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On the convergence of inexact Newton-like methods

By IOANNIS K. ARGYROS (Lawton)

Abstract. We provide a general theorem for the convergence of inexact Newton-
like methods under Yamamoto-type assumptions. Our results extend and improve sev-
eral situations already in the literature.

I. Introduction

We consider the inexact Newton-like method

(1) xn+1 = xn + yn, A(xn)yn = −(F (xn) + G(xn)) + rn n ≥ 0

for some x0 ∈ U(x0, R), R > 0, to approximate a solution x∗ of the
equation

(2) F (x) + G(x) = 0, in Ū(x0, R).

Here A(x), F, G denote operators defined on the closed ball Ū(x0, R) with
center x0 and radius R, of a Banach space E with values in a Banach space
Ê, whereas rn are suitable points in Ê. The operator A(x)(·) is linear and
approximates the Fréchet derivative of F at x ∈ U(x0, R). We will assume
that for any x, y ∈ Ū(x0, r) ⊆ Ū(x0, R) with 0 ≤ ‖x− y‖ ≤ R− r,

(3) ‖F ′(x + t(x− y))−A(x)‖ ≤ B1(r, ‖x− x0‖+ t‖y − x‖), t ∈ [0, 1]

and

(4) ‖G(x)−G(y)‖ ≤ B2(r, ‖x− y‖).
The functions B1(r, r′) and B2(r, r′) defined on [0, R] × [0, R] and

[0, R]× [0, R−r] are respectively nonnegative, continuous and nondecreas-
ing functions of two variables. Moreover B2 is linear in the second variable.
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Note that the Newton method, the modified Newton method and the
secant method are special cases of (1) with A(xn) = F ′(xn), A(xn) =
F ′(x0) and A(xn) = S(xn, xn−1) respectively.

If we take

(5) w(r′) + c, c ∈ [0, 1]

and

(6) e(r′),

where w, e are nonnegative, nondecreasing functions on [0, R−r], to be the
right hand sides of (3) and (4) respectively, then we obtain the Zabrejko-
Nguen-type assumptions considered by Chen and Yamamoto [2]. They
provided sufficient conditions for the convergence of the sequence {xn},
n ≥ 0 generated by (1) to solution x∗ of equation (2), when rn = 0, n ≥ 0.

Moret [5] also studied (1), when G = 0 and condition (5) is satisfied.
Further work on this subject but for even more special cases than the ones
considered by the above authors can be found in [1], [3], [4], [5], [6], [7],
[8], [9], [10].

In this paper we will derive a criterion for controlling the residuals
rn in such a way that the convergence of the sequence {xn}, n ≥ 0 to a
solution x∗ of equation (2) is ensured.

We believe that conditions of the form (3)–(4) are useful not only
because we can treat a wider range of problems than before, but it turns
out that under natural assumptions we can find better error bounds on
the distances ‖xn − x∗‖, n ≥ 0.

II. Convergence Theorems

Throughout the paper the notation ‖ · ‖ will stand both for norms
in E (or in Ê) and also for the induced operator norms L(E, Ê), where
L(E, Ê) denotes the space of bounded linear operators from E to Ê.

We will need the following proposition.

Proposition. Let a ≥ 1, σ > 0, 0 ≤ µ < 1, 0 ≤ ρ < R, s > 0 be real
constants such that the equation

(7) ϕ(t) := aσ

[∫ t

0

B1(R, ρ + θ)dθ + B2(R, t)
]
− t(1− µ) + s = 0

has the solutions in the interval [0, R) and let us denote by t∗ the least of
them.

Let v > 0, µ1 ≥ 0 such that

(8) v(1− µ)− (1− µ1) ≤ 0.



On the convergence of inexact Newton-like methods 81

Then, for every s1 satisfying

(9) 0 < s1 ≤ v

[
σ

(∫ s

0

B1(R, ρ + θ)dθ + B2(R, s)
)

+ sµ

]

and for every ρ1 such that

(10) 0 ≤ ρ1 ≤ ρ + s,

the equation

(11) ϕ1(t) := avσ

[∫ t

0

B1(R, ρ1 + θ)dθ + B2(R, t)
]
− t(1− µ1) + s1 = 0

has nonnegative solutions and at least one of them, denoted by t∗?, lies in
the interval [s1, t∗ − s].

