
Publ. Math. Debrecen
66/3-4 (2005), 313–326

Polynomials and divided differences

By THOMAS RIEDEL (Louisville), MACIEJ SABLIK (Katowice) and
ABE SKLAR (Chicago)

Abstract. Starting with a sequence of recursively defined divided difference
operators that differentiate polynomials, we define and then solve two sequences
of functional equations whose n-th terms respectively characterize polynomials of
degree at most 2n and generalized polynomials of degree at most 2n− 1.

1. Introduction

In 1963, J. Aczél [1], see also [2], showed that there is a simple
functional equation involving two unknown functions, say f and g, whose
general solution (no regularity conditions whatever) is: f is a polynomial
of degree at most 2 and g is the derivative of f . In this paper, we ex-
tend Aczél’s result by showing that there is a sequence {En} of functional
equations, each involving functions f and g, such that for any n ≥ 1, the
general solution of En, again without any regularity conditions whatever,
is: f is a polynomial of degree at most 2n and g is the derivative of f .

We do this by first constructing, in Section 2, a sequence of linear
difference operators that differentiate polynomials of successively higher
degrees. The expression of the action of these operators leads, in Section 3,
to the equations En and to related equations E′

n. These equations are
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solved in Section 4 using a result of L. Székelyhidi in [18] and an extension
of that result developed by M. Sablik in [13].

The general solution of E′
n, unlike that for En, consists of generalized

polynomials (of degree ≤ 2n − 1) rather than polynomials alone, and so
includes highly discontinuous functions. The difference between the two
situations already appears for n = 1: E1 is Aczél’s equation in [2], while
E′

1 is Jensen’s equation (cf. [8, Chapter 13]). The complete regularity of
solutions of En, apparently coming “out of nothing”, is briefly discussed
in Section 3, where it is shown that the regularity is in effect built into the
very form of the equation.

A preliminary announcement of the results of this paper appears
in [17].

We note that results related to those in this paper, in the sense of con-
necting polynomial and similar functions with divided differences, appear
inter alia in papers by Aczél and Kuczma [3], Andersen [4], Davies

and Rousseau [5], Deeba and Simeonov [6], Haruki [7], Sablik [12, 13]
and Schwaiger [16]. In [10] and [11], Riedel and Sablik characterize
polynomial functions by functional equations derived from Flett’s mean
value theorem. Further examples and references may be found in the book
by Sahoo and Riedel [15].

2. The difference operators

We begin by recursively defining a sequence of linear operators on the
set of functions from R to R, as follows: For fixed c > 0 and any integer n,
let:

(δ(1)c f)(x) =
f(x+ c) − f(x− c)

2c
,

(δ(n+1)
c f) =

4n

4n − 1
(δ(n)

c f) − 1
4n − 1

(δ(n)
2c f).

An easy induction then yields:
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Lemma 1. For any n ≥ 1, the operator δ
(n)
c can be expressed in terms

of the operators of the form δ
(1)
c , as follows:

δ(n)
c =

n∑
k=1

a
(n)
k δ

(1)

2k−1c
, (1)

where the coefficients a
(n)
k are recursively given by the conditions:

a
(n)
0 = 0 = a

(n)
n+1 for all n ≥ 1, a(1)

1 = 1, and

a
(n+1)
k =

4n

4n − 1
a

(n)
k − 1

4n − 1
a

(n)
k−1 for n ≥ 1, k = 1, 2, . . . , n+ 1.

(2)

Another induction establishes the following lemma, which gives us an
explicit form for the coefficients a(n)

k :

Lemma 2. For n ≥ 1 and 1 ≤ k ≤ n, we have

a
(n)
k =

bn,k

dn
,

where dn and bn,k are the integers recursively given by the conditions:

d1 = 1, and dn+1 = (4n − 1)dn for n ≥ 1,

bn,0 = bn,n+1 = 0 for all n ≥ 1, b1,1 = 1, and

bn+1,k = 4nbn,k − bn,k−1 for n ≥ 1, 1 ≤ k ≤ n− 1.

