The cohomology of S-sets

By PIERRE ANTOINE GRILLET (New Orleans)

Abstract

The triple cohomology theory of semigroup acts is studied.

Introduction

The cohomology of S-sets, where S is any given monoid, can be approached in two ways.

In [4] we defined group coextensions of a right S-set A by an abelian group valued functor \mathbb{G} on A, and showed that equivalence classes of group coextensions of A by \mathbb{G} are the elements of an abelian group. If for instance S is commutative, this abelian group classifies the ways in which an arbitrary S-set can be constructed from an atransitive S-set and simply transitive group actions. This invites a general cohomology theory for S-sets, with abelian group valued functors for coefficients, whose second group would classify group coextensions.

In [2] Beck showed that every variety has a triple cohomology theory, with certain abelian group objects as coefficients, whose second group (called H^{1} in [1],[2]) classifies certain extensions. This general construction yields a number of algebraic cohomology theories [2], [1], including the usual cohomology of groups, the Leech cohomology of monoids [5], [8], and commutative semigroup cohomology [3].

[^0]For the variety of right S-sets we show in this article that the two approaches agree in dimension 2 . Given a right S-set A we show in Section 1 that the abelian group objects which serve as coefficients in the triple cohomology of A may be identified with abelian group valued functors on A (up to an equivalence of categories). With this identification, we show in Section 2 that Beck extensions of an abelian group valued functor \mathbb{G} by A may be identified with group coextensions of A by \mathbb{G} (up to an isomorphism of categories); and we obtain in Section 3 a more concrete definition of the triple cohomology of right S-sets, along with its basic properties.

1. Abelian group objects

1. In what follows, S is a monoid and A is a given right S-set (a set A on which S acts so that $a 1=1$ and $(a s) t=a(s t)$ for all $a \in A$ and $s, t \in S)$. A homomorphism of right S-sets is a mapping f which preserves the action of $S(f(x s)=f(x) s$ for all x and $s)$. Right S-sets and their homomorphisms are the objects and morphisms of a category \mathcal{C}.

A right S-set over A is a pair $\bar{X}=(X, \xi)$ of a right S-set X and an action preserving mapping $\xi: X \rightarrow A$; we use the exponential notation x^{s} for the action of S on X to distinguish it from forthcoming group actions. Equivalently, X is a right S-set which is a disjoint union $X=\bigcup_{a \in A} X_{a}$ in which $X_{a}^{s} \subseteq X_{a s}$; then $\xi(x)=a$ when $x \in X_{a}$.

A homomorphism $f: \bar{X} \rightarrow \bar{Y}=(Y, v)$ of right S-sets over A is an action preserving mapping $f: X \rightarrow Y$ such that $v \circ f=\xi$; equivalently, $f\left(X_{a}\right) \subseteq Y_{a}$ for all $a \in A$. Right S-sets over A and their homomorphisms are the objects and morphisms of a category $\overline{\mathcal{C}}$.

An abelian group object of $\overline{\mathcal{C}}$ is a right S-set $\bar{G}=(G, \gamma)$ over A together with an "external" abelian group operation on every $\operatorname{Hom}_{\overline{\mathcal{C}}}(\bar{X}, \bar{G})$, which we write additively, such that $\operatorname{Hom}_{\overline{\mathcal{C}}}(-, \bar{G})$ is a (contravariant) abelian group valued functor on $\overline{\mathcal{C}}$; equivalently, such that

$$
(g+h) \circ f=(g \circ f)+(h \circ f)
$$

whenever $f: \bar{X} \rightarrow \bar{Y}$ and $g, h: \bar{Y} \rightarrow \bar{G}$ are morphisms in $\overline{\mathcal{C}}$. Abelian group objects can also be defined by an "internal" addition $\bar{G} \times \bar{G} \rightarrow \bar{G}$, as in [6] or in Lemma 1.2 below.

A homomorphism $\varphi: \bar{G} \rightarrow \bar{H}$ of abelian group objects of $\overline{\mathrm{C}}$ is a morphism in $\overline{\mathrm{C}}$ such that $\operatorname{Hom}_{\overline{\mathrm{C}}}(-, \varphi)$ is a natural transformation; equivalently, such that

$$
\varphi \circ(g+h)=(\varphi \circ g)+(\varphi \circ h)
$$

whenever $g, h: \bar{X} \rightarrow \bar{G}$ are morphisms in $\bar{\complement}$. Abelian group objects of $\bar{\complement}$ and their homomorphisms are the objects and morphisms of a category.
2. To probe right S-sets over A we use the following construction.

Lemma 1.1. Let S^{S} be the right S-set in which S acts on itself by right multiplication $\left(s^{t}=s t\right)$.
(1) For every right S-set X and $x \in X$ there is a unique homomorphism $x^{*}: S^{S} \rightarrow X$ such that $x^{*}(1)=x$, namely $x^{*}(s)=x^{s}$.
(2) For every $a \in A, \bar{S}_{a}=\left(S^{S}, a^{*}\right)$ is a right S-set over A.
(3) For every right S-set \bar{X} over A and $x \in X_{a}, x^{*}$ is the unique homomorphism $f: \bar{S}_{a} \rightarrow \bar{X}$ such that $f(1)=x$; hence $x \mapsto x^{*}$ and $f \mapsto f(1)$ are mutually inverse bijections between $\operatorname{Hom}_{\bar{e}}\left(\bar{S}_{a}, \bar{X}\right)$ and X_{a}.

Proof. x^{*} is action preserving since $x^{*}\left(s^{t}\right)=x^{*}(s t)=x^{s t}=\left(x^{s}\right)^{t}=$ $x^{*}(s)^{t}$ for all $s, t \in S$. Then x^{*} is the unique action preserving mapping $S^{S} \rightarrow X$ such that $x^{*}(1)=x$, since $s=1^{s}$. If $\bar{X}=(X, \xi)$ is a right S-set over A and $x \in X_{a}$, then $\xi \circ x^{*}=a^{*}$, since $\xi\left(x^{*}(1)\right)=\xi(x)=a=a^{*}(1)$, and $x^{*} \in \operatorname{Hom}_{\bar{e}}\left(\bar{S}_{a}, \bar{X}\right)$. Then $x \mapsto x^{*}$ and $f \mapsto f(1)$ are mutually inverse bijections between $\operatorname{Hom}_{\overline{\mathrm{e}}}\left(\bar{S}_{a}, \bar{X}\right)$ and X_{a}, by (1).

Applying Lemma 1.1 to an abelian group object $\bar{G}=(G, \pi)$ of $\overline{\mathcal{C}}$ yields a partial addition on G.

Lemma 1.2. When $\bar{G}=(G, \pi)$ is an abelian group object over A :
(1) π is surjective;
(2) For every $a \in A$ an abelian group addition on G_{a} is defined by

$$
g+h=\left(g^{*}+h^{*}\right)(1)
$$

for all $g, h \in G_{a}$, and satisfies $(g+h)^{*}=g^{*}+h^{*}$;
(3) $(g+h)^{s}=g^{s}+h^{s}$ for all $g, h \in G_{a}$ and $s \in S$;
(4) The addition on $\operatorname{Hom}_{\bar{\complement}}(\bar{X}, \bar{G})$ is pointwise for every \bar{X}.

Proof. (1, 2): Let $g, h \in G_{a}$. Then $g^{*}, h^{*} \in \operatorname{Hom}_{\bar{e}}\left(\bar{S}_{a}, \bar{G}\right)$ by Lemma 1.1; g^{*}, h^{*} may be added in $\operatorname{Hom}_{\overline{\mathcal{C}}}\left(\bar{S}_{a}, \bar{G}\right)$; and $g+h \in G_{a}$ may be defined as in (2). Then

$$
(g+h)^{*}=g^{*}+h^{*}
$$

since $(g+h)^{*}(1)=g+h=\left(g^{*}+h^{*}\right)(1)$. Then $g \mapsto g^{*}$ is an isomorphism of G_{a} onto $\operatorname{Hom}_{\bar{e}}\left(\bar{S}_{a}, \bar{G}\right)$, by Lemma 1.1, and G_{a} is an abelian group under addition. In particular, $G_{a} \neq \emptyset$ for all a; hence π is surjective.
(4): Let $\bar{g}, \bar{h}: \bar{X} \rightarrow \bar{G}$. For every $x \in X_{a}$ we have $\bar{g} \circ x^{*}=\bar{g}(x)^{*}$, since $\bar{g}\left(x^{*}(1)\right)=\bar{g}(x)$. Hence

$$
(\bar{g}+\bar{h}) \circ x^{*}=\left(\bar{g} \circ x^{*}\right)+\left(\bar{h} \circ x^{*}\right)=\bar{g}(x)^{*}+\bar{h}(x)^{*}=(\bar{g}(x)+\bar{h}(x))^{*} ;
$$

evaluating at 1 yields $(\bar{g}+\bar{h})(x)=\bar{g}(x)+\bar{h}(x)$.
(3): Since addition on $\operatorname{Hom}_{\overline{\mathcal{C}}}\left(\bar{S}_{a}, \bar{G}\right)$ is pointwise we have

$$
(g+h)^{s}=(g+h)^{*}(s)=\left(g^{*}+h^{*}\right)(s)=g^{*}(s)+h^{*}(s)=g^{s}+h^{s} .
$$

By Lemma 1.2, $g \mapsto g^{s}$ is a homomorphism $\gamma_{a, s}: G_{a} \rightarrow G_{a s}$ for every $a, s ; \gamma_{a, 1}$ is the identity on G_{a}, and $\gamma_{a s, t} \circ \gamma_{a, s}=\gamma_{a, s t}$ for all a, s, t, since $\left(g^{s}\right)^{t}=g^{s t}$.

This suggests an abelian group valued functor on the transitivity category $\mathcal{T}(A)$ of A [4], whose objects are the elements of A and whose morphisms are all pairs $(a, s) \in A \times S$, with $(a, s): a \rightarrow a s$ and $(a s, t) \circ(a, s)=$ ($a, s t$); the identity on $a \in A$ is $(a, 1)$. An abelian group valued functor $\mathbb{G}=(G, \gamma)$ on A (actually, on $\mathcal{T}(A))$ assigns an abelian group G_{a} to each $a \in A$ and a homomorphism $\gamma_{a, s}: G_{a} \rightarrow G_{a s}$ to each $(a, s) \in A \times S$, so that $\gamma_{a, 1}$ is the identity on G_{a} and $\gamma_{a s, t} \circ \gamma_{a, s}=\gamma_{a, s t}$, for all $s, t \in S$ and $a \in A$. It is convenient to write

$$
\gamma_{a, s}(g)=g^{s} \in G_{a s} \quad \text { when } \quad g \in G_{a}
$$

so that

$$
(g+h)^{s}=g^{s}+h^{s}, \quad g^{1}=g, \quad \text { and } \quad\left(g^{s}\right)^{t}=g^{s t}
$$

for all $g, h \in G_{a}$ and all s, t. We call \mathbb{G} thin when $\gamma_{a, s}$ depends only on a and as (when as $=a t$ implies $\gamma_{a, s}=\gamma_{a, t}$).

