Publ. Math. Debrecen 43 / 1-2 (1993), 79-85

On the convergence of inexact Newton-like methods

By IOANNIS K. ARGYROS (Lawton)

Abstract. We provide a general theorem for the convergence of inexact Newtonlike methods under Yamamoto-type assumptions. Our results extend and improve several situations already in the literature.

I. Introduction

We consider the inexact Newton-like method

(1)
$$x_{n+1} = x_n + y_n, \ A(x_n)y_n = -(F(x_n) + G(x_n)) + r_n \quad n \ge 0$$

for some $x_0 \in U(x_0, R), R > 0$, to approximate a solution x^* of the equation

(2)
$$F(x) + G(x) = 0$$
, in $\overline{U}(x_0, R)$.

Here A(x), F, G denote operators defined on the closed ball $\overline{U}(x_0, R)$ with center x_0 and radius R, of a Banach space E with values in a Banach space \hat{E} , whereas r_n are suitable points in \hat{E} . The operator $A(x)(\cdot)$ is linear and approximates the Fréchet derivative of F at $x \in U(x_0, R)$. We will assume that for any $x, y \in \overline{U}(x_0, r) \subseteq \overline{U}(x_0, R)$ with $0 \leq ||x - y|| \leq R - r$,

(3)
$$||F'(x+t(x-y)) - A(x)|| \le B_1(r, ||x-x_0|| + t||y-x||), t \in [0, 1]$$

and

(4)
$$||G(x) - G(y)|| \le B_2(r, ||x - y||).$$

The functions $B_1(r, r')$ and $B_2(r, r')$ defined on $[0, R] \times [0, R]$ and $[0, R] \times [0, R-r]$ are respectively nonnegative, continuous and nondecreasing functions of two variables. Moreover B_2 is linear in the second variable.

¹⁹⁸⁰ Mathematics Subject Classification (1985 Revision): 47D15, 47H17, 65R20, 65J10. Keywords: Banach space, Newton-like method.

Note that the Newton method, the modified Newton method and the secant method are special cases of (1) with $A(x_n) = F'(x_n), A(x_n) = F'(x_0)$ and $A(x_n) = S(x_n, x_{n-1})$ respectively.

If we take

(5)
$$w(r') + c, \quad c \in [0, 1]$$

and

$$(6) e(r'),$$

where w, e are nonnegative, nondecreasing functions on [0, R-r], to be the right hand sides of (3) and (4) respectively, then we obtain the Zabrejko-Nguen-type assumptions considered by CHEN and YAMAMOTO [2]. They provided sufficient conditions for the convergence of the sequence $\{x_n\}$, $n \ge 0$ generated by (1) to solution x^* of equation (2), when $r_n = 0, n \ge 0$.

MORET [5] also studied (1), when G = 0 and condition (5) is satisfied. Further work on this subject but for even more special cases than the ones considered by the above authors can be found in [1], [3], [4], [5], [6], [7], [8], [9], [10].

In this paper we will derive a criterion for controlling the residuals r_n in such a way that the convergence of the sequence $\{x_n\}, n \ge 0$ to a solution x^* of equation (2) is ensured.

We believe that conditions of the form (3)–(4) are useful not only because we can treat a wider range of problems than before, but it turns out that under natural assumptions we can find better error bounds on the distances $||x_n - x^*||$, $n \ge 0$.

II. Convergence Theorems

Throughout the paper the notation $\|\cdot\|$ will stand both for norms in E (or in \hat{E}) and also for the induced operator norms $L(E, \hat{E})$, where $L(E, \hat{E})$ denotes the space of bounded linear operators from E to \hat{E} .

We will need the following proposition.

Proposition. Let $a \ge 1$, $\sigma > 0$, $0 \le \mu < 1$, $0 \le \rho < R$, s > 0 be real constants such that the equation

(7)
$$\varphi(t) := a\sigma \left[\int_0^t B_1(R, \rho + \theta) d\theta + B_2(R, t) \right] - t(1 - \mu) + s = 0$$

has the solutions in the interval [0, R) and let us denote by t^* the least of them.