Proof. We first observe that since ϕ(t?) = 0 and 0 ≤ µ < 1, we
obtain from (7) that s ≤ t∗. We will show that

(12) ϕ1(t∗ − s) ≤ 0.

Using (7)–(11), we obtain

ϕ1(t∗ − s)

= avσ

[∫ t∗−s

0

B1(R, ρ1 + θ)dθ + B2(R, t∗ − s)

]
− (t∗ − s)(1− µ1) + s1

≤ v

[
aσ

(∫ t?

s

B1(R, ρ + θ)dθ + B2(R, t?)−B2(R, s)

)

+ σ

(∫ s

0

B1(R, ρ + θ)dθ + B2(R, s)
)

+ sµ− (t∗ − s)
v

(1− µ1)
]

≤ v

[
aσ

(∫ t?

0

B1(R, ρ + θ)dθ + B2(R, t?)

)
− t∗(1− µ) + s

+ t∗(1− µ)− s + sµ− (t∗ − s)
v

(1− µ1)
]

≤ v(t∗ − s)
[
(1− µ)− (1− µ1)

v

]
≤ 0,

by (8). Moreover, by (11) it follows immediately that ϕ1(s1) ≥ 0. Hence,
by the above inequality and (12) ϕ1(t) has nonnegative real roots and for
the least of them t∗?, it is

s1 ≤ t∗? ≤ t∗ − s.
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Furthermore, from (11) we get µ1 < 1.
That completes the proof of the proposition.

We can now prove the following result.

Theorem 1. Let {sn}, {µn}, {σn}, n ≥ 0 be real sequences, with
sn > 0, µn ≥ 0, σn > 0. Let {ρn} be a sequence on [0, R), with ρ0 = 0
and

(13) ρn+1 ≤
∑

j=0,1,2,... ,n

sj , n ≥ 0.

Suppose that 1−µ0 > 0 and that, for a given constant a ≥ 1, the function

(14) ϕ0(t) := aσ0

[∫ t

0

B1(R, ρ0 + θ)dθ + B2(R, t)
]
− t(1− µ0) + s0

has roots on [0, R).
Assume that for every n ≥ 0 the following conditions are satisfied

(15) sn+1 ≤ vn

[
σn

(∫ sn

0

B1(R, ρn + θ)dθ + B2(R, sn)
)

+ snµn

]
,

(16) vn(1− µn)− (1− µn+1) ≤ 0,

where vn =
σn+1

σn
.

Then,
(a) for every n ≥ 0, the equation

(17) ϕn(t) := avnσn

[∫ t

0

B1(R, ρn + θ)dθ + B2(R, t)
]
− t(1− µn) + sn

has solutions in [0, R) and, denoting by t∗n the least of them, we have

(18)
∑

j=n,... ,∞
sj ≤ t?n.

(b) Let {xn}, n ≥ 0 be a sequence in a Banach space such that
‖xn+1 − xn‖ ≤ sn. Then, it converges and denoting its limit by x∗, the
error bounds

(19) ‖x∗ − xn‖ ≤ t∗n

and

(20) ‖x∗ − xn+1‖ ≤ t∗n − sn

are true for all n ≥ 0.
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(c) If there exists h0 ∈ [0, R) such that

(21) ϕ0(h0) ≤ 0,

then ϕ0(t) has roots on [0, R).

Proof. (a) We use induction on n. Let us assume that for some
n ≥ 0, 1 − µn > 0, ϕn(t) has roots on [0, R) and t∗n is the least of them.
This is true for n = 0. Then, by (13), (15), (16) and the proposition, by
setting s = sn, s1 = sn+1, µ = µn, µ1 = µn+1 and v = vn, it follows that
t∗n+1 exists, with

sn+1 ≤ t∗n+1 ≤ t∗n − sn

and 1− µn+1 > 0.
That completes the induction and proves (a).
(b) This part follows easily from part (a).
(c) Using (21), we deduce immediately that ϕ0(t) has roots on [0, R).
That completes the proof of theorem.