When \bar{G} is an abelian group object over A, then the functor (G, γ) constructed after Lemma 1.2 is an abelian group valued functor on A. We state this as part of:

Proposition 1.3. When \bar{G} is an abelian group object over A, then $\mathbf{F} \bar{G}=(G, \gamma)$ is an abelian group valued functor on A. When $\varphi: \bar{G} \rightarrow \bar{H}$ is a homomorphism of abelian group objects over A, then $\mathbf{F} \varphi=\left(a \varphi_{\mid G_{a}}\right)_{a \in A}$ is a natural transformation from $\mathbf{F} \bar{G}$ to $\mathbf{F} \bar{H}$.

Proof. First, $\varphi\left(G_{a}\right) \subseteq H_{a}$, since φ is a homomorphism of right S-sets over A. Let $\varphi_{a}=\varphi_{\mid G_{a}}$ be the restriction of φ to G_{a}. For every $g, h \in G_{a}$,

$$
\varphi \circ(g+h)^{*}=\varphi \circ\left(g^{*}+h^{*}\right)=\left(\varphi \circ g^{*}\right)+\left(\varphi \circ h^{*}\right) ;
$$

evaluating at 1 yields $\varphi(g+h)=\varphi(g)+\varphi(h)$, so that every φ_{a} is a homomorphism of abelian groups. Finally let $\mathbf{F} \bar{G}=(G, \gamma)$ and $\mathbf{F} \bar{H}=$ (H, δ). Every square

commutes: since φ preserves the action of S we have

$$
\varphi_{a s}\left(\gamma_{a, s}(g)\right)=\varphi\left(g^{s}\right)=\varphi(g)^{s}=\delta_{a, s}\left(\varphi_{a}(g)\right)
$$

for all $g \in G_{a}$, and $\mathbf{F} \varphi$ is a natural transformation from $\mathbf{F} \bar{G}$ to $\mathbf{F} \bar{H}$.
3. The converse of Proposition 1.3 is:

Proposition 1.4. Let $\mathbb{G}=(G, \gamma)$ be an abelian group valued functor on A. Let $\bar{G}=\left(G^{\prime}, \pi\right)$, where G^{\prime} is the disjoint union $G^{\prime}=\bigcup_{a \in A}\left(G_{a} \times\{a\}\right)$, $(g, a)^{s}=\left(\gamma_{a, s}(g), a s\right)=\left(g^{s}, a s\right)$, and $\pi(g, a)=a$. With the addition on $\operatorname{Hom}_{\overline{\mathrm{e}}}(\bar{X}, \bar{G})$ defined for every \bar{X} by
$(\bar{g}+\bar{h})(x)=\left(g_{x}+h_{x}, a\right), \quad$ where $x \in X_{a}, \bar{g}(x)=\left(g_{x}, a\right), \bar{h}(x)=\left(h_{x}, a\right)$,
$\mathbf{O} \mathbb{G}=\bar{G}$ is an abelian group object of $\overline{\mathrm{C}}$. When $\varphi: \mathbb{G} \rightarrow \mathbb{H}$ is a natural transformation of abelian group valued functors on A, then $\mathbf{O} \varphi:(g, a) \mapsto$ $\left(\varphi_{a}(g), a\right)$ is a homomorphism of abelian group objects of $\overline{\mathrm{C}}$.

Proof. G^{\prime} is a right S-set since $(g, a)^{1}=(g, a)$ and $\left((g, a)^{s}\right)^{t}=$ $(g, a)^{s t}$ when $g \in G_{a}$. Moreover π is action preserving. Hence \bar{G} is a right S-set over A.

Let $\bar{g}, \bar{h}: \bar{X} \rightarrow \bar{G}$ be morphisms in $\overline{\mathcal{C}}$. If $x \in X_{a}$, then $\bar{g}(x), \bar{h}(x) \in G_{a}$ and $\bar{g}(x)=\left(g_{x}, a\right), \bar{h}(x)=\left(h_{x}, a\right)$ for some $g_{x}, h_{x} \in G_{a}$; hence a mapping $\bar{g}+\bar{h}: X \rightarrow G^{\prime}$ may be defined by $(\bar{g}+\bar{h})(x)=\left(g_{x}+h_{x}, a\right)$ as in the statement. Since \bar{g} and \bar{h} are homomorphisms of right S-sets over A we have $\bar{g}\left(x^{s}\right)=\bar{g}(x)^{s}=\left(g_{x}, a\right)^{s}=\left(g_{x}^{s}, a s\right), \bar{h}\left(x^{s}\right)=\left(h_{x}^{s}, a s\right)$, and

$$
(\bar{g}+\bar{h})\left(x^{s}\right)=\left(g_{x}^{s}+h_{x}^{s}, a s\right)=\left(g_{x}+h_{x}, a\right)^{s}=((\bar{g}+\bar{h})(x))^{s} ;
$$

thus $\bar{g}+\bar{h}$ is a homomorphism of right S-sets over A. Addition on $\operatorname{Hom}_{\overline{\mathcal{C}}}(\bar{X}, \bar{G})$ is commutative and associative like the addition on every G_{a}. The identity element $\bar{z}: \bar{X} \rightarrow \bar{G}$ of $\operatorname{Hom}_{\overline{\mathcal{C}}}(\bar{X}, \bar{G})$ is given by $\bar{z}(x)=(0, a)$ when $x \in X_{a}$: indeed

$$
\bar{z}\left(x^{s}\right)=(0, a s)=(0, a)^{s}=\bar{z}(x)^{s}
$$

so $\bar{z} \in \operatorname{Hom}_{\overline{\mathcal{C}}}(\bar{X}, \bar{G})$, and $\bar{z}+\bar{g}=\bar{g}$ for all $\bar{g} \in \operatorname{Hom}_{\bar{e}}(\bar{X}, \bar{G})$. The opposite of $\bar{g}: \bar{X} \rightarrow \bar{G}$ is similarly defined by $(-\bar{g})(x)=\left(-g_{x}, a\right)$ when $x \in X_{a}$ and $\bar{g}(x)=\left(g_{x}, a\right) ;-\bar{g}$ is a homomorphism since $\bar{g}\left(x^{s}\right)=\left(g_{x}^{s}, a s\right)$ and

$$
(-\bar{g})\left(x^{s}\right)=\left(-g_{x}^{s}, a s\right)=\left(\left(-g_{x}\right)^{s}, a s\right)=\left(-g_{x}, a\right)^{s}=(-\bar{g})(x)^{s}
$$

$\operatorname{Hom}_{\overline{\mathcal{C}}}(\bar{X}, \bar{G})$ is now an abelian group. If $f: \bar{W} \rightarrow \bar{X}$ is a morphism in $\overline{\mathcal{C}}$, then $(\bar{g}+\bar{h}) \circ f=(\bar{g} \circ f)+(\bar{h} \circ f)$ for all $\bar{g}, \bar{h}: \bar{X} \rightarrow \bar{G}$; hence \bar{G} is a abelian group object of $\overline{\mathcal{C}}$.

Let $\varphi: \mathbb{G} \rightarrow \mathbb{H}=(H, \eta)$ be a natural transformation of abelian group valued functors on A. Then $\bar{\varphi}:(g, a) \mapsto\left(\varphi_{a}(g), a\right)$ satisfies

$$
\begin{aligned}
\bar{\varphi}\left((g, a)^{s}\right) & =\bar{\varphi}\left(\gamma_{a, s}(g), a s\right)=\left(\varphi_{a s}\left(\gamma_{a, s}(g)\right), a s\right) \\
& =\left(\eta_{a, s}\left(\varphi_{a}(g)\right), a s\right)=\left(\varphi_{a}(g), a\right)^{s}=(\bar{\varphi}(g, k))^{s}
\end{aligned}
$$

and $\bar{\varphi}$ is a homomorphism of right S-sets over A. Let $\bar{g}, \bar{h}: \bar{X} \rightarrow \bar{G}$ be morphisms in $\overline{\mathcal{C}}$. Let $x \in X_{a}$ and $\bar{g}(x)=\left(g_{x}, a\right), \bar{h}(x)=\left(h_{x}, a\right)$, so that $(\bar{g}+\bar{h})(x)=\left(g_{x}+h_{x}, a\right)$. Then $\bar{\varphi}(\bar{g}(x))=\left(\varphi_{a}\left(g_{x}\right), a\right), \bar{\varphi}(\bar{h}(x))=$ $\left(\varphi_{a}\left(h_{x}\right), a\right)$, and
$(\bar{\varphi} \circ \bar{g}+\bar{\varphi} \circ \bar{h})(x)=\left(\varphi_{a}\left(g_{x}\right)+\varphi_{a}\left(h_{x}\right), a\right)=\left(\varphi_{a}\left(g_{x}+h_{x}\right), a\right)=\bar{\varphi}((\bar{g}+\bar{h})(x))$.
Thus $\mathbf{O} \varphi=\bar{\varphi}$ is a homomorphism of abelian group objects of $\overline{\mathcal{C}}$.

Proposition 1.5. The functors \mathbf{F} and \mathbf{O} in Propositions 1.3 and 1.4 are equivalences of categories.

Proof. Let \bar{G} be an abelian group object of $\overline{\mathcal{C}}$. Then $\mathbf{O F} \bar{G}=\bar{G}^{\prime}=$ $\left(G^{\prime}, \pi\right)$, where G^{\prime} is the disjoint union $G^{\prime}=\bigcup_{a \in A}\left(G_{a} \times\{a\}\right),(g, a)^{s}=$ $\left(\gamma_{a, s}(g), a s\right)$, and $\pi(g, a)=a$, and the addition on every $\operatorname{Hom}_{\overline{\mathcal{C}}}\left(\bar{X}, \bar{G}^{\prime}\right)$ is defined by

$$
(\bar{g}+\bar{h})(x)=\left(g_{x}+h_{x}, a\right), \quad \text { where } x \in X_{a}, \bar{g}(x)=\left(g_{x}, a\right), \bar{h}(x)=\left(h_{x}, a\right) .
$$

Define $\theta_{G}: \bar{G}^{\prime} \rightarrow \bar{G}$ by $\theta_{G}(g, a)=g \in G_{a}$. Then θ_{G} is an isomorphism of right S-sets over A. If moreover $\varphi: \bar{G} \rightarrow \bar{H}$ is a homomorphism of abelian group objects, then $\bar{\varphi}=\mathbf{O F} \varphi$ sends (g, a) to $(\varphi(g), a)$ and we see that $\theta_{H} \circ \bar{\varphi}=\varphi \circ \theta_{G}$. Thus θ_{G} is natural in \bar{G}.