Let v > 0, $\mu^1 \ge 0$ such that

(8)
$$v(1-\mu) - (1-\mu^1) \le 0.$$

Then, for every s^1 satisfying

(9)
$$0 < s^{1} \le v \left[\sigma \left(\int_{0}^{s} B_{1}(R, \rho + \theta) d\theta + B_{2}(R, s) \right) + s\mu \right]$$

and for every ρ^1 such that

(10)
$$0 \le \rho^1 \le \rho + s,$$

the equation

(11)
$$\varphi^1(t) := av\sigma \left[\int_0^t B_1(R, \rho^1 + \theta) d\theta + B_2(R, t) \right] - t(1 - \mu^1) + s^1 = 0$$

has nonnegative solutions and at least one of them, denoted by t^{**} , lies in the interval $[s^1, t^* - s]$.

PROOF. We first observe that since $\varphi(t^*) = 0$ and $0 \le \mu < 1$, we obtain from (7) that $s \le t^*$. We will show that

(12)
$$\varphi^1(t^* - s) \le 0.$$

Using (7)–(11), we obtain

$$\varphi^{1}(t^{*} - s)$$

$$= av\sigma \left[\int_{0}^{t^{*} - s} B_{1}(R, \rho^{1} + \theta) d\theta + B_{2}(R, t^{*} - s) \right] - (t^{*} - s)(1 - \mu^{1}) + s^{1}$$

$$\leq v \left[a\sigma \left(\int_{s}^{t^{*}} B_{1}(R, \rho + \theta) d\theta + B_{2}(R, t^{*}) - B_{2}(R, s) \right) \right]$$

$$+ \sigma \left(\int_{0}^{s} B_{1}(R, \rho + \theta) d\theta + B_{2}(R, s) \right) + s\mu - \frac{(t^{*} - s)}{v}(1 - \mu^{1}) \right]$$

$$\leq v \left[a\sigma \left(\int_{0}^{t^{*}} B_{1}(R, \rho + \theta) d\theta + B_{2}(R, t^{*}) \right) - t^{*}(1 - \mu) + s \right]$$

$$+ t^{*}(1 - \mu) - s + s\mu - \frac{(t^{*} - s)}{v}(1 - \mu^{1}) \right]$$

$$\leq v(t^{*} - s) \left[(1 - \mu) - \frac{(1 - \mu^{1})}{v} \right] \leq 0,$$

by (8). Moreover, by (11) it follows immediately that $\varphi^1(s^1) \ge 0$. Hence, by the above inequality and (12) $\varphi^1(t)$ has nonnegative real roots and for the least of them t^{**} , it is

$$s^1 \le t^{*\star} \le t^* - s.$$

Furthermore, from (11) we get $\mu^1 < 1$.

That completes the proof of the proposition.

We can now prove the following result.

Theorem 1. Let $\{s_n\}$, $\{\mu_n\}$, $\{\sigma_n\}$, $n \ge 0$ be real sequences, with $s_n > 0$, $\mu_n \ge 0$, $\sigma_n > 0$. Let $\{\rho_n\}$ be a sequence on [0, R), with $\rho_0 = 0$ and

(13)
$$\rho_{n+1} \le \sum_{j=0,1,2,\dots,n} s_j, \qquad n \ge 0.$$

Suppose that $1 - \mu_0 > 0$ and that, for a given constant $a \ge 1$, the function

(14)
$$\varphi_0(t) := a\sigma_0 \left[\int_0^t B_1(R, \rho_0 + \theta) d\theta + B_2(R, t) \right] - t(1 - \mu_0) + s_0$$

has roots on [0, R).