We therefore have:

dn =
n−1∏
m=1

(4m − 1) for all n ≥ 2, and

bn,k = (−1)k−12(n−k)(n−k+1)
k−1∏
m=1

4n−m − 1
4m − 1

for all n ≥ 1, 1 ≤ k ≤ n.
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The following table, brief as it is, is enough to illustrate the very rapid
growth of the dn and bn,k.

bn,k

dn n k = 1 2 3 4 5 6

1 1 1
3 2 4 −1

45 3 64 −20 1
2835 4 4096 −1344 84 −1

722925 5 1048576 −348160 22848 −340 1
739552275 6 1073741824 −357564416 23744512 −371008 1364 −1

It follows that the numbers a(n)
k can be expressed in the form

a
(n)
k = (−1)k−1

n−k∏
m=1

(
4m

4m − 1

) k−1∏
m=1

1
4m − 1

,

whence, since
∏∞

m=1

(
4m

4m−1

)
converges, the a(n)

k remain bounded.

The latter recursion (2) leads to two properties for sums of a(n)
k that

we will need:

Lemma 3. For n ≥ 1, 0 ≤ i ≤ n − 1, let Sn,i =
∑n

k=1 4(k−1)ia
(n)
k .

Then for all n, we have Sn,0 = 1, while Sn,i = 0 for any i > 0.

Proof. We consider two cases and proceed by induction:
Case 1: i = 0.

Then for n = 1, we have:

S1,0 = 40a
(1)
1 = 1,

and for n ≥ 1, we have:

Sn+1,0 =
n+1∑
k=1

40(k−1)a
(n+1)
k =

n+1∑
k=1

a
(n+1)
k
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=
n+1∑
k=1

(
4n

4n − 1
a

(n)
k − 1

4n − 1
a

(n)
k−1

)

=
n+1∑
k=1

4n

4n − 1
a

(n)
k −

n+1∑
k=1

1
4n − 1

a
(n)
k−1

=
4n

4n − 1

n∑
k=1

a
(n)
k − 1

4n − 1

n+1∑
j=1

a
(n)
j−1

=
4n

4n − 1

n∑
k=1

a
(n)
k − 1

4n − 1

n∑
k=1

a
(n)
k

=
4n − 1
4n − 1

n∑
k=1

a
(n)
k =

4n − 1
4n − 1

= 1.

Case 2: Let i ≥ 1,then we have n ≥ 2 and for i = n− 1, we obtain:

Sn,n−1 =
n∑

k=1

4(n−1)(k−1)a
(n)
k

=
n∑

k=1

4(n−1)(k−1)

(
4n−1

4n−1 − 1
a

(n−1)
k − 1

4n−1 − 1
a

(n−1)
k−1

)

=
4n−1

4n−1 − 1

n∑
k=1

4(n−1)(k−1)a
(n−1)
k − 1

4n−1 − 1

n∑
k=1

4(n−1)(k−1)a
(n−1)
k−1

=
4n−1

4n−1 − 1

n∑
k=1

4(n−1)(k−1)a
(n−1)
k − 1

4n−1 − 1

n−1∑
k=0

4(n−1)ka
(n−1)
k

=
4n−1

4n−1−1

n∑
k=1

4(n−1)(k−1)a
(n−1)
k − 4n−1

4n−1− 1

n−1∑
k=0

4(n−1)(k−1)a
(n−1)
k = 0.

For i ≤ n− 1, we obtain:

Sn+1,i =
n+1∑
k=1

4i(k−1)a
(n+1)
k =

n+1∑
k=1

4i(k−1)

(
4n

4n − 1
a

(n)
k − 1

4n − 1
a

(n)
k−1

)
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=
4n

4n − 1

n∑
k=1

4i(k−1)a
(n)
k − 1

4n − 1

n+1∑
k=1

a
(n)
k−1

=
4n

4n − 1
Sn,i − 1

4n − 1

n∑
j=1

4ija
(n)
j

= − 4i

4n − 1

n∑
j=1

4i(j−1)a
(n)
j = − 4i

4n − 1
Sn,i = 0. �

A simple calculation shows that δ(1)c applied to the affine function
f(x) = ax+ b yields a, and applied to a polynomial of degree less than or
equal to 2 yields its derivative. Similarly δ(2)c is easily seen to differentiate
polynomials of degree less than or equal to 4. Further investigation leads
to:

Theorem 4. For each n ≥ 1 and any c > 0, the operator δ
(n)
c differ-

entiates all polynomials of degree less than or equal to 2n.