Conversely let $\mathbb{G}=(G, \gamma)$ be an abelian group valued functor on A; then $\mathbf{O} \mathbb{G}=\bar{G}^{\prime}=\left(G^{\prime}, \pi\right)$, where G^{\prime} is the disjoint union $G^{\prime}=\bigcup\left(G_{a} \times\{a\}\right)$, $(g, a)^{s}=\left(\gamma_{a, s}(g), a s\right)$, and $\pi(g, a)=a$, and the addition on ${ }^{a \in A}$ every $\operatorname{Hom}_{\bar{e}}\left(\bar{X}, \bar{G}^{\prime}\right)$ is defined by $(\bar{g}+\bar{h})(x)=\left(g_{x}+h_{x}, a\right), \quad$ where $x \in X_{a}, \bar{g}(x)=\left(g_{x}, a\right), \bar{h}(x)=\left(h_{x}, a\right)$.

The induced addition on $G_{a}^{\prime}=G_{a} \times\{a\}$ is given as before by

$$
(g, a)+(h, a)=\left((g, a)^{*}+(h, a)^{*}\right)(1)
$$

for all $(g, a),(h, a) \in G_{a}^{\prime}$ using the mappings x^{*} in Lemma 1.1; that is,

$$
(g, a)+(h, a)=\left((g, a)^{*}+(h, a)^{*}\right)(1)=(g+h, a)
$$

since $(g, a)^{*}(1)=(g, a)$ and $(h, a)^{*}(1)=(h, a)$. Thus $\theta_{a}:(g, a) \mapsto g$ is an isomorphism of abelian groups of G_{a}^{\prime} onto G_{a}. Moreover the homomorphism $\delta_{a, s}$ in $\mathbf{F} \bar{G}^{\prime}=\left(G^{\prime}, \delta\right)$ are given by $\delta_{a, s}(g, a)=(g, a)^{s}=\left(\gamma_{a, s}(g), a s\right)$, which show that $\theta=\left(\theta_{a}\right)_{a \in A}$ is an isomorphism from $\mathbf{F} \bar{G}^{\prime}$ to \mathbb{G}. It is immediate that θ is natural in \mathbb{G}.

2. Beck extensions

1. In $\overline{\mathcal{C}}$, a left action of an abelian group object \bar{G} on an object \bar{E} assigns to every object \bar{X} of $\overline{\mathcal{C}}$ a left group action. of $\operatorname{Hom}_{\overline{\mathcal{C}}}(\bar{X}, \bar{G})$ on
$\operatorname{Hom}_{\overline{\mathcal{C}}}(\bar{X}, \bar{E})$ which is natural in \bar{X}; equivalently, such that

$$
(\bar{g} \cdot \bar{e}) \circ f=(\bar{g} \circ f) \cdot(\bar{e} \circ f)
$$

for all morphisms $\bar{g}: \bar{X} \rightarrow \bar{G}, \bar{e}: \bar{X} \rightarrow \bar{E}, f: \bar{W} \rightarrow \bar{X}$. This "external" group action can be replaced by an "internal" action $\bar{G} \times \bar{E} \rightarrow \bar{E}$ as in Lemma 2.1 below.

In $\overline{\mathcal{C}}$, a Beck extension of an abelian group object \bar{G} by A is a right S-set $\bar{E}=(E, \pi)$ over A together with an action of \bar{G} on \bar{E} such that
(BE1) $\mathbb{U} \pi \circ \mu=1_{\mathbb{U} A}$ for some $\mu: \mathbb{U} A \rightarrow \mathbb{U} E$, where $\mathbb{U}: \mathcal{C} \rightarrow$ Sets is the forgetful functor; in Sets this merely states that π is surjective;
(Be2) for every \bar{X} the action of $\operatorname{Hom}_{\bar{e}}(\bar{X}, \bar{G})$ on $\operatorname{Hom}_{\bar{e}}(\bar{X}, \bar{E})$ preserves projection to $A: \pi \circ(\bar{g} \cdot \bar{e})=\pi \circ \bar{e}$ for every $\bar{g}: \bar{X} \rightarrow \bar{G}$ and $\bar{e}: \bar{X} \rightarrow \bar{E} ;$
(Be3) for every \bar{X} the action of $\operatorname{Hom}_{\bar{e}}(\bar{X}, \bar{G})$ on $\operatorname{Hom}_{\bar{e}}(\bar{X}, \bar{E})$ is simply transitive: for every $\bar{e}, \bar{f}: \bar{X} \rightarrow \bar{E}$ there exists a unique $\bar{g}: \bar{X} \rightarrow \bar{G}$ such that $\bar{g} \cdot \bar{e}=\bar{f}$.

A homomorphism $\varphi: \bar{E} \rightarrow \bar{F}$ of Beck extensions of \bar{G} by A is a morphism in $\overline{\mathrm{C}}$ which preserves the action of \bar{G} :

$$
\varphi \circ(\bar{g} \cdot \bar{e})=\bar{g} \cdot(\varphi \circ \bar{e})
$$

for all \bar{X} and morphisms $\bar{g}: \bar{X} \rightarrow \bar{G}, \bar{e}: \bar{X} \rightarrow \bar{E}$.
2. Applying Lemma 1.1 to a Beck extension \bar{E} of \bar{G} by A yields a partial action of G on E.

Lemma 2.1. Let \bar{E} be a Beck extension of \bar{G} by A; let $\mathbf{F} \bar{G}=(G, \gamma)$.
(1) For every $a \in A$ a simply transitive group action of G_{a} on E_{a} is defined by

$$
g \cdot x=\left(g^{*} \cdot x^{*}\right)(1)
$$

for all $g \in G_{a}, x \in E_{a}$, and satisfies $(g \cdot x)^{*}=g^{*} \cdot x^{*}$.
(2) $(g \cdot x)^{s}=g^{s} \cdot x^{s}$ for all $g \in G_{a}, x \in X_{a}$, and $s \in S$.
(3) The action of $\operatorname{Hom}_{\bar{e}}(\bar{X}, \bar{G})$ on $\operatorname{Hom}_{\overline{\mathcal{C}}}(\bar{X}, \bar{E})$ is pointwise, for every \bar{X}.

Proof. (1): When $g \in G_{a}$ and $x \in E_{a}$, then $g^{*} \in \operatorname{Hom}_{\overline{\mathrm{e}}}\left(\bar{S}_{a}, \bar{G}\right)$, $x^{*} \in \operatorname{Hom}_{\bar{e}}\left(\bar{S}_{a}, \bar{E}\right)$ by Lemma 1.1, and $g^{*} \cdot x^{*}$ is defined in $\operatorname{Hom}_{\overline{\mathrm{C}}}\left(\bar{S}_{a}, \bar{E}\right)$, and $g \cdot x \in E_{a}$ may be defined by $g \cdot x=\left(g^{*} \cdot x^{*}\right)(1)$. Then

$$
(g \cdot x)^{*}=g^{*} \cdot x^{*}
$$

since $(g \cdot x)^{*}(1)=g \cdot x=\left(g^{*} \cdot x^{*}\right)(1)$. The isomorphism $g \mapsto g^{*}$ and bijection $x \mapsto x^{*}$ take the action of G_{a} on E_{a} to the action of $\operatorname{Hom}_{\overline{\mathcal{E}}}\left(\bar{S}_{a}, \bar{G}\right)$ on $\operatorname{Hom}_{\overline{\mathcal{C}}}\left(\bar{S}_{a}, \bar{E}\right)$; therefore the former is, like the latter, a simply transitive group action.
(3): Let $\bar{g}: \bar{X} \rightarrow \bar{G}$ and $\bar{e}: \bar{X} \rightarrow \bar{E}$. For every $x \in X_{a}$ we have $\bar{g} \circ x^{*}=\bar{g}(x)^{*}$, since $\bar{g}\left(x^{*}(1)\right)=\bar{g}(x)$, and $\bar{e} \circ x^{*}=\bar{e}(x)^{*}$. Hence

$$
(\bar{g} \cdot \bar{e}) \circ x^{*}=\left(\bar{g} \circ x^{*}\right) \cdot\left(\bar{e} \circ x^{*}\right)=\bar{g}(x)^{*} \cdot \bar{e}(x)^{*}=(\bar{g}(x) \cdot \bar{e}(x))^{*} ;
$$

evaluating at 1 yields $(\bar{g} \cdot \bar{e})(x)=\bar{g}(x) \cdot \bar{e}(x)$.
(2): Since the action of $\operatorname{Hom}_{\overline{\mathcal{C}}}\left(\bar{S}_{a}, \bar{G}\right)$ on $\operatorname{Hom}_{\overline{\mathcal{C}}}\left(\bar{S}_{a}, \bar{E}\right)$ is pointwise we have

$$
(g \cdot x)^{s}=(g \cdot x)^{*}(s)=\left(g^{*} \cdot x^{*}\right)(s)=g^{*}(s) \cdot x^{*}(s)=g^{s} \cdot x^{s}
$$

This last equation can be rewritten

$$
(g \cdot x)^{s}=\gamma_{a, s}(g) \cdot x
$$

and implies that E is a group coextension of A by $\mathbf{F} \bar{G}$ as defined in [4]. Specifically, a group coextension ($E, \pi,$.) of A by a group valued functor $\mathbb{G}=(G, \gamma)$ on A consists of a right S-set E, an action-preserving surjection $\pi: E \rightarrow A$, and, for every $a \in A$, a simply transitive action . of G_{a} on E_{a} such that

$$
(g \cdot x)^{s}=\gamma_{a, s}(g) \cdot x^{s}=g^{s} \cdot x^{s}
$$

for all $g \in G_{a}, x \in E_{a}, a \in A$, and $s \in S$. An equivalence $\theta:(E, \pi,.) \rightarrow$ $(F, \rho,$.$) of group coextensions of A$ by \mathbb{G} is a bijection $\theta: E \rightarrow F$ which preserves the action of $S\left(\theta\left(x^{s}\right)=\theta(x)^{s}\right)$, projection to $A(\rho(\theta(x))=\pi(x))$ and the action of $\mathbb{G}(\theta(g \cdot x)=g \cdot \theta(x))$.

Proposition 2.2. Let \bar{G} be an abelian group object of $\bar{\complement}$ and $\mathbb{G}=\mathbf{F} \bar{G}$. When $\bar{E}=(E, \pi)$ is a Beck extension of \bar{G} by A, then $\mathbf{C} \bar{E}=(E, \pi,$.$) is$
a group coextension of A by \mathbb{G}. When $\varphi: \bar{E} \rightarrow \bar{F}$ is a homomorphism of Beck extensions of \bar{G} by A, then $\mathbf{C} \varphi=\varphi: \mathbf{C} \bar{E} \rightarrow \mathbf{C} \bar{F}$ is an equivalence of group coextensions.