Assume that for every $n \ge 0$ the following conditions are satisfied

(15)
$$s_{n+1} \le v_n \left[\sigma_n \left(\int_0^{s_n} B_1(R, \rho_n + \theta) d\theta + B_2(R, s_n) \right) + s_n \mu_n \right],$$

(16)
$$v_n(1-\mu_n) - (1-\mu_{n+1}) \le 0$$

where $v_n = \frac{\sigma_{n+1}}{\sigma_n}$. Then,

(a) for every $n \ge 0$, the equation

(17)
$$\varphi_n(t) := av_n \sigma_n \left[\int_0^t B_1(R, \rho_n + \theta) d\theta + B_2(R, t) \right] - t(1 - \mu_n) + s_n$$

has solutions in [0, R) and, denoting by t_n^* the least of them, we have

(18)
$$\sum_{j=n,\ldots,\infty} s_j \le t_n^\star.$$

(b) Let $\{x_n\}, n \ge 0$ be a sequence in a Banach space such that $||x_{n+1} - x_n|| \le s_n$. Then, it converges and denoting its limit by x^* , the error bounds

(19)
$$||x^* - x_n|| \le t_n^*$$

and

(20)
$$||x^* - x_{n+1}|| \le t_n^* - s_n$$

are true for all $n \ge 0$.

(c) If there exists $h_0 \in [0, R)$ such that

(21)
$$\varphi_0(h_0) \le 0,$$

then $\varphi_0(t)$ has roots on [0, R).

PROOF. (a) We use induction on n. Let us assume that for some $n \ge 0, 1 - \mu_n > 0, \varphi_n(t)$ has roots on [0, R) and t_n^* is the least of them. This is true for n = 0. Then, by (13), (15), (16) and the proposition, by setting $s = s_n, s^1 = s_{n+1}, \mu = \mu_n, \mu^1 = \mu_{n+1}$ and $v = v_n$, it follows that t_{n+1}^* exists, with

$$s_{n+1} \le t_{n+1}^* \le t_n^* - s_n$$

and $1 - \mu_{n+1} > 0$.

That completes the induction and proves (a).

(b) This part follows easily from part (a).

(c) Using (21), we deduce immediately that $\varphi_0(t)$ has roots on [0, R).

That completes the proof of theorem.

We can now prove the main result.

Theorem 2. Let (1) hold. Assume that for $s_0 > 0$, $\sigma_0 > 0$, $0 \le \mu_0 < 1$ and $a \ge 1$, (21) is true. Then, the function $\varphi_0(t)$ defined by (14) has roots on [0, R). Denote by t_0^* the least of them and suppose that

$$(22) t_0^* < R_0 \le R$$

Let $s_n > 0$, $\mu_n \ge 0$, $\sigma_n > 0$, $n \ge 0$ be such that $\liminf \sigma_n > 0$ as $n \to \infty$ and condition (15) is true for all $n \ge 0$.

Assume that, for all $n \ge 0$, it is

(23)
$$||y_n|| \le s_n \le \sigma_n ||F(x_n) + G(x_n)||$$

and

(24)
$$||r_n|| \le \frac{\mu_n s_n}{\sigma_n}.$$

Then the sequence $\{x_n\}, n \ge 0$ generated by (1) remains in $U(x_0, t_0^*)$ and converges to a solution x^* of equation (2). Moreover, the error bounds (19) and (20) are true for all $n \ge 0$, where t_n^* is the least root in [0, R) of the function $\varphi_n(t)$ defined by (17), with $\rho_n = ||x_n - x_0||, n \ge 0$.

PROOF. The existence of t_0^* is guaranteed by (21). Let us assume that $x_n, x_{n+1} \in U(x_0, t_0^*)$. We will show that for every $n \ge 0$, condition (15) is true. Since $||y_0|| \le s_0$, this is true for n = 0.

Using the identity

Ioannis K. Argyros

$$F(x_{n+1}) + G(x_{n+1}) = \int_0^1 [F'(x_n + t(x_{n+1} - x_n)) - A(x_n)](x_{n+1} - x_n)dt + (G(x_{n+1} - G(x_n)) + r_n,$$

(3), (4), (23), (24), setting $\rho_n = ||x_n - x_0||$ and by taking norms in the above identity we get

$$s_{n+1} \le \sigma_{n+1} \|F(x_{n+1}) + G(x_{n+1})\|$$

$$\le v_n \left[\sigma_n \left(\int_0^{s_n} B_1(R, \rho_n + \theta) d\theta + B_2(R, s_n) \right) + s_n \mu_n \right]$$

which shows (15) for all $n \ge 0$.