Proof. First we note that since δ(n)
c is linear, it suffices to study its

behavior on monomials. In view of equation (1), it is enough to consider
δ
(1)

2k−1y
, and for simplicity of notation it helps to separate the cases of odd

and even powers. We consider the case of even powers, f(x) = x2j.

(
δ
(1)

2k−1y
x2j
)

=
(x+ 2k−1y)2j − (x− 2k−1y)2j

2 · 2k−1y
. (3)

Using the binomial theorem we obtain after some simplification,

(
δ
(1)

2k−1y
(x2j)

)
=

j∑
l=1

4(k−1)(l−1)

(
2j

2l − 1

)
x2j−(2l−1)y2l−2. (4)

Now, using (4) in (1) we obtain

(
δ(n)
y (x2j)

)
=

j∑
l=1

(
2j

2l − 1

)
x2j−(2l−1)y2l−2

n∑
k=1

4(k−1)(l−1)a
(n)
k . (5)
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Finally, by Lemma 3, the right-hand side of (4) vanishes for l = 2, . . . , j
as long as j ≤ n. This implies that the terms in (4) which involve y all
disappear. The only term left is 2jx2j−1, which occurs when l = 1. A
similar argument works in the case of odd powers of x. It is also easily
seen that if we apply δ(n)

c to a polynomial of degree higher than 2n, terms
containing c remain and thus δ(n)

c does not differentiate polynomials of
degree greater than 2n. �

3. The functional equations

Note that Theorem 4 can be restated as follows: If f is a polynomial
of degree less than or equal to 2n, then

δ(n)
c (f)(x) = f ′(x). (6)

Thus the converse of Theorem 4 becomes the question: If f satisfies the
functional differential equation (6), is f necessarily a polynomial of degree
less than or equal to 2n?

More generally, suppose f, g are two functions satisfying

δ(n)
c (f)(x) = g(x). (7)

for all x and all c �= 0. Multiplying (7) by 2nc, and using equation (1), (7)
becomes:

2ncg(x) =
n∑

k=1

a
(n)
k 2n−k(f(x+ 2k−1c) − f(x− 2k−1c)). En

So if f, g satisfy En for all x, c, does f have to be a polynomial of degree
less than or equal to 2n and g its derivative?

Note that for n = 1 En reduces to

2cg(x) = f(x+ c) + f(x− c).

In [2], J. Aczél showed that this equation characterizes quadratic poly-
nomials and their derivatives, without assuming any regularity conditions.
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Actually, as the second author noted in [14], the effect of getting high
regularity of solutions out of nothing becomes a little bit less mysterious
when we look more carefully at the left-hand side of the above equation.
For a fixed x the number 2cg(x) may be considered as a value of the real
linear mapping c→ 2g(x)c. This observation is consistent with the origin
of the equation, since g replaces the derivative of f , and multiplication
actually is the action of the corresponding differential on the increment.
Now, suppose that 2g(x) is an endomorphism of R for every x, and replace
multiplication on the left-hand side by 2g(x)(c). Then (cf. [12]) the solu-
tion will be a pair of generalized polynomial functions of order 2 and 1,
not necessarily continuous. From this point of view, high regularity of so-
lutions is due to the choice of linear (and hence highly regular) functions
among all possible homomorphisms.

We arrive at another sequence of functional equations by multiplying
equation (6) by 2c and then differentiating with respect to c to get:

2f ′(x) =
n∑

k=1

a
(n)
k

(
f ′(x+ 2k−1c) + f ′(x− 2k−1c)

)
.

Taking g = f ′ with a polynomial f of degree less than or equal to 2n and
using Theorem 4 shows that any polynomial g of degree ≤ 2n− 1 satisfies

2g(x) =
n∑

k=1

a
(n)
k

(
g(x+ 2k−1c) + g(x− 2k−1c)

)
, E′

n

and the question is whether such polynomials are the only solutions of the
functional equations E′

n.
For n = 1 equation E′

n reduces to

2g(x) = g(x+ c) + g(x− c)

which is Jensen’s equation and thus has non-polynomial as well as (affine)
polynomial solutions. As will be seen, this conclusion extends to the solu-
tions of E′

n for all n ≥ 1.
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4. The solutions

It turns out that equation E′
n is easier to solve, so we will treat it

first. For its solution we need a lemma due to L. Székelyhidi (cf. [18],
Theorem 9.5).

