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Polynomials with weighted sum

By SEON-HONG KIM (Gwangju)

Abstract. In this paper, we study the equation zn =
∑n−1

k=0 akzk, where∑n−1
k=0 ak = 1, ak ≥ 0 for each k. We show that, given p > 1, there exist C(1/p)-

polynomials with the degree of weighted sum n−1. However, we obtain sufficient
conditions for nonexistence of certain lacunary C(1/p)-polynomials. In case of the
degree of weighted sum n − 2, we see that, by giving an example, our sufficient
condition is best possible in a certain sense.

1. Introduction

Throughout this paper, n is an integer ≥ 3, p > 1, and we denote C(r)
by the circle of radius r with center the origin.

If z is a complex number inside C(1) which is not a positive real
number, then there is an integer n such that zn is a convex combination
of lower integral powers {zk : 0 ≤ k < n}. Moreover the convex hull of the
sequence 1, z, z2, z3, . . . is a polygon; if n is the number of vertices of this
polygon, then these vertices are precisely the first n powers of z. For the
proofs of the above, see Lemma 2.1 and Theorem 2.2 of [1]. Conversely, if

zn =
n−1∑
k=0

akz
k, (1)
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where
∑n−1

k=0 ak = 1, ak ≥ 0 for each k, then it follows from Eneström–

Kakeya theorem (see p. 136 of [2] for the statement and its proof) to

zn −∑n−1
k=0 akz

k

z − 1

that all zeros of (1) do not lie outside C(1). More precisely, the zeros
of (1) are strictly inside C(1) except for z = 1 since the average of points
on C(1) is strictly inside C(1) unless all of the points are equal.

Whether or not certain polynomials have all their zeros on a circle
is one of the most fundamental questions in the theory of distribution of
polynomial zeros. Hence, in this paper, we study polynomials of type (1),
zn−∑n−1

k=0 akz
k, whose all zeros except for z = 1 lie on C(1/p). For conve-

nience, we call these polynomials C(1/p)-polynomials, and
∑n−1

k=0 akz
k in

C(1/p)-polynomials their weighted sums, respectively.
In Section 2, we start to find C(1/p)-polynomials. In fact, we show

that, given p > 1, there exist C(1/p)-polynomials whose the degree of
weighted sum is n − 1. However, by estimating some coefficients of la-
cunary polynomials with our purpose, we obtain sufficient conditions for
nonexistence of certain lacunary C(1/p)-polynomials: If p > n − 1, then
there does not exist C(1/p)-polynomials whose the degree of weighted sums
is n − 2. Also, if 2p4 − (n − 1)(n − 2)p2 − 2(n − 1)p − (n − 1)(n − 2) > 0,
then there does not exist C(1/p)-polynomials whose the degree of weighted
sum is n − 3. In case of the degree of weighted sum n − 2, we show that,
by giving an example, our sufficient condition is best possible in the sense
that, for all n ≥ 3, there exist C(1/2)-polynomials with the degree of the
weighted sums n − 2.

2. Proofs

The coefficients of the weighted sum of C(1/p)-polynomials are non-
negative. This follows that the constant term of C(1/p)-polynomials is
− 1

pn−1 . Hence if the weights in C(1/p)-polynomials are rational with the
same denominator, then pn−1 is the smallest possible denominator.

The proposition below shows the existence of C(1/p)-polynomials.
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Proposition 1. Given p > 1, there exist C(1/p)-polynomials (whose

the degree of weighted sum is n − 1).

Proof. For p > 1, consider a polynomial

Kp,n(z) = zn − 1
pn−1

Hp,n(z),

where

Hp,n(z) = 1 + (p − 1)z
(pz)n−1 − 1

pz − 1
.

A simple calculation about Kp,n(z) = 0 yields that

pnzn+1 − pnzn − z + 1 = 0. (2)

Using change of variable from z to z/p in (2) and multiplying by p, we
have

zn+1 − pzn − z + p = (z − p)(zn − 1) = 0,

which proves the result. �

It is natural to ask the existence of lacunary C(1/p)-polynomials. To
get some results for this, we first need the following proposition.

Proposition 2. Let r be an integer with 1 ≤ r ≤ �n−1
2 �. Suppose

f(z) = zn −
n−1∑
k=0

akz
k

is a C(1/p)-polynomial, where an−1 = an−2 = · · · = an−r = 0. Then, for

1 ≤ k ≤ r,

ak =
1

pn−2k+1
(p2 − 1), (3)

and, for r + 1 ≤ k ≤ �n−1
2 �,

ak = (1 − an−r−1 − an−r−2 − · · · − an−k)
1

pn−2k−1

− (1 − an−r−1 − an−r−2 − · · · − an−k+1)
1

pn−2k+1
.

(4)
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Proof. Suppose f(z) = zn − ∑n−1
k=0 akz

k is a C(1/p)-polynomial,
where an−1 = an−2 = · · · = an−r = 0. Then the equation f(z)

z−1 = 0,
i.e.,

zn−1 + zn−2 + · · · + zn−r−1 + (1 − an−r−1)zn−r−2

+ (1 − an−r−1 − an−r−2)zn−r−3 + . . .