The hypothesis (b) of Theorem 1 can now easily be verified by induction and thus, by (18) and (23), the sequence $\{x_n\}, n \ge 0$ remains in $U(x_0, t_0^*)$, converges to x^* and (19) and (20) hold. Finally, from the inequality

$$||F(x_n) + G(x_n)|| \le ||A(x_n) - F'(x_0)|| ||y_n|| + ||F'(x_0)|| ||y_n|| + ||r_n||,$$

(3), (24) and the continuity of F and G, as $\liminf \sigma_n > 0$ and $s_n \to 0$, as $n \to \infty$ it follows that $F(x^*) + G(x^*) = 0$.

That completes the proof of the theorem.

Remark. (a) In the special case when B_1 and B_2 are given (5) and (6) respectively, then our results can be reduced to the ones obtained by MORET [5, p. 359] (when G = 0).

(b) Let G = 0 and define the functions $\bar{\varphi}_0(t)$, $\bar{\varphi}_n(t)$ by

$$\bar{\varphi}_0(t) = a\sigma_0 \int_0^t (t-\theta)k(\theta)d\theta - t(1-\mu_0) + s_0,$$

$$\bar{\varphi}_n(t) = av_n\sigma_n \int_0^t (t-\theta)k(\rho_n+\theta)d\theta - t(1-\mu_n) + s_n,$$

where k is a nondecreasing function on [0, R] such that

$$||F'(x) - F'(y)|| \le k(r)||x - y||, \quad x, y \in \overline{U}(x_0, r) \quad (r < R_0).$$

Assume that B_1 can be chosen in such a way that

(25)
$$\varphi_n(t) \le \bar{\varphi}_n(t), \qquad n \ge 0.$$

Then under the hypotheses of Theorem 2 above and Proposition 1 in [5, p. 359], using (25) we can show

$$\|x^* - x_n\| \le t_n^* \le m_n^\star, \qquad n \ge 0$$

and

$$||x^* - x_{n+1}|| \le t_n^* - s_n \le m_n^* - s_n, \qquad n \ge 0$$

84

where by m_n^* , we denote the least solutions of the equations

$$\bar{\varphi}_n(t) = 0, \quad n \ge 0 \text{ in } [0, R).$$

References

- P.T. BROWN, A local convergence theory for inexact-Newton finite-difference projection methods, SIAM J. Numer. Anal. 24 (1987), 407–437.
- [2] X. CHEN and T. YAMAMOTO, Convergence domains of certain iterative methods for solving nonlinear equations, *Numer. Funct. Anal. and Optimiz.* 10, (1 and 2) (1989), 37–48.
- [3] R.S. DEMBO and S.C. EISENHART and T. STEIHAUG, Inexact Newton methods, SIAM J. Numer. Anal. 19 (1982), 400–408.
- [4] M.A. KRASNOSEL'SKII and Y.B. RUTICKII, Some approximate methods of solving nonlinear equations based on linearization, Soviet Math. Dokl. 2 (1961), 1542–1546.
- [5] I. MORET, A Kantorovich-type theorem for inexact Newton methods, Numer. Funct. Anal. and Optimiz. 10, (3 and 4) (1989), 351–365.
- [6] F.A. POTRA and V. PTÀK, Nondiscrete induction and iterative processes, Pitman Advanced Publishing Program, London, 1984.
- [7] A.H. SHERMAN, On Newton-iterative methods for the solution of systems of equations, SIAM J. Number. Anal. 15 (1978), 755-771.
- [8] P.P. ZABREJKO and D.F. NGUEN, The majorant method in the theory of Newton-Kantorovich approximations and the Ptàk error estimates, *Numer. Funct. Anal.* and Optimiz. 9 (1987), 671–684.
- [9] T. YAMAMOTO, A note on a posterior error bound of Zabrejko and Nguen for Zincenko's iteration, Numer. Funct. Anal. and Optimiz. 9 (1987), 987–994.
- T.J. YPMA, Local convergence of inexact Newton methods, SIAM J. Numer. Anal. 21 (1984), 583–590.

IOANNIS K. ARGYROS DEPARTMENT OF MATHEMATICS CAMERON UNIVERSITY LAWTON, OK 73505

(Received September 15, 1991; revised March 30, 1992)