We can now prove the main result.

Theorem 2. Let (1) hold. Assume that for s0 > 0, σ0 > 0, 0 ≤ µ0 < 1
and a ≥ 1, (21) is true. Then, the function ϕ0(t) defined by (14) has roots
on [0, R). Denote by t∗0 the least of them and suppose that

(22) t∗0 < R0 ≤ R.

Let sn > 0, µn ≥ 0, σn > 0, n ≥ 0 be such that lim inf σn > 0 as n → ∞
and condition (15) is true for all n ≥ 0.

Assume that, for all n ≥ 0, it is

(23) ‖yn‖ ≤ sn ≤ σn‖F (xn) + G(xn)‖
and

(24) ‖rn‖ ≤ µnsn

σn
.

Then the sequence {xn}, n ≥ 0 generated by (1) remains in U(x0, t
?
0) and

converges to a solution x∗ of equation (2). Moreover, the error bounds
(19) and (20) are true for all n ≥ 0, where t∗n is the least root in [0, R) of
the function ϕn(t) defined by (17), with ρn = ‖xn − x0‖, n ≥ 0.

Proof. The existence of t∗0 is guaranteed by (21). Let us assume
that xn, xn+1 ∈ U(x0, t

?
0). We will show that for every n ≥ 0, condition

(15) is true. Since ‖y0‖ ≤ s0, this is true for n = 0.
Using the identity
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F (xn+1) + G(xn+1) =
∫ 1

0

[F ′(xn + t(xn+1 − xn))−A(xn)](xn+1 − xn)dt

+ (G(xn+1 −G(xn)) + rn,

(3), (4), (23), (24), setting ρn = ‖xn − x0‖ and by taking norms in the
above identity we get

sn+1 ≤ σn+1‖F (xn+1) + G(xn+1)‖

≤ vn

[
σn

(∫ sn

0

B1(R, ρn + θ)dθ + B2(R, sn)
)

+ snµn

]

which shows (15) for all n ≥ 0.
The hypothesis (b) of Theorem 1 can now easily be verified by in-

duction and thus, by (18) and (23), the sequence {xn}, n ≥ 0 remains
in U(x0, t

?
0), converges to x∗ and (19) and (20) hold. Finally, from the

inequality

‖F (xn) + G(xn)‖ ≤ ‖A(xn)− F ′(x0)‖‖yn‖+ ‖F ′(x0)‖‖yn‖+ ‖rn‖,
(3), (24) and the continuity of F and G, as lim inf σn > 0 and sn → 0, as
n →∞ it follows that F (x?) + G(x?) = 0.

That completes the proof of the theorem.

Remark. (a) In the special case when B1 and B2 are given (5) and
(6) respectively, then our results can be reduced to the ones obtained by
Moret [5, p. 359] (when G = 0).

(b) Let G = 0 and define the functions ϕ̄0(t), ϕ̄n(t) by

ϕ̄0(t) = aσ0

∫ t

0

(t− θ)k(θ)dθ − t(1− µ0) + s0,

ϕ̄n(t) = avnσn

∫ t

0

(t− θ)k(ρn + θ)dθ − t(1− µn) + sn,

where k is a nondecreasing function on [0, R] such that

‖F ′(x)− F ′(y)‖ ≤ k(r)‖x− y‖, x, y ∈ Ū(x0, r) (r < R0).

Assume that B1 can be chosen in such a way that

(25) ϕn(t) ≤ ϕ̄n(t), n ≥ 0.

Then under the hypotheses of Theorem 2 above and Proposition 1 in
[5, p. 359], using (25) we can show

‖x∗ − xn‖ ≤ t∗n ≤ m?
n, n ≥ 0

and
‖x∗ − xn+1‖ ≤ t∗n − sn ≤ m∗

n − sn, n ≥ 0
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where by m∗
n, we denote the least solutions of the equations

ϕ̄n(t) = 0, n ≥ 0 in [0, R).
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