Lemma 5. Let G, S be commutative groups, n a nonnegative in-

teger and let S be uniquely divisible by n!. Further, let ϕi, ψi be addi-

tive functions from G into G with the property that Ran(ϕi) ⊆ Ran(ψi)
(i = 1, . . . , n + 1), where Ran(ϕi) stands for the range of ϕi. Then if

h, hi : G→ S (i = 1, . . . , n+ 1) satisfy

h(x) +
n+1∑
i=1

hi(ϕi(x) + ψi(t)) = 0

then h is a generalized polynomial of degree at most n.

Using the above lemma and the definition (from Kuczma [5; Chap-
ter 13.4]), that a function from R

k into R is k-additive if it is additive in
each variable, we now prove:

Theorem 6. A function g satisfies the functional equation E′
n if and

only if g is a generalized polynomial of degree at most 2n− 1, that is

g(x) =
2n−1∑
k=0

Ad
k(x), (8)

where Ad
k(x) is the diagonal of a symmetric k-additive function Ak.

Proof. The ‘only if’ part follows immediately from Lemma 5. If, on
the other hand, g is given by (8), we can again use the linearity of E′

n to
consider each term separately. So for g(x) = Ad

j (x), we get

2Ad
j (x) =

n∑
k=1

a
(n)
k

j∑
l=0

(
k

l

)[
Aj(xj−l, cl)2(k−1)l − (−1)lAj(xj−l, cl)2(k−1)l

]
,

where Ak(xk−l, cl) = Ak(x, . . . , x, c, . . . , c) with k − l occurrences of x and
l occurrences of c. Now if j is even, then we have

Ad
2m(x) =

n∑
k=1

a
(n)
k

m∑
l=0

(
k

l

)[
A2m(x2m−2l, c2l)2(k−1)2l

]
,
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which can be rearranged to

Ad
2m(x) =

m∑
l=0

(
k

l

)[
A2m(x2m−2l, c2l)

n∑
k=1

4(k−1)la
(n)
k

]
,

and the desired result follows from Lemma 3. A similar argument works
for the case of odd j. �

In order to solve the functional equations En, we need a generalization
of Lemma 5. Such a generalization was proved by the second author in [13]
and appears below as Lemma 7.

To state the lemma we adopt the following notation: G and H are
commutative groups, and SAi(G;H) stands for the group of all i-additive,
symmetric mappings from Gi into H, I ≥ 2, while SA0(G;H) denotes the
family of constant functions from G into H and SA1(G;H) = Hom(G;H).
We also denote by I the subset of Hom(G;G)×Hom(G;G) containing all
the pairs (α, β) for which Ran(α) ⊂ Ran(β). The symbol #S stands for
cardinality of a set S. We also adopt the convention that a sum over an
empty set of indices equals 0.

Lemma 7. Fix N ∈ N ∪ {0} and let I0, . . . , IN be finite subsets of

I. Suppose further that H is uniquely divisible by N ! and let functions

ϕi : G → SAi(G;H), i ∈ {0, . . . , N} and ψi,(α,β) : G → SAi(G;H),
(α, β) ∈ Ii, i ∈ {0, . . . , N} satisfy

ϕN (x)(yN ) +
N−1∑
i=0

ϕi(x)(yi) =
N∑

i=0

∑
(α,β)∈Ii

ψi,(α,β)(α(x) + β(y))(yi)

for every x, y ∈ G. Then ϕN is a generalized polynomial of degree at most

equal to
N∑

i=0

#

(
N⋃

s=i

Is

)
≤

N∑
i=0

(i+ 1)#Ii.

Remark 8. According to I. Pawlikowska (cf. [9], Lemat 2.2), the
upper bound for the degree of ϕN can be lowered by 1 with no change in
the original proof.
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We will also need the following result:

Lemma 9. For every k ∈ N, if B ∈ SAk(R; R) satisfies

B(xk−1, y) = yB(xk−1, 1) (9)

for every x, y ∈ R, then B is k-linear, i.e.