+ (1 − an−r−1 − an−r−2 − · · · − a2)z

+ (1 − an−r−1 − an−r−2 − · · · − a2 − a1) = 0

(5)

should have all zeros on C(1/p). Now we let z = ζ/p. Then (5) becomes

ζn−1

pn−1
+

ζn−2

pn−2
+ · · · + ζn−r−1

pn−r−1
+ (1 − an−r−1))

ζn−r−2

pn−r−2

+ (1 − an−r−1 − an−r−2)
ζn−r−3

pn−r−3
+ . . .

+ (1 − an−r−1 − an−r−2 − · · · − a2)
ζ

p

+ (1 − an−r−1 − an−r−2 − · · · − a2 − a1) = 0,

which is equivalent to

ζn−1

pn−1
+

ζn−2

pn−2
+ · · · + ζn−r−1

pn−r−1
+ (a0 + a1 + · · · + an−r−2)

ζn−r−2

pn−r−2

+(a0 + a1 + · · · + an−r−3)
ζn−r−3

pn−r−3
+ · · · + (a0 + a1)

ζ

p
+ a0 = 0.

(6)

We observe that the equation (6) of ζ has all zeros on C(1), and its coeffi-
cients are all real. So, if ζ is a zero of (6) then so is 1/ζ. This follows that
the left of (6) is self-reciprocal. Hence we have

a0 =
1

pn−1

a0 + a1

p
=

1
pn−2

a0 + a1 + a2

p2
=

1
pn−3

...
a0 + a1 + a2 + · · · + ar

pr
=

1
pn−r−1
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and

a0 + a1 + a2 + · · · + ar+1

pr+1
=

1 − an−r−1

pn−r−2

a0 + a1 + a2 + · · · + ar+2

pr+2
=

1 − an−r−1 − an−r−2

pn−r−3

...
a0 + a1 + a2 + · · · + a�n−1

2
�

p�
n−1

2
� =

1 − an−r−1 − an−r−2 − · · · − an−�n−1
2

�

pn−�n−1
2

�−1
.

From the above, we get (3) and (4). �

Remark 3. Suppose f(z) = zn −∑n−1
k=0 akz

k is a C(1/p)-polynomial,
where an−1 = an−2 = 0 and an−3 �= 0. Then, by applying r = 2 to
Proposition 2, we have

a0 =
1

pn−1
, a1 =

1
pn−1

(p2 − 1), a2 =
1

pn−3
(p2 − 1)

and
a3 = (1 − an−3)

1
pn−7

− 1
pn−5

.

The next two propositions will be used to prove Theorem 6.

Proposition 4. Let f(x) =
∑n

k=0 akz
k be a polynomial whose zeros

are zj , 1 ≤ j ≤ n. Suppose that an = 1, an−1 = 0 and

|z1| = |z2| = · · · = |zu| =
1
s
, |zu+1| = |zu+2| = · · · = |zn| =

1
t
,

where s > t > 0. Then we have

|a1| ≤
(

1 −
(

t

s

)2
)

u

su−1tn−u
.

Proof. Since an−1 = 0, we have z1 + z2 + · · · + zn = 0. So

(−1)n+1a1 =
n∑

k=1

∏
1≤j≤n

j �=k

zj =
n∑

k=1

( ∏
1≤j≤n

j �=k

zj − z̄k

n∏
j=1

zj

)
=

n∑
k=1

(1− |zk|2)
∏

1≤j≤n
j �=k

zj
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=
u∑

k=1

(
1 − 1

s2

) ∏
1≤j≤n

j �=k

zj +
n∑

k=u+1

(
1 − 1

t2

) ∏
1≤j≤n

j �=k

zj

=
(
1− 1

s2

) u∑
k=1

∏
1≤j≤n

j �=k

zj+
(
1− 1

t2

)( n∑
k=1

∏
1≤j≤n

j �=k

zj −
u∑

k=1

∏
1≤j≤n

j �=k

zj

)

=
(

1
t2

− 1
s2

) u∑
k=1

∏
1≤j≤n

j �=k

zj +
(

1 − 1
t2

)
(−1)n+1a1.

Hence
1
t2

(−1)n+1a1 =
(

1
t2

− 1
s2

) u∑
k=1

∏
1≤j≤n

j �=k

zj .

The desired result follows from triangle inequality that

|a1| ≤
(

1 −
(

t

s

)2
)

u

su−1tn−u
. �

Using same idea of the above proof, we have

Proposition 5. Let f(x) =
∑n

k=0 akz
k be a polynomial whose zeros

are zj , 1 ≤ j ≤ n. Suppose that an = 1, an−1 = an−2 = 0 and

|z1| = |z2| = · · · = |zu| =
1
s
, |zu+1| = |zu+2| = · · · = |zn| =

1
t
,

where s > t > 0. Then we have

|a2| ≤
(

1 −
(

t

s

)4
)

u(u − 1)
2(su−2tn−u)

+

(
1 −

(
t

s

)2
)

u(n − u)
su−1tn−u−1

.