Proof. First, φ preserves projection to $A\left(\varphi\left(E_{a}\right) \subseteq F_{a}\right)$ and the action of S, since φ is a homomorphism of right S-sets over A. For every $g \in G_{a}$ and $x \in E_{a}$,

$$
\varphi \circ(g \cdot x)^{*}=\varphi \circ\left(g^{*} \cdot x^{*}\right)=g^{*} \cdot\left(\varphi \circ x^{*}\right) ;
$$

evaluating at 1 yields $\varphi(g \cdot x)=g \cdot \varphi(x)$, so that φ preserves the action of \mathbb{G}.
3. The converse of Proposition 2.2 is:

Proposition 2.3. Let $\bar{C}=(C, \pi,$.$) be a group coextension of A$ by an abelian group valued functor $\mathbb{G}=(G, \gamma)$ on A; let $\bar{G}=\mathbf{O} \mathbb{G}$. With the action. of $\operatorname{Hom}_{\overline{\mathcal{C}}}(\bar{X}, \bar{G})$ on $\operatorname{Hom}_{\overline{\mathcal{C}}}(\bar{X}, \bar{C})$ defined for every \bar{X} by

$$
(\bar{g} \cdot \bar{c})(x)=g_{x} \cdot \bar{c}(x), \quad \text { where } x \in X_{a}, \bar{g}(x)=\left(g_{x}, a\right),
$$

\bar{C} is a Beck extension $\mathbf{E} \bar{C}$ of \bar{G} by A. When $\theta: \bar{C} \rightarrow \bar{D}$ is an equivalence of group coextensions of A by $\mathbb{G}, \mathbf{E} \theta=\theta$ is a homomorphism of Beck extensions of \bar{G} by A.

Proof. By definition, $\bar{G}=\left(G^{\prime}, \alpha\right)$, where G^{\prime} is the disjoint union $G^{\prime}=\bigcup_{a \in A}\left(G_{a} \times\{a\}\right),(g, a)^{s}=\left(g^{s}, a s\right), \alpha(g, a)=a$, and addition on $\operatorname{Hom}_{\overline{\mathcal{C}}}(\bar{X}, \bar{G})$ is given by
$(\bar{g}+\bar{h})(x)=\left(g_{x}+h_{x}, a\right), \quad$ where $x \in X_{a}, \bar{g}(x)=\left(g_{x}, a\right), \bar{h}(x)=\left(h_{x}, a\right)$.
Let $\bar{g}: \bar{X} \rightarrow \bar{G}$ and $\bar{c}: \bar{X} \rightarrow \bar{C}$ be morphisms in $\overline{\mathrm{C}}$. If $x \in X_{a}$, then $\bar{c}(x) \in C_{a}$ and $\bar{g}(x) \in G_{a}^{\prime}, \bar{g}(x)=\left(g_{x}, a\right)$ for some $g_{x} \in G_{a}$; hence a mapping $\bar{g} \cdot \bar{c}: X \rightarrow G^{\prime}$ may be defined by $(\bar{g} \cdot \bar{c})(x)=g_{x} \cdot \bar{c}(x)$ as in the statement. Since \bar{g} and \bar{c} are homomorphisms of right S-sets over A we have $\bar{g}\left(x^{s}\right)=\bar{g}(x)^{s}=\left(g_{x}, a\right)^{s}=\left(g_{x}^{s}, a s\right), \bar{c}\left(x^{s}\right)=\bar{c}(x)^{s}$, and

$$
(\bar{g} \cdot \bar{c})\left(x^{s}\right)=g_{x}^{s} \cdot \bar{c}(x)^{s}=\left(g_{x} \cdot \bar{c}(x)\right)^{s}=((\bar{g} \cdot \bar{c})(x))^{s} ;
$$

thus $\bar{g} \cdot \bar{c}$ is a homomorphism of right S-sets over A. The definition of $\bar{g} \cdot \bar{c}$ shows that $(\bar{g} \cdot \bar{c}) \circ f=(\bar{g} \circ f) \cdot(\bar{c} \circ f)$ whenever $f: \bar{W} \rightarrow \bar{X}$ is a morphism
in $\overline{\mathcal{C}}$. The action of $\operatorname{Hom}_{\overline{\mathrm{C}}}(\bar{X}, \bar{G})$ on $\operatorname{Hom}_{\overline{\mathrm{C}}}(\bar{X}, \bar{C})$ is a simple group action like the action of G_{a} on C_{a}. To show transitivity let $\bar{c}, \bar{d}: \bar{X} \rightarrow \bar{C}$ be morphisms in $\overline{\mathrm{C}}$. Define a mapping $\bar{g}: X \rightarrow G^{\prime}$ as follows: when $x \in$ X_{a}, then $\bar{c}(x), \bar{d}(x) \in C_{a}$ and there exists a unique $g_{x} \in G_{a}$ such that $g_{x} \cdot \bar{c}(x)=\bar{d}(x) ;$ let $\bar{g}(x)=\left(g_{x}, a\right)$. We have

$$
\bar{d}\left(x^{s}\right)=\bar{d}(x)^{s}=\left(g_{x} \cdot \bar{c}(x)\right)^{s}=g_{x}^{s} \cdot \bar{c}(x)^{s}=g_{x}^{s} \cdot \bar{c}\left(x^{s}\right) ;
$$

hence

$$
\bar{g}\left(x^{s}\right)=\left(g_{x}^{s}, a s\right)=\left(g_{x}, a\right)^{s}=\bar{g}(x)^{s}
$$

and $\bar{g}: \bar{X} \rightarrow \bar{G}$ is a homomorphism of right S-sets over A. Also $\bar{g} \cdot \bar{c}=\bar{d}$ by definition. Hence \bar{C} is a Beck extension $\mathbf{E} \bar{C}$ of \bar{G} by A.

Let $\theta: \bar{C} \rightarrow \bar{D}=(D, \delta)$ be an equivalence of group coextensions of A by \mathbb{G}. Then θ is a morphism in $\overline{\mathcal{C}}$. Let $\bar{g}: \bar{X} \rightarrow \bar{G}$ and $\bar{c}: \bar{X} \rightarrow \bar{C}$ be homomorphisms of right S-sets over A. When $x \in X_{a}$ we have $\bar{g}(x)=$ $\left(g_{x}, a\right)$ for some $g_{x} \in G_{a}$ and

$$
\theta\left((\bar{g} \cdot \bar{c})(x)=\theta\left(g_{x} \cdot \bar{c}(x)\right)=g_{x} \cdot \theta(\bar{c}(x))=(\bar{g} \cdot(\theta \circ \bar{c}))(x) ;\right.
$$

hence $\theta \circ(\bar{g} \cdot \bar{c})=\bar{g} \cdot(\theta \circ \bar{c})$. Thus θ is a homomorphism of Beck extensions.

Proposition 2.4. The functors \mathbf{C} and \mathbf{E} in Propositions 2.2 and 2.3 are isomorphisms of categories.

Proof. Let $\bar{C}=(C, \pi,$.$) be a group coextension of A$ by $\mathbb{G}=(G, \gamma)$. Let $\bar{G}=\mathbf{O} \mathbb{G}$, so that $\bar{G}=\left(G^{\prime}, \alpha\right)$, where G^{\prime} is the disjoint union $G^{\prime}=$ $\bigcup_{a \in A}\left(G_{a} \times\{a\}\right),(g, a)^{s}=\left(\gamma_{a, s}(g), a s\right), \alpha(g, a)=a$, and addition on each $\operatorname{Hom}_{\bar{e}}(\bar{X}, \bar{G})$ is given by
$(\bar{g}+\bar{h})(x)=\left(g_{x}+h_{x}, a\right), \quad$ where $x \in X_{a}, \bar{g}(x)=\left(g_{x}, a\right), \bar{h}(x)=\left(h_{x}, a\right)$.
Then $\mathbf{E} \bar{C}=\bar{C}$ is a Beck extension of \bar{G} by A; the action of $\operatorname{Hom}_{\bar{e}}(\bar{X}, \bar{G})$ on $\operatorname{Hom}_{\overline{\mathrm{C}}}(\bar{X}, \bar{C})$ is given by

$$
(\bar{g} \cdot \bar{c})(x)=g_{x} \cdot \bar{c}(x), \quad \text { where } x \in X_{a}, \bar{g}(x)=\left(g_{x}, a\right)
$$

Next, $\mathbf{C E} \bar{C}=(C, \pi,$.$) is a group coextension of A$ by $\mathbf{F} \bar{G}$, in which G_{a}^{\prime} acts on C_{a} by

$$
(g, a) \cdot x=\left((g, a)^{*} \cdot x^{*}\right)(1)
$$

for all $(g, a) \in G_{a}^{\prime}, x \in C_{a}$; that is,

$$
\left((g, a)^{*} \cdot x^{*}\right)(1)=g \cdot x^{*}(1)=g \cdot x,
$$

since $(g, a)^{*}(1)=(g, a)$ and $x^{*}(1)=x$. Thus, up to the isomorphism $\mathbf{F} \bar{G} \cong \mathbb{G}$, the action of G_{a}^{\prime} on C_{a} in $\mathbf{C E} \bar{C}$ coincides with the given action in \bar{C}, and $\mathbf{C E} \bar{C}=\bar{C}$.