B(v1, . . . , vk) = v1 · · · · · vkB(1k)

for every v1, . . . , vk ∈ R, where 1k is the k-tuple (1, 1, . . . , 1).

Proof. By defined by By(v1, . . . , vk−1) := B(v1, . . . , vk−1, y), obvi-
ously is k − 1-additive and symmetric. Moreover Bd

y(x) := B(xk−1, y) =
yBd

1(xk−1) by assumption. Thus by the polarization formula (see, e.g. [18,
Lemma 1.4]),

By(v1, . . . , vk−1) =
1

(k − 1)!

∑
S⊆{1,...,k−1}

(−1)k−|S|Bd
y

(∑
l∈S

vl

)

= yBd
1(v1, . . . , vk−1).

This means B(v1, . . . , vk−1, y) = yB(v1, . . . , vk−1, 1) for all v1, . . . , vk−1, y.
By the symmetry of B we get the desired result. �

We can now prove our principal result.

Theorem 10. The functions f and g satisfy the functional equation

En if and only if f is a polynomial of degree at most 2n and g = f ′.

Proof. We first apply Lemma 7 and Remark 8 to equation En (with
N = 1, ϕ1 = 2ng, ϕ0 = 0, I1 = ∅, I0 = {(id,±2k−1id) : k ∈ {1, . . . , n}} and
ψ0,(id,±2k−1id) = ±a(n)

k 2n−kf), and find that g is a generalized polynomial
of degree at most 2n − 1. Next we fix x in En and apply the difference
operator ∆2

y to both sides. The left-hand side vanishes and we have, with
φk := ∆2

2k−1y
f ,

n∑
k=1

2n−ka
(n)
k

(
φk(x+ 2k−1c) − φk(x− 2k−1c)

)
= 0.

Replacing x by x+c and applying Lemma 5, we find that φ1 is a generalized
polynomial of degree at most 2n − 2. Thus f is a generalized polynomial
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of degree at most 2n. Thus we have g(x) =
∑2n−1

l=0 Ad
l (x) and f(x) =∑2n

l=0B
d
l (x), where Ad

l and Bd
l are the diagonals of symmetric l-additive

functions. Substituting this back into equation En, we get

2nc
2n−1∑
l=0

Ad
l (x) =

n∑
k=1

a
(n)
k 2n−k

2n∑
l=0

(
Bd

l (x+ 2k−1c) −Bd
l (x− 2k−1c)

)
.

Using the abbreviation

Bl,i =

{
0 if i is even,

2Bl(xl−i, ci) if i is odd,

and the addition formula for Bd
k , we obtain

2nc

2n−1∑
l=0

Ad
l (x) =

n∑
k=1

a
(n)
k 2n−k

2n∑
l=0

l∑
i=0

(
l

i

)
2i(k−1)Bl,i.

Rearranging the sums on the right hand side above yields

2nc
2n−1∑
l=0

Ad
l (x) =

2n∑
l=0

l∑
i=0

(
l

i

)
Bl,i

n∑
k=1

a
(n)
k 2n−k2i(k−1). (10)

We have Bl,i = 0 for even i, and if i = 2j+1, then after some simplification
we obtain

n∑
k=1

a
(n)
k 2n−k2i(k−1) = 2n−1Sn,j.

Using Lemma 3, we infer that the sum is non-zero for j = 0, or i = 1. This
means that (10) becomes

c

2n−1∑
l=0

Ad
l (x) =

2n∑
l=1

lBl(xl−1, c).

Equating terms of equal degree in x on both sides yields that

cAd
l (x) = (l + 1)Bl+1(xl, c), for all x, c ∈ R,

implying Bl+1(xl, c) = cBl+1(xl, 1). Thus in view of Lemma 9, Bl we
have Bd

l (x) = blx
l, for l = 1 . . . 2n. This in turn implies that Al(xl) = (l+

1)bl+1x
l, and thus f is a polynomial of degree at most 2n and g(x) = f ′(x),

and our proof is complete. �
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Remark 11. It should be noted that, while the motivation for our equa-
tions come from real valued functions, in view of Lemma 5 and Lemma 7,
the results will also hold on fields of characteristic zero.

Acknowledgments. The authors would like to thank the referees
for their valuable comments and suggestions.
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