Proof. Since an−1 = an−2 = 0, we have

z1 + z2 + · · · + zn =
n−1∑
k=1

n∑
l=k+1

zkzl = 0.

So

(−1)na2 =
n−1∑
k=1

n∑
l=k+1

∏
1≤j≤n
j �=k,l

zj =
n−1∑
k=1

n∑
l=k+1

( ∏
1≤j≤n
j �=k,l

zj − z̄kz̄l

n∏
j=1

zj

)
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=
n−1∑
k=1

n∑
l=k+1

(
1 − |zk|2|zl|2

) ∏
1≤j≤n
j �=k,l

zj

=
(

1 − 1
s4

) u−1∑
k=1

u∑
l=k+1

∏
1≤j≤n
j �=k,l

zj +
(

1 − 1
s2t2

) u−1∑
k=1

n∑
l=u+1

∏
1≤j≤n
j �=k,l

zj

+
(

1 − 1
s2t2

) n∑
l=u+1

∏
1≤j≤n
j �=u,l

zj +
(

1 − 1
t4

) n−1∑
k=u+1

n∑
l=k+1

∏
1≤j≤n
j �=k,l

zj .

And the sum of the last summand, i.e.,

n−1∑
k=u+1

n∑
l=k+1

∏
1≤j≤n
j �=k,l

zj

equals

n−1∑
k=1

n∑
l=k+1

∏
1≤j≤n
j �=k,l

zj −
u−1∑
k=1

n∑
l=k+1

∏
1≤j≤n
j �=k,l

zj −
n∑

l=u+1

∏
1≤j≤n
j �=u,l

zj

= (−1)na2 −
(

u−1∑
k=1

u∑
l=k+1

∏
1≤j≤n
j �=k,l

zj +
u−1∑
k=1

n∑
l=u+1

∏
1≤j≤n
j �=k,l

zj

)
−

n∑
l=u+1

∏
1≤j≤n
j �=u,l

zj .

Hence, in all,

(−1)na2 =
(

1
t4

− 1
s4

) u−1∑
k=1

u∑
l=k+1

∏
1≤j≤n
j �=k,l

zj +
(

1
t4

− 1
s2t2

) u−1∑
k=1

n∑
l=u+1

∏
1≤j≤n
j �=k,l

zj

+
(

1
t4

− 1
s2t2

) n∑
l=u+1

∏
1≤j≤n
j �=u,l

zj +
(

1 − 1
t4

)
(−1)na2.

Now, by triangle inequality, we get

|a2|
t4

≤
(

1
t4

− 1
s4

)
u(u − 1)

2(su−2tn−u)
+
(

1
t4

− 1
s2t2

)
(u − 1)(n − u)

su−1tn−u−1
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+
(

1
t4

− 1
s2t2

)
n − u

su−1tn−u−1
,

which follows the result by simple calculation. �

Now we are ready to prove the following theorem.

Theorem 6. (1) If p > n− 1, then there does not exist C(1/p)-poly-

nomials whose the degree of weighted sums is n − 2.

(2) If 2p4− (n−1)(n−2)p2−2(n−1)p− (n−1)(n−2) > 0, then there

does not exist C(1/p)-polynomials whose the degree of weighted sums is

n − 3.

Proof. Applying u = n − 1, s = p, t = 1 to Proposition 4 and
Proposition 5, respectively, we get

|a1| ≤
(

1 − 1
p2

)
n − 1
pn−2

,

|a2| ≤
(

1 − 1
p4

)
(n − 1)(n − 2)

2pn−3
+
(

1 − 1
p2

)
n − 1
pn−2

.

(7)

But, by Remark 3,

a1 =
1

pn−1
(p2 − 1), a2 =

1
pn−3

(p2 − 1).

Substituting these into (7) easily proves the theorem. �

Remark 7. (1) An example of an identity

zn − 1
2n−1

(Qn(z) + z) =
1

2n−1
(z − 1)(2z + 1)Qn(z),

where

Qn(z) =
(2z)n−1 − 1

2z − 1

and the polynomial Qn(z) + z has degree n − 2 shows that, for all n ≥ 3,
there exist C(1/2)-polynomials with the degree of the weighted sum n−2.
And, for n = 3, the first result of Theorem 6 asserts nonexistence of
C(1/p)-polynomials whose the degree of weighted sum is 1, where p > 1/2.
Hence our sufficient condition in case of the degree of weighted sum n− 2
is best possible in this sense.
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(2) For each n, by computer algebra, we can check the hypothesis in
second result of Theorem 6. Here, in Table 1, we give ranges of p satisfying
the hypothesis for each n = 3, 4, 5, 6, 7.

n P

3 p > 1.6180
4 p > 2.2257
5 p > 2.8529
6 p > 3.4994
7 p > 4.1604
...

...

Table 1
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