Conversely let \bar{E} be a Beck extension of \bar{G} by A. Then $\mathbf{C} \bar{E}=\bar{C}=$ $(E, \pi,$.$) is a group coextension of A$ by $\mathbf{F} \bar{G}$, in which G_{a} acts on E_{a} by

$$
g \cdot x=\left(g^{*} \cdot x^{*}\right)(1)
$$

for all $g \in G_{a}, x \in E_{a}$; then the action of $\operatorname{Hom}_{\overline{\mathcal{C}}}(\bar{X}, \bar{G})$ on $\operatorname{Hom}_{\overline{\mathcal{C}}}(\bar{X}, \bar{E})$ is pointwise. Next, $\mathbf{E} \bar{C}=\bar{C}$ is a Beck extension of $\mathbf{O F} \bar{G}$ by A. Now $\mathbf{O F} \bar{G}=$ $\bar{G}^{\prime}=\left(G^{\prime}, \alpha\right)$, where G^{\prime} is the disjoint union $G^{\prime}=\bigcup_{a \in A}\left(A_{a} \times\{a\}\right)$. The action of $\operatorname{Hom}_{\bar{e}}\left(\bar{X}, \bar{G}^{\prime}\right)$ on $\operatorname{Hom}_{\overline{\mathcal{C}}}(\bar{X}, \bar{C})$ is given by

$$
\left(\bar{g}^{\prime} \cdot \bar{c}\right)(x)=g_{x} \cdot \bar{c}(x), \quad \text { where } x \in X_{a}, \bar{g}^{\prime}(x)=\left(g_{x}, a\right) .
$$

Let $\bar{g} \in \operatorname{Hom}_{\bar{e}}(\bar{X}, \bar{G}), \bar{c} \in \operatorname{Hom}_{\bar{e}}(\bar{X}, \bar{C}) ;$ when $x \in X_{a}$, then $\bar{g}^{\prime}(x)=$ $(\bar{g}(x), a)$ defines $\bar{g}^{\prime} \in \operatorname{Hom}_{\bar{e}}\left(\bar{X}, \bar{G}^{\prime}\right)$, and

$$
\left(\bar{g}^{\prime} \cdot \bar{c}\right)(x)=\bar{g}(x) \cdot \bar{c}(x)=(\bar{g} \cdot \bar{c})(x),
$$

since the action of $\operatorname{Hom}_{\overline{\mathcal{C}}}(\bar{X}, \bar{G})$ on $\operatorname{Hom}_{\overline{\mathcal{C}}}(\bar{X}, \bar{E})$ is pointwise. Thus, up to the isomorphism $\mathbf{O F} \bar{G} \cong \bar{G}, \bar{E}$ and $\mathbf{E C} \bar{E}$ have the same action of $\operatorname{Hom}_{\bar{e}}(\bar{X}, \bar{G})$ on $\operatorname{Hom}_{\overline{\mathcal{C}}}(\bar{X}, \bar{E})$, and $\mathbf{E C} \bar{E}=\bar{E}$.

3. Cohomology

1. The ingredients of triple cohomology are: categories Z and \mathcal{C}; a functor $\mathbb{U}: \mathcal{C} \rightarrow \mathcal{Z}$ with a left adjoint $\mathbb{F}: \mathcal{Z} \rightarrow \mathcal{C}$, providing natural transformations $\eta: 1_{\mathcal{A}} \rightarrow \mathbb{U F}$ and $\epsilon: \mathbb{F U} \rightarrow 1_{\mathcal{C}}$; an object A of \mathcal{C}; and an abelian group object \bar{G} in the category $\overline{\mathcal{C}}$ of objects of \mathcal{C} over A.

The adjunction ($\mathbb{F}, \mathbb{U}, \eta, \epsilon$) lifts to an adjunction $(\overline{\mathbb{F}}, \overline{\mathbb{U}}, \bar{\eta}, \bar{\epsilon})$ between $\overline{\mathcal{C}}$ and the category $\overline{\mathcal{Z}}$ of objects of \mathcal{Z} over $\mathbb{U} A$; when $\zeta: Z \rightarrow \mathbb{U} A$ and $\rho: C \rightarrow A$, then

$$
\overline{\mathbb{F}}(Z, \zeta)=(\mathbb{F} Z, \bar{\zeta}), \overline{\mathbb{U}}(C, \rho)=(\mathbb{U} C, \mathbb{U} \rho), \bar{\eta}_{(Z, \zeta)}=\eta_{Z}, \bar{\epsilon}_{(C, \rho)}=\epsilon_{C},
$$

where $\bar{\zeta}: \mathbb{F} Z \rightarrow A$ is the unique morphism such that $\mathbb{U} \bar{\zeta} \circ \eta_{Z}=\zeta$ (equivalently, $\bar{\zeta}=\epsilon_{A} \circ \mathbb{F} \zeta$). Let $\mathbb{V}=\overline{\mathbb{F}} \overline{\mathrm{U}}$. When \bar{C} is an object of $\overline{\mathrm{C}}$ and $n \geq 1$,

$$
C^{n}(\bar{C}, \bar{G})=\operatorname{Hom}_{\bar{e}}\left(\mathbb{V}^{n} \bar{C}, \bar{G}\right)
$$

is an abelian group. The coboundary $\delta^{n}: C^{n}(\bar{C}, \bar{G}) \rightarrow C^{n+1}(\bar{C}, \bar{G})$ is

$$
\delta^{n}(\varphi)=\sum_{0 \leq i_{n}}(-1)^{i} \varphi \circ \epsilon_{C}^{n, i}
$$

for every $\varphi: \mathbb{V}^{n} \bar{C} \rightarrow \bar{G}$, where

$$
\epsilon_{C}^{n, i}=\mathbb{V}^{n-i} \epsilon_{\mathbb{V}^{2} \bar{C}}: \mathbb{V}^{n+1} \bar{C} \rightarrow \mathbb{V}^{n} \bar{C}
$$

also $\delta 0=0: 0 \rightarrow C^{1}(\bar{C}, \bar{G})$. A standard argument, using the identity $\epsilon^{n, j} \circ \epsilon^{n+1, i}=\epsilon^{n, i} \circ \epsilon^{n+1, j+1}$ which holds for all $i, j=0,1, \ldots, n$, yields $\delta^{n+1} \circ \delta^{n}=0$. Hence

$$
B^{n}(\bar{C}, \bar{G})=\operatorname{Im} \delta^{n-1} \subseteq \operatorname{Ker} \delta^{n}=Z^{n}(\bar{C}, \bar{G})
$$

for all $n \geq 1$. By definition

$$
H^{n}(\bar{C}, \bar{G})=Z^{n}(\bar{C}, \bar{G}) / B^{n}(\bar{C}, \bar{G})
$$

for all $n \geq 1$. In particular,

$$
H^{n}(A, \bar{G})=H^{n}(\bar{A}, \bar{G})
$$

where $\bar{A}=\left(A, 1_{A}\right)$. In [2], [1], $H^{n}(\bar{C}, \bar{G})$ is called $H^{n-1}(\bar{C}, \bar{G})$; here we use a more traditional numbering.

For this cohomology, Beck proved the following properties ([2], Theorems 2 and 6).

Theorem A. $H^{n}(\overline{\mathbb{F}} \bar{X}, \bar{G})=0$ for all $n \geq 2$, and $H^{1}(\mathbb{V} \bar{C}, \bar{G}) \cong$ $C^{1}(\bar{C}, \bar{G})$.

A sequence $\bar{G} \rightarrow \bar{G}^{\prime} \rightarrow \bar{G}^{\prime \prime}$ of abelian group objects and morphisms is short \mathbb{V}-exact when

$$
0 \rightarrow \operatorname{Hom}_{\bar{e}}(\mathbb{V} \bar{C}, \bar{G}) \rightarrow \operatorname{Hom}_{\overline{\mathcal{C}}}\left(\mathbb{V} \bar{C}, \bar{G}^{\prime}\right) \rightarrow \operatorname{Hom}_{\bar{e}}\left(\mathbb{V} \bar{C}, \bar{G}^{\prime \prime}\right) \rightarrow 0
$$

is short exact for every \bar{C}.

Theorem B. Every short \mathbb{V}-exact sequence $\mathcal{E}: \bar{G} \rightarrow \bar{G}^{\prime} \rightarrow \bar{G}^{\prime \prime}$ of abelian group objects of $\bar{\complement}$ induces an exact sequence

$$
\cdots H^{n}(\bar{C}, \bar{G}) \rightarrow H^{n}\left(\bar{C}, \bar{G}^{\prime}\right) \rightarrow H^{n}\left(\bar{C}, \bar{G}^{\prime \prime}\right) \rightarrow H^{n+1}(\bar{C}, \bar{G}) \cdots
$$

which is natural in \mathcal{E} and \bar{C}.
Theorem C. When \mathcal{C} is tripleable over \mathbb{Z}, there is a one-to-one correspondence between elements of $H^{2}(A, \bar{G})$ and isomorphy classes of Beck extensions of \bar{G} by A.

Up to natural isomorphism, $H^{n}(\bar{C},-)$ is the only abelian group valued functor for which Theorems A and B hold [1]; [1] has a similar characterization of $H^{n}(-, \bar{G})$.
2. Now let S be a monoid, C be the category of right S-sets and action preserving mapping s, A be a fixed right S-set, and $\overline{\mathcal{C}}$ be the category of right S-sets over A and their homomorphism s, as in Sections 1 and 2; $\mathbb{U}: \mathcal{C} \rightarrow$ Sets is the forgetful functor to the category Sets of sets and mappings, which strips right S-sets of the action of S.

Every set Z has a free right S-set $\mathbb{F} Z=Z \times S$, in which $(z, s)^{t}=$ $(z, s t)$; when $f: Z \rightarrow T$ is a mapping, then $\mathbb{F} f:(z, s) \mapsto(f(z), s)$ is action preserving. The mapping $\eta_{Z}: z \mapsto(z, 1)$ has the requisite universal property: for every mapping $f: Z \rightarrow Y$ of Z into a right S-set Y there is a unique action preserving mapping $g: \mathbb{F} Z \rightarrow Y$ such that $g \circ \eta_{Z}=f$, namely, $g(z, s)=f(z)^{s}$. Thus $\mathbb{F}=-\times S$ is a left adjoint of \mathbb{U}. In this adjunction, $\epsilon_{X}: X \times S=\mathbb{F U} X \rightarrow X$ is the action of S : indeed ϵ_{X} is the unique action preserving mapping such that $\mathbb{U} \epsilon_{X} \circ \eta_{X}=1_{\mathbb{U} X}$; hence $\epsilon_{X}(x, 1)=x$ and $\epsilon_{X}(x, s)=x^{s}$.

The adjunction ($\mathbb{F}, \mathbb{U}, \eta, \epsilon$) lifts to an adjunction $(\overline{\mathbb{F}}, \overline{\mathbb{U}}, \bar{\eta}, \bar{\epsilon})$ between $\overline{\mathcal{C}}$ and the category of sets over $\mathbb{U} A$, as follows. When (Z, f) is a set over A (where $f: Z \rightarrow A$ is a mapping), $\overline{\mathbb{F}}(Z, f)=(\mathbb{F} Z, \bar{f})=(Z \times S, \bar{f})$, where $\bar{f}: Z \times S \rightarrow A$ is the unique morphism such that $\mathbb{U} \bar{f} \circ \eta_{X}=\pi$:

$$
\bar{f}(z, s)=f(z)^{s},
$$

equivalently, $\bar{f}=\epsilon_{A} \circ \mathbb{F} f$. For any right S-set $\bar{X}=(X, \pi)$ over A, $\overline{\mathbb{U}} \bar{X}=(\mathbb{U} X, \mathbb{U} \pi)=(X, \pi)$ strips \bar{X} of the action of $S ; \bar{\eta}_{(X, f)}=\eta_{X} ;$ and $\bar{\epsilon}_{(X, \pi)}=\epsilon_{X}$.

