker result is sufficient for us here).

Proposition 11. Let R be a ring. Then

(i) for every integer n ≥ 2, the ring Mn(R) of n × n-matrices over R is

left filial if and only if R2 = 0;

(ii) the polynomial ring R[x] is filial (left filial) if and only if R2 = 0.

Proof. (i) Clearly Re21, where e21 is the respective matrix unit, is
a nilpotent subring of Mn(R). Hence if Mn(R) is left filial, then Re21 <l

Mn(R). Clearly this holds if and only if R2 = 0.

(ii) If R[x] is filial or left filial, then so is R[x̄] = R[x]/x4R[x]. Note
that S = {rx̄2 + rx̄3 | r ∈ R} is a subring of the nilpotent ideal x̄R[x̄] of
R[x̄]. Consequently S <l R[x̄]. However Rx̄ ·S = R2x̄3. Clearly R2x̄3 ⊆ S

if and only if R2 = 0.
The other implications are obvious. �

Now we will describe left filial rings which are sums of copies of a ring.

Theorem 12. For a given ring R the following conditions are equiv-

alent

(i) R ⊕ R is a left filial ring;

(ii) Rβ(R) = 0 and R/β(R) is a strongly regular ring;

(iii) for every r ∈ R, Rr = Rr2.

Proof. (i) ⇒ (ii). Clearly S = {(x, x) | x ∈ β(R)} is a nil subring of
R ⊕ R. Hence S <l R ⊕ R. This obviously implies that Rβ(R) = 0. Now
we can factor out β(R) and assume that β(R) = 0. Obviously R is left
filial, so by Theorem 2 (i), R is a reduced ring (i.e. R contains no nonzero
nilpotent elements). By Theorem 1 (ii), for every r ∈ R, R�r = Zr + R�r2

and R�r2 = Zr2 + R�r4. Consequently I = (R�r)4 ⊆ R�r4. Obviously
(R�r/I) ⊕ (R�r/I) is also a left filial ring. Hence (R�r/I) · β(R�r/I) = 0.
However β(R�r/I) = R�r/I, so R�r2 ⊆ I ⊆ R�r4. In particular r2 = xr3

for some x ∈ R. Thus (r − xr2)r = 0 and (r − xr2)2 = 0. Since R is
reduced, r − xr2 = 0. Hence R is strongly regular.
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(ii) ⇒ (iii). Since R/β(R) is strongly regular, for every r ∈ R there
exists x ∈ R such that r−xr2 ∈ β(R). Now Rβ(R) = 0, so R(r−xr2) = 0.
This implies that Rr = Rr2.

(iii) ⇒ (i). For arbitrary r1, r2 ∈ R, Rr2
1 = Rr1 and Rr2

2 = Rr2. Hence
(R ⊕ R)(r1, r2)2 = (R ⊕ R)(r1, r2) and Theorem 1 (ii) implies that R ⊕ R

is left filial. �

Remark. Note that the class of rings satisfying the conditions of The-
orem 12 is the largest subclass of the class of left filial rings which is closed
under direct sums (direct products).

We conclude with a description of filial rings which are sums of copies
of a ring and filial matrix rings.

Let C = {R | for every I � R, RI = I3 = IR}. It is easy to observe
that if R ∈ C, then for every I � R and every integer n ≥ 2, I2 = In.
In particular for every a ∈ R, (a)2 = R(a) = (a)R. Hence, since (a) =
Za + R(a) + (a)R, (a) = Za + (a)2. Consequently Theorem 1 (i) implies
that all rings from C are filial.

Proposition 13. For arbitrary A,B ∈ C, A ⊕ B ∈ C and for every

integer n ≥ 2, Mn(A) ∈ C.

Proof. Let I �A⊕B (respectively, I �Mn(A)) and let Ī be the ideal
of A� ⊕ B� (respectively, Mn(A�)) generated by I. Clearly Ī = J1 ⊕ J2

for some J1 � A, J2 � B (respectively, Ī = Mn(J) for some J � A). Since
A,B ∈ C, AJ1 = J1

9 = J1A, BJ2 = J2
9 = J2B and AJ = J9 = JA.

Hence (A⊕B)Ī = Ī9 = Ī(A⊕B) (respectively, Mn(A)Ī = Ī9 = ĪMn(A)).
Since Ī3 ⊆ I, (A ⊕ B)I ⊆ (A ⊕ B)Ī = Ī9 ⊆ I3. Hence (A ⊕ B)I = I3.
Similarly I(A ⊕ B) = I3 and Mn(A)I = I3 = IMn(A). �

Theorem 14. Let R be a ring and n an integer ≥ 2. The following

conditions are equivalent

(i) R ∈ C;

(ii) R ⊕ R is a filial ring;

(iii) Mn(R) is a filial ring.
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Proof. The implications (i) ⇒ (ii) and (i) ⇒ (iii) follow directly from
Proposition 13 and the fact that C consists of filial rings.

To get (ii) ⇒ (i) and (iii) ⇒ (i) take I � R. Factoring out I3 we can
assume that I3 = 0 and then we have to show that RI = IR = 0. Now
S = {(i, i) | i ∈ I} is a subring of the nilpotent ideal I ⊕ I of R⊕R. Hence
(ii) gives that S � R ⊕ R. This obviously implies that RI = IR = 0.

Also T = Ie11, where e11 is the respective matrix unit, is a subring
of the nilpotent ideal Mn(I) of Mn(R). Hence (iii) gives that T � Mn(R).
This implies that RI = IR = 0. �

Remarks. In [2], Proposition 6, it was shown that R⊕R is a filial ring
if and only if for every a ∈ R, [a] = [a]2, where [a] = Ra+aR+RaR. Let us
observe that the condition [a] = [a]2 is equivalent to the condition that for
every integer n ≥ 2, [a] = [a]n and this is equivalent to Ra+aR ⊆ (RaR)n

for every n ≥ 2. Further, it is easy to see that this is equivalent to the
fact that R ∈ C. Thus one can apply Theorem 14 to get another proof of
Proposition 6 from [2] or, conversely, apply that proposition to get another
proof of a part of Theorem 14.

One can check that R ∈ C if and only if for every I � R, RI = RI2 =
IR = I2R. This condition may be considered as an analog of condition
(iii) in Theorem 12.
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