When $\bar{X}=(X, \pi)$ is a right S-set over A,

$$
\mathbb{V} \bar{X}=\overline{\mathbb{F}} \overline{\mathbb{U}}(X, \pi)=(X \times S, \bar{\pi})
$$

where $(x, s)^{t}=(x, s t)$ and $\bar{\pi}(x, s)=\pi(x)^{s}$; if $f: \bar{X} \rightarrow \bar{Y}$ is a homomorphism of right S-sets over A, then $\mathbb{V} f=f \times S:(x, s) \mapsto(f(x), s)$.

We identify $\left(X \times S^{n-1}\right) \times S$ with $X \times S^{n}$, and $\left(\left(x, s_{1}, \ldots, s_{n-1}\right), s_{n}\right)$ with $\left(x, s_{1}, \ldots, s_{n-1}, s_{n}\right)$. When $n \geq 1$,

$$
\mathbb{V}^{n} \bar{X}=\left(X \times S^{n}, \pi_{n}\right)
$$

S acts on $\mathbb{V}^{n} \bar{X}$ by

$$
\left(x, s_{1}, \ldots, s_{n-1}, s_{n}\right)^{s}=\left(x, s_{1}, \ldots, s_{n-1}, s_{n} s\right)
$$

and $\pi_{n}=\bar{\pi}_{n-1}$ is found by induction:

$$
\begin{aligned}
\pi_{n}\left(x, s_{1}, \ldots, s_{n-1}, s_{n}\right) & =\pi_{n-1}\left(x, s_{1}, \ldots, s_{n-1}\right)^{s_{n}} \\
& =\pi_{n-2}\left(x, s_{1}, \ldots, s_{n-2}\right)^{s_{n-1}, s_{n}}=\cdots \\
& =\pi(x)^{s_{1} \ldots s_{n-1} s_{n}}
\end{aligned}
$$

A similar induction yields $\epsilon_{X}^{n, i}=\mathbb{V}^{n-i} \epsilon_{\mathbb{V}^{i} \bar{X}}: \mathbb{V}^{n+1} \bar{X} \rightarrow \mathbb{V}^{n} \bar{X}$. First, $\epsilon_{X}^{n, n}=\epsilon_{\mathbb{V} n \bar{X}}:$

$$
\begin{aligned}
\epsilon_{X}^{n, n}\left(x, s_{1}, \ldots, s_{n}, s_{n+1}\right) & =\left(x, s_{1}, \ldots, s_{n-1}, s_{n}\right)^{s_{n+1}} \\
& =\left(x, s_{1}, \ldots, s_{n-1}, s_{n} s_{n+1}\right)
\end{aligned}
$$

If $0<i<n$, then $\epsilon_{X}^{n, i}=\mathbb{V} \epsilon_{X}^{n-1, i}$ and

$$
\begin{aligned}
\epsilon_{X}^{n, i}\left(x, s_{1}, \ldots, s_{n}, s_{n+1}\right) & =\left(\epsilon_{X}^{n-1, i}\left(x, s_{1}, \ldots, s_{n}\right), s_{n+1}\right) \\
& =\left(\epsilon_{X}^{n-2, i}\left(x, s_{1}, \ldots, s_{n-1}\right) s_{n}, s_{n+1}\right)=\cdots \\
& =\left(\epsilon_{X}^{i, i}\left(x, s_{1}, \ldots, s_{i}, s_{i+1}\right), s_{i+2}, \ldots, s_{n}, s_{n+1}\right) \\
& =\left(x, s_{1}, \ldots, s_{i-1}, s_{i} s_{i+1}, s_{i+2}, \ldots, s_{n+1}\right)
\end{aligned}
$$

Similarly, $\epsilon_{X}^{n, 0}=\mathbb{V}^{n} \epsilon_{X}$ and

$$
\epsilon_{X}^{n, 0}\left(x, s_{1}, \ldots, s_{n}, s_{n+1}\right)=\left(x^{s_{1}}, s_{2}, \ldots, s_{n}, s_{n+1}\right)
$$

since $\epsilon_{X}^{0,0}\left(x, s_{1}\right)=\epsilon_{X}\left(x, s_{1}\right)=x^{s_{1}}$.
3. We now turn to cochains.

Lemma 3.1. Let $\bar{X}=(X, \pi)$ be a right S-set over A, \bar{G} be an abelian group object over A, and $\mathbb{G}=(G, \gamma)=\mathbf{F} \bar{G}$. There is an isomorphism

$$
\Theta: C^{n}(\bar{X}, \bar{G}) \rightarrow \prod_{c \in \mathbb{V}^{n-1} \bar{X}} G_{\pi_{n-1} c}
$$

which is natural in \bar{X} and \bar{G}. When $v \in C^{n}(\bar{X}, \bar{G})$,

$$
\Theta(v)=\left(v\left(x, s_{1}, \ldots, s_{n-1}, 1\right)\right)_{\left(x, s_{1}, \ldots, s_{n-1}\right) \in \mathbb{V}^{n-1} \bar{X}}
$$

when $u=(u(c))_{c \in \mathbb{V}^{n-1}}, v=\Theta^{-1}(u)$ is given for all $\left(x, s_{1}, \ldots, s_{n}\right) \in \mathbb{V}^{n} \bar{X}$ by

$$
v\left(x, s_{1}, \ldots, s_{n-1}, s_{n}\right)=u\left(x, s_{1}, \ldots, s_{n-1}\right)^{s_{n}} .
$$

Proof. When $u=(u(c))_{c \in \mathbb{V}^{n-1} \bar{X}} \in \prod_{c \in \mathbb{V}^{n-1} \bar{X}} G_{\pi_{n-1} c}$, define $v=$ $\Xi(u): \mathbb{V}^{n} \bar{X} \rightarrow G$ for all $\left(x, s_{1}, \ldots, s_{n}\right) \in \mathbb{V}^{n} \bar{X}$ by

$$
v\left(x, s_{1}, \ldots, s_{n-1}, s_{n}\right)=u\left(x, s_{1}, \ldots, s_{n-1}\right)^{s_{n}}
$$

as calculated in $\bar{G} ; \Xi(u)$ will be $\Theta^{-1}(u)$. If $a=\pi_{n-1}\left(x, s_{1}, \ldots, s_{n-1}\right)$, then $u\left(x, s_{1}, \ldots, s_{n-1}\right) \in G_{a}$ and

$$
v\left(x, s_{1}, \ldots, s_{n-1}, s_{n}\right)=u\left(x, s_{1}, \ldots, s_{n-1}\right)^{s_{n}} \in G_{a s_{n}}
$$

thus v preserves projection to A. Also

$$
\begin{aligned}
& v\left(\left(x, s_{1}, \ldots, s_{n-1}, s_{n}\right)^{s}\right)=v\left(\left(x, s_{1}, \ldots, s_{n-1}, s_{n} s\right)\right) \\
& =u\left(x, s_{1}, \ldots, s_{n-1}\right)^{s_{n} s}=\left(v\left(x, s_{1}, \ldots, s_{n-1}, s_{n}\right)^{s}\right) .
\end{aligned}
$$

Therefore v is a homomorphism of right S-sets over A and

$$
v \in \operatorname{Hom}_{\bar{e}}\left(\mathbb{V}^{n} \bar{X}, \bar{G}\right)=C^{n}(\bar{X}, \bar{G}) .
$$

We see that $\Theta(v)=u$.
Conversely, let v be an n-cochain $v \in C^{n}(\bar{X}, \bar{G})=\operatorname{Hom}_{\bar{e}}\left(\mathbb{V}^{n} \bar{X}, \bar{G}\right)$. If $a=\pi_{n-1}\left(x, s_{1}, \ldots, s_{n-1}\right)$, then $v\left(x, s_{1}, \ldots, s_{n-1}, 1\right) \in G_{a}$ and $u=$ $\Theta(v) \in \prod_{c \in \mathbb{V}^{n-1} \bar{X}} G_{\pi_{n-1} c}$, since $u(c) \in G_{a}$ when $c=\left(x, s_{1}, \ldots, s_{n-1}\right)$ and $\pi_{n-1} c=a$. The calculation above shows that $v=\Xi(u)$. Thus Θ and Ξ are mutually inverse bijections. Since the addition on $\prod_{c \in \mathbb{V}^{n-1} \bar{X}} G_{\pi_{n-1} c}$ is componentwise, and the addition on $\operatorname{Hom}_{\overline{\mathrm{C}}}\left(\mathbb{V}^{n} \bar{X}, \bar{A}\right)$ is pointwise, Θ is in fact an isomorphism. Naturality is immediate.
4. Lemma 3.1 suggests that we define

$$
C^{n}(\bar{X}, \mathbb{G})=\prod_{c \in \mathbb{V}^{n-1} \bar{X}} G_{\pi_{n-1} c} .
$$

Note that the latter depends only on \mathbb{G}. Then $C^{n}(\bar{X}, \bar{G}) \cong C^{n}(\bar{X}, \mathbb{G})$ when $\mathbb{G}=\mathbf{F} \bar{G}$. The coboundary becomes:

Lemma 3.2. Up to the natural isomorphisms $C^{n}(\bar{X}, \bar{G}) \cong C^{n}(\bar{X}, \mathbb{G})$,

$$
\begin{aligned}
\left(\delta^{n} u\right)\left(x, s_{1}, \ldots, s_{n}\right)= & u\left(x^{s_{1}}, s_{2}, \ldots, s_{n}\right) \\
& +\sum_{0<i<n}(-1)^{i} u\left(x, s_{1}, \ldots, s_{i-1}, s_{i} s_{i+1}, s_{i+2}, \ldots, s_{n}\right) \\
& +(-1)^{n} u\left(x, s_{1}, \ldots, s_{n-1}\right)^{s_{n}}
\end{aligned}
$$

for all $u \in C^{n}(\bar{X}, \mathbb{G})$.
Proof. The coboundary $C^{n}(\bar{X}, \mathbb{G}) \rightarrow C^{n+1}(\bar{X}, \mathbb{G})$ is really $\Theta \circ \delta^{n} \circ$ Θ^{-1}, where $\Theta: C^{n}(\bar{X}, \bar{G}) \rightarrow C^{n}(\bar{X}, \mathbb{G})$ is the natural isomorphism in Lemma 3.1. When $u \in C^{n}(\bar{X}, \mathbb{G}), v=\Theta^{-1}(u): \mathbb{V}^{n} \bar{X} \rightarrow \bar{G}$ is given by

$$
v\left(x, s_{1}, \ldots, s_{n-1}, s_{n}\right)=u\left(x, s_{1}, \ldots, s_{n-1}\right)^{s_{n}}
$$

Then $w=\delta^{n}(v)=\sum_{0 \leq i \leq n}(-1)^{i} v \circ \epsilon_{X}^{n, i}: \mathbb{V}^{n+1} \bar{X} \rightarrow \bar{G}$ is given by

$$
\begin{aligned}
w(x, & \left.s_{1}, \ldots, s_{n}, s_{n+1}\right)=\sum_{0 \leq i \leq n}(-1)^{i} v\left(\epsilon_{X}^{n, i}\left(x, s_{1}, \ldots, s_{n}, s_{n+1}\right)\right) \\
= & v\left(x^{s_{1}}, s_{2}, \ldots, s_{n}, s_{n+1}\right) \\
& +\sum_{0<i<n}(-1)^{i} v\left(x, s_{1}, \ldots, s_{i-1}, s_{i} s_{i+1}, s_{i+2}, \ldots, s_{n+1}\right) \\
& +(-1)^{n} v\left(x, s_{1}, \ldots, s_{n-1}, s_{n} s_{n+1}\right)
\end{aligned}
$$

Hence

$$
\begin{aligned}
\Theta(w)(x, & \left.s_{1}, \ldots, s_{n}\right)=w\left(x, s_{1}, \ldots, s_{n}, 1\right) \\
= & v\left(x^{s_{1}}, s_{2}, \ldots, s_{n}, 1\right) \\
& +\sum_{0<i<n}(-1)^{i} v\left(x, s_{1}, \ldots, s_{i-1}, s_{i} s_{i+1}, s_{i+2}, \ldots, s_{n}, 1\right)
\end{aligned}
$$

$$
\begin{aligned}
& +(-1)^{n} v\left(x, s_{1}, \ldots, s_{n-1}, s_{n}\right) \\
= & u\left(x^{s_{1}}, s_{2}, \ldots, s_{n}\right) \\
& +\sum_{0<i<n}(-1)^{i} u\left(x, s_{1}, \ldots, s_{i-1}, s_{i} s_{i+1}, s_{i+2}, \ldots, s_{n}\right) \\
& +(-1)^{n} u\left(x, s_{1}, \ldots, s_{n-1}\right)^{s_{n}}
\end{aligned}
$$

In particular, a 1-cochain $u \in C^{1}(\bar{X}, \mathbb{G})=\prod_{c \in \mathbb{V}^{0} \bar{X}} G_{\pi_{0} c}=\prod_{x \in X} G_{\pi x}$ is a family $u=(u(x))_{x \in X}$ such that $u(x) \in G_{\pi x}$ for all x, equivalently $u(x) \in G_{a}$ for all $x \in X_{a}$. Its coboundary is

$$
(\delta u)(x, s)=u\left(x^{s}\right)-u(x)^{s} .
$$

A 1-cocycle is a 1-cochain z such that $z\left(x^{s}\right)=z(x)^{s}=\gamma_{a, s}(z(x))$ for all $x \in X_{a}$.

A 2-cochain $u \in \prod_{c \in \mathbb{V}^{1} \bar{X}} G_{\pi_{1} c}=\prod_{(x, s) \in X \times S} G_{\pi(x) s}$ is a family $u=$ $(u(x, s))_{(x, s) \in X \times S}$ such that $u(x, s) \in G_{\pi(x) s}$ for all s, x; equivalently $u(x, s) \in G_{a s}$ when $x \in X_{a}$. Its coboundary is

$$
(\delta u)(x, s, t)=u\left(x^{s}, t\right)-u(x, s t)+u(x, s)^{t} .
$$

A 2-cocycle is a 2-cochain z such that $z(x, s t)=z\left(x^{s}, t\right)+z(x, s)^{t}$ for all s, t, x. A 2-coboundary is a 2-cochain b of the form $b(x, s)=u\left(x^{s}\right)-u(x)^{s}$ for some 1-cochain u.

In general, Lemma 3.2 yields:
Theorem 3.3. Let $\bar{X}=(X, \pi)$ be a right S-set over A, \bar{G} be an abelian group object over A, and $\mathbb{G}=(G, \gamma)=\mathbf{F} \bar{G}$. Up to an isomorphism which is natural in \bar{X} and \bar{G}, the triple cohomology groups of \bar{X} with coefficients in \bar{G} are the homology groups $H^{n}(\bar{X}, \mathbb{G})$ of the complex

$$
0 \rightarrow C^{1}(\bar{X}, \mathbb{G}) \rightarrow \cdots \rightarrow C^{n}(\bar{X}, \mathbb{G}) \xrightarrow{\delta^{n}} C^{n+1}(\bar{X}, \mathbb{G}) \rightarrow \cdots
$$

in Lemma 3.2.
In other words, $H^{n}(\bar{X}, \bar{G}) \cong H^{n}(\bar{X}, \mathbb{G})=Z^{n}(\bar{X}, \mathbb{G}) / B^{n}(\bar{X}, \mathbb{G})$, where $Z^{n}(\bar{X}, \mathbb{G})=\operatorname{Ker} \delta^{n}, B^{n}(\bar{X}, \mathbb{G})=\operatorname{Im} \delta^{n-1}$ if $n \geq 2$, and $B^{1}(\bar{X}, \mathbb{G})=0$. Replacing $\bar{X}=(X, \pi)$ by $\bar{A}=\left(A, 1_{A}\right)$ in Theorem 3.3 yields the cohomology of A.
5. Theorems A, B, and C yield basic properties of triple cohomology.

Theorem 3.4. If A is a free right S-set, then for every abelian group valued functor \mathbb{G} on A we have $H^{n}(A, \mathbb{G})=0$ for all $n \geq 2$.

This follows from Theorem A.
Theorem 3.5. Every short exact sequence $\mathcal{E}: 0 \rightarrow \mathbb{G} \rightarrow \mathbb{G}^{\prime} \rightarrow \mathbb{G}^{\prime \prime} \rightarrow$ 0 of abelian group valued functors on A induces an exact sequence

$$
\cdots H^{n}(A, \mathbb{G}) \rightarrow H^{n}\left(A, \mathbb{G}^{\prime}\right) \rightarrow H^{n}\left(A, \mathbb{G}^{\prime \prime}\right) \rightarrow H^{n+1}(A, \mathbb{G}) \cdots
$$

which is natural in \mathcal{E}.
Proof. This follows from Theorem B, applied to $\bar{X}=\left(A, 1_{A}\right)$. Exactness in the abelian category of abelian group valued functors on A is pointwise [7]: $0 \rightarrow \mathbb{G} \rightarrow \mathbb{G}^{\prime} \rightarrow \mathbb{G}^{\prime \prime} \rightarrow 0$ is exact if and only if $0 \rightarrow G_{a} \rightarrow G_{a}^{\prime} \rightarrow G_{a}^{\prime \prime} \rightarrow 0$ is exact for every $a \in A$. When \mathbb{G} is identified with the corresponding abelian group object $\mathbf{O} \mathbb{G}$, Lemma 3.1 provides for any $\bar{X}=(X, \xi) \in \overline{\mathcal{C}}$ a natural isomorphism

$$
\operatorname{Hom}_{\overline{\mathcal{C}}}(\mathbb{V} \bar{X}, \mathbb{G}) \cong C^{1}(\bar{X}, \mathbb{G})=\prod_{x \in X} G_{\xi x}
$$

Now

$$
0 \rightarrow \prod_{x \in X} G_{\xi x} \rightarrow \prod_{x \in X} G_{\xi x}^{\prime} \rightarrow \prod_{x \in X} G_{\xi x}^{\prime \prime} \rightarrow 0
$$

is exact. Hence $\mathbb{G} \rightarrow \mathbb{G}^{\prime} \rightarrow \mathbb{G}^{\prime \prime}$ is short \mathbb{V}-exact, and Theorem 3.5 follows from Theorem B.

Theorem 3.6. There is a one-to-one correspondence between elements of $H^{2}(A, \mathbb{G})$ and equivalence classes of group coextensions of A by \mathbb{G}.

This follows either from Theorem C and Proposition 2.4, or from [4] and the above descriptions of 2-cocycles and 2-coboundaries.
6. We prove one more property. As in [3] we show that the cohomology of A is that of a projective complex in the category \mathcal{F} of abelian group valued functors on A. This provides a more direct proof of Theorem 3.5.

For each $n \geq 1$ and $a \in A$ let

$$
C_{n}(a)=\left\{\left(x, s_{1}, \ldots, s_{n}\right) \in A \times S^{n} \mid x s_{1} \ldots s_{n}=a\right\} .
$$

Let $C_{n}(A)_{a}$ be the free abelian group on $C_{n}(a)$. For each $s \in S$ there is a unique homomorphism $\kappa_{a, s}: C_{n}(A)_{a} \rightarrow C_{n}(A)_{a s}$ such that

$$
\kappa_{a, s}\left(x, s_{1}, \ldots, s_{n}\right)=\left(x, s_{1}, \ldots, s_{n-1}, s_{n} s\right) .
$$

Lemma 3.7. For every $n \geq 1$:
(1) $\mathbb{C}_{n}(A)=\left(C_{n}(A), \kappa\right)$ is an abelian group valued functor on A;
(2) there is an isomorphism $\operatorname{Hom}_{\mathcal{F}}\left(\mathbb{C}_{n}(A), \mathbb{G}\right) \cong C^{n}(A, \mathbb{G})$ which is natural in \mathbb{G};
(3) $\mathbb{C}_{n}(A)$ is projective in \mathcal{F}.

Proof. (1): $\kappa_{a, 1}$ is the identity on $C_{n}(A)_{a}$, since it leaves fixed every generator of $C_{n}(A)_{a} ; \kappa_{a s, t} \circ \kappa_{a, s}=\kappa_{a, s t}$ for all $s, t \in S$, since

$$
\begin{aligned}
\kappa_{a s, t}\left(\kappa_{a, s}\left(x, s_{1}, \ldots, s_{n}\right)\right) & =\left(x, s_{1}, \ldots, s_{n-1}, s_{n} s t\right) \\
& =\kappa_{a, s t}\left(x, s_{1}, \ldots, s_{n}\right)
\end{aligned}
$$

for every generator of $C_{n}(A)_{a}$.
(2): Let $\varphi=\left(\varphi_{a}\right)_{a \in A}$ be a natural transformation $\varphi: \mathbb{C}_{n}(A) \rightarrow \mathbb{G}=$ (G, γ), so that $\gamma_{a, s} \circ \varphi_{a}=\varphi_{a s} \circ \kappa_{a, s}$ for all a, s. For every $\left(x, s_{1}, \ldots, s_{n}\right) \in$ $A \times S^{n}$,

$$
\begin{aligned}
\varphi_{a}\left(x, s_{1}, \ldots, s_{n}\right) & =\varphi_{a}\left(\kappa_{b, s_{n}}\left(x, s_{1}, \ldots, s_{n-1}, 1\right)\right) \\
& =\gamma_{b, s_{n}}\left(\varphi_{b}\left(x, s_{1}, \ldots, s_{n-1}, 1\right)\right)
\end{aligned}
$$

where $a=x s_{1} \ldots s_{n}, b=x s_{1} \ldots s_{n-1}$. Therefore φ is uniquely determined by the n-cochain $u=\Theta(\varphi)$ defined by

$$
u\left(x, s_{1}, \ldots, s_{n-1}\right)=\varphi_{b}\left(x, s_{1}, \ldots, s_{n-1}, 1\right) \in G_{b}
$$

where $b=x s_{1} \ldots s_{n-1}=\pi_{n-1}\left(x, s_{1}, \ldots, s_{n-1}\right)$. In other words, the additive homomorphism Θ is injective.

Conversely let $u \in C^{n}(A, \mathbb{G})=\prod_{c \in \mathbb{V}^{n-1} \bar{X}} G_{\pi_{n-1} c}$. For every $a \in A$ there is a unique homomorphism $\varphi_{a}: C_{n}(A)_{a} \rightarrow G_{a}$ such that

$$
\varphi_{a}\left(x, s_{1}, \ldots, s_{n}\right)=\gamma_{b, s_{n}}\left(u\left(x, s_{1}, \ldots, s_{n-1}\right)\right)
$$

whenever $x s_{1} \ldots s_{n}=a$, where $b=x s_{1} \ldots s_{n-1}$. Then

$$
\begin{aligned}
\varphi_{a s}\left(\kappa_{a, s}\left(x, s_{1}, \ldots, s_{n}\right)\right) & =\varphi_{a s}\left(x, s_{1}, \ldots, s_{n-1}, s_{n} s\right) \\
& =\gamma_{b, s_{n} s}\left(u\left(x, s_{1}, \ldots, s_{n-1}\right)\right) \\
& =\gamma_{a, s}\left(\gamma_{b, s_{n}}\left(u\left(x, s_{1}, \ldots, s_{n-1}\right)\right)\right) \\
& =\gamma_{a, s}\left(\varphi_{a}\left(x, s_{1}, \ldots, s_{n}\right)\right)
\end{aligned}
$$

whenever $x s_{1} \ldots s_{n}=a$, so that $\gamma_{a, s} \circ \varphi_{a}=\varphi_{a s} \circ \kappa_{a, s}$ and $\varphi=\left(\varphi_{a}\right)_{a \in A}$ is a natural transformation $\varphi=\Phi(u): \mathbb{C}_{n}(A) \rightarrow \mathbb{G}$. We have $\Theta(\varphi)=u$: indeed

$$
(\Theta(\varphi))\left(x, s_{1}, \ldots, s_{n-1}\right)=\varphi_{a}\left(x, s_{1}, \ldots, s_{n-1}, 1\right)=u\left(x, s_{1}, \ldots, s_{n-1}\right)
$$

where $a=x s_{1} \ldots s_{n-1}$, since $\gamma_{a, 1}$ is the identity. If conversely $\varphi: \mathbb{C}_{n}(A) \rightarrow$ \mathbb{G} is a natural transformation, then

$$
\begin{aligned}
\Phi(\Theta(\varphi))_{a}\left(x, s_{1}, \ldots, s_{n}\right) & =\gamma_{b, s_{n}}\left(\Theta(\varphi)\left(x, s_{1}, \ldots, s_{n-1}\right)\right) \\
& =\gamma_{b, s_{n}}\left(\varphi_{b}\left(x, s_{1}, \ldots, s_{n-1}, 1\right)\right) \\
& =\varphi_{b s_{n}}\left(\kappa_{b, s_{n}}\left(x, s_{1}, \ldots, s_{n-1}, 1\right)\right) \\
& =\varphi_{a}\left(x, s_{1}, \ldots, s_{n}\right)
\end{aligned}
$$

whenever $x s_{1} \ldots s_{n}=a$, with $b=x s_{1} \ldots s_{n-1}$ as before. Therefore $\Phi(\Theta(\varphi)) \bar{r}=\varphi$. Thus Θ and Φ are mutually inverse isomorphisms. Naturality is immediate.
(3): Epimorphisms in \mathcal{F} are pointwise [7]. If $\sigma: \mathbb{G} \rightarrow \mathbb{H}$ is an epimorphism, then every $\sigma_{a}: G_{a} \rightarrow H_{a}$ is surjective, and so is the induced homomorphism $\sigma^{*}: C^{n}(A, \mathbb{G}) \rightarrow C^{n}(A, \mathbb{H})$: indeed σ^{*} is given by

$$
\left(\sigma^{*}(u)\right)(c)=\sigma_{\pi c}(u(c))
$$

for all $c \in C_{n}(A)$; given $v \in C^{n}(A, \mathbb{H})$ there is for every $v(c) \in H_{\pi c}$ some $u(c) \in G_{\pi c}$ such that $\sigma_{\pi c}(u(c))=v(c)$, and then $u \in C^{n}(A, \mathbb{G})$ satisfies $\sigma^{*}(u)=v$. Then $\operatorname{Hom}_{\mathcal{F}}\left(\mathbb{C}_{n}(A), \mathbb{G}\right) \rightarrow \operatorname{Hom}_{\mathcal{F}}\left(\mathbb{C}_{n}(A), \mathbb{H}\right)$ is an epimorphism, by (2), showing that $\mathbb{C}_{n}(A)$ is projective in \mathcal{F}. (This also follows from [7].)

Proposition 3.8. Up to natural isomorphisms, $H^{n}(A, \mathbb{G})$ is the cohomology of the projective complex

$$
0 \leftarrow \mathbb{C}_{1}(A) \leftarrow \cdots \leftarrow \mathbb{C}_{n}(A) \leftarrow \mathbb{C}_{n+1}(A) \leftarrow \cdots
$$

where $\partial: \mathbb{C}_{n}(A) \rightarrow \mathbb{C}_{n-1}(A)$ is given for all $n \geq 2$ by

$$
\begin{aligned}
\partial_{a}\left(x, s_{1}, \ldots, s_{n}\right)= & \left(x s_{1}, s_{2}, \ldots, s_{n}\right) \\
& +\sum_{0<i<n}(-1)^{i}\left(x, s_{1}, \ldots, s_{i-1}, s_{i} s_{i+1}, s_{i+2}, \ldots, s_{n}\right)
\end{aligned}
$$

whenever $x s_{1} \ldots s_{n}=a$.
Proof. For every $u \in C^{n}(A, \mathbb{G})$

we show that $\varphi=\Phi(u) \circ \partial$ satisfies $\Theta(\varphi)=\delta u$, where Φ and Θ are the natural isomorphisms in the proof of Lemma 3.7. We have

$$
\begin{aligned}
\varphi_{a}(x, & \left.s_{1}, \ldots, s_{n}\right)=(\Phi(u))_{a}\left(\partial\left(x, s_{1}, \ldots, s_{n}\right)\right) \\
= & (\Phi(u))_{a}\left(x s_{1}, s_{2}, \ldots, s_{n}\right) \\
& +\sum_{0<i<n-1}(-1)^{i}(\Phi(u))_{a}\left(x, s_{1}, \ldots, s_{i-1}, s_{i} s_{i+1}, s_{i+2}, \ldots, s_{n}\right) \\
& +(-1)^{n-1}(\Phi(u))_{a}\left(x, s_{1}, \ldots, s_{n-2}, s_{n-1} s_{n}\right) \\
= & \gamma_{b, s_{n}}\left(u\left(x s_{1}, s_{2}, \ldots, s_{n-1}\right)\right) \\
& +\sum_{0<i<n-1}(-1)^{i} \gamma_{b, s_{n}}\left(u\left(x, s_{1}, \ldots, s_{i-1}, s_{i} s_{i+1}, s_{i+2}, \ldots, s_{n-1}\right)\right) \\
& +(-1)^{n-1} \gamma_{c, s_{n-1} s_{n}}\left(u\left(x, s_{1}, \ldots, s_{n-2}\right)\right)
\end{aligned}
$$

whenever $x s_{1} \ldots s_{n}=a$, with $b=x s_{1} \ldots s_{n-1}$ and $c=x s_{1} \ldots s_{n-2}$. Then

$$
\begin{aligned}
& (\Theta(\varphi))\left(x, s_{1}, \ldots, s_{n-1}\right)=\varphi_{b}\left(x, s_{1}, \ldots, s_{n-1}, 1\right) \\
& \quad=\left(u\left(x s_{1}, s_{2}, \ldots, s_{n-1}\right)\right) \\
& \quad+\sum_{0<i<n-1}(-1)^{i}\left(u\left(x, s_{1}, \ldots, s_{i-1}, s_{i} s_{i+1}, s_{i+2}, \ldots, s_{n-1}\right)\right) \\
& \quad+(-1)^{n-1} \gamma_{c, s_{n-1}}\left(u\left(x, s_{1}, \ldots, s_{n-2}\right)\right)=(\delta u)\left(x, s_{1}, \ldots, s_{n-1}\right),
\end{aligned}
$$

since $\gamma_{b, 1}$ is the identity and

$$
u\left(x, s_{1}, \ldots, s_{n-2}\right)^{s_{n-1}}=\gamma_{c, s_{n-1}}\left(u\left(x, s_{1}, \ldots, s_{n-2}\right)\right) .
$$

References

[1] M. Barr and J. Beck, Homology and standard constructions, Seminar on Triples and Categorical Homology Theory, Lecture Notes in Math., no. 80, Springer, Berlin - New York, 1969, 245-335.
[2] J. Beck, Triples, algebras, and cohomology, Doct. Diss., Columbia Univ., 1967.
[3] P. A. Grillet, Commutative semigroups, Chapter XII, Kluwer Acad. Publ., Dordrecht, 2001.
[4] P. A. Grillet, Coset extensions of S-sets, (to appear in Acta Math. Hungar.).
[5] J. Leech, \mathcal{H}-coextensions of monoids, Mem. Amer. Math. Soc. 157 (1975), 1-66.
[6] S. MacLane, Categories for the working mathematician, Springer-Verlag, New York, 1971.
[7] B. Mitchell, Theory of Categories, Acad. Press, New York, 1965.
[8] C. Wells, Extension theories for monoids, Semigroup Forum 16 (1978), 13-35.
PIERRE ANTOINE GRILLET
TULANE UNIVERSITY
NEW ORLEANS LA 70118
USA
(Received June 20, 2003; revised June 21, 2004)

[^0]: Mathematics Subject Classification: 20M20, 20M50.
 Key words and phrases: S-set, semigroup act, monoid act, cohomology, triple cohomology, group coextension.

