Publ. Math. Debrecen 66/3-4 (2005), 365–387

The cohomology of S-sets

By PIERRE ANTOINE GRILLET (New Orleans)

Abstract. The triple cohomology theory of semigroup acts is studied.

Introduction

The cohomology of S-sets, where S is any given monoid, can be approached in two ways.

In [4] we defined group coextensions of a right S-set A by an abelian group valued functor \mathbb{G} on A, and showed that equivalence classes of group coextensions of A by \mathbb{G} are the elements of an abelian group. If for instance S is commutative, this abelian group classifies the ways in which an arbitrary S-set can be constructed from an atransitive S-set and simply transitive group actions. This invites a general cohomology theory for S-sets, with abelian group valued functors for coefficients, whose second group would classify group coextensions.

In [2] Beck showed that every variety has a triple cohomology theory, with certain abelian group objects as coefficients, whose second group (called H^1 in [1],[2]) classifies certain extensions. This general construction yields a number of algebraic cohomology theories [2], [1], including the usual cohomology of groups, the Leech cohomology of monoids [5], [8], and commutative semigroup cohomology [3].

Mathematics Subject Classification: 20M20, 20M50.

 $Key\ words\ and\ phrases:\ S$ -set, semigroup act, monoid act, cohomology, triple cohomology, group coextension.

For the variety of right S-sets we show in this article that the two approaches agree in dimension 2. Given a right S-set A we show in Section 1 that the abelian group objects which serve as coefficients in the triple cohomology of A may be identified with abelian group valued functors on A (up to an equivalence of categories). With this identification, we show in Section 2 that Beck extensions of an abelian group valued functor \mathbb{G} by A may be identified with group coextensions of A by \mathbb{G} (up to an isomorphism of categories); and we obtain in Section 3 a more concrete definition of the triple cohomology of right S-sets, along with its basic properties.

1. Abelian group objects

1. In what follows, S is a monoid and A is a given right S-set (a set A on which S acts so that a1 = 1 and (as)t = a(st) for all $a \in A$ and $s, t \in S$). A homomorphism of right S-sets is a mapping f which preserves the action of S (f(xs) = f(x)s for all x and s). Right S-sets and their homomorphisms are the objects and morphisms of a category C.

A right S-set over A is a pair $\overline{X} = (X, \xi)$ of a right S-set X and an action preserving mapping $\xi : X \to A$; we use the exponential notation x^s for the action of S on X to distinguish it from forthcoming group actions. Equivalently, X is a right S-set which is a disjoint union $X = \bigcup_{a \in A} X_a$ in which $X_a^s \subseteq X_{as}$; then $\xi(x) = a$ when $x \in X_a$.

A homomorphism $f : \overline{X} \to \overline{Y} = (Y, v)$ of right S-sets over A is an action preserving mapping $f : X \to Y$ such that $v \circ f = \xi$; equivalently, $f(X_a) \subseteq Y_a$ for all $a \in A$. Right S-sets over A and their homomorphisms are the objects and morphisms of a category $\overline{\mathbb{C}}$.

An abelian group object of $\overline{\mathbb{C}}$ is a right S-set $\overline{G} = (G, \gamma)$ over A together with an "external" abelian group operation on every $\operatorname{Hom}_{\overline{\mathbb{C}}}(\overline{X}, \overline{G})$, which we write additively, such that $\operatorname{Hom}_{\overline{\mathbb{C}}}(-, \overline{G})$ is a (contravariant) abelian group valued functor on $\overline{\mathbb{C}}$; equivalently, such that

$$(g+h) \circ f = (g \circ f) + (h \circ f)$$

whenever $f: \overline{X} \to \overline{Y}$ and $g, h: \overline{Y} \to \overline{G}$ are morphisms in $\overline{\mathbb{C}}$. Abelian group objects can also be defined by an "internal" addition $\overline{G} \times \overline{G} \to \overline{G}$, as in [6] or in Lemma 1.2 below.

A homomorphism $\varphi : \overline{G} \to \overline{H}$ of abelian group objects of $\overline{\mathbb{C}}$ is a morphism in $\overline{\mathbb{C}}$ such that $\operatorname{Hom}_{\overline{\mathbb{C}}}(-, \varphi)$ is a natural transformation; equivalently, such that

$$\varphi \circ (g+h) = (\varphi \circ g) + (\varphi \circ h)$$

whenever $g, h : \overline{X} \to \overline{G}$ are morphisms in $\overline{\mathbb{C}}$. Abelian group objects of $\overline{\mathbb{C}}$ and their homomorphisms are the objects and morphisms of a category.

2. To probe right S-sets over A we use the following construction.

Lemma 1.1. Let S^S be the right S-set in which S acts on itself by right multiplication $(s^t = st)$.

- (1) For every right S-set X and $x \in X$ there is a unique homomorphism $x^*: S^S \to X$ such that $x^*(1) = x$, namely $x^*(s) = x^s$.
- (2) For every $a \in A$, $\overline{S}_a = (S^S, a^*)$ is a right S-set over A.
- (3) For every right S-set \bar{X} over A and $x \in X_a$, x^* is the unique homomorphism $f: \bar{S}_a \to \bar{X}$ such that f(1) = x; hence $x \mapsto x^*$ and $f \mapsto f(1)$ are mutually inverse bijections between $\operatorname{Hom}_{\bar{\mathbb{C}}}(\bar{S}_a, \bar{X})$ and X_a .

PROOF. x^* is action preserving since $x^*(s^t) = x^*(st) = x^{st} = (x^s)^t = x^*(s)^t$ for all $s, t \in S$. Then x^* is the unique action preserving mapping $S^S \to X$ such that $x^*(1) = x$, since $s = 1^s$. If $\bar{X} = (X, \xi)$ is a right S-set over A and $x \in X_a$, then $\xi \circ x^* = a^*$, since $\xi(x^*(1)) = \xi(x) = a = a^*(1)$, and $x^* \in \operatorname{Hom}_{\bar{\mathbb{C}}}(\bar{S}_a, \bar{X})$. Then $x \mapsto x^*$ and $f \mapsto f(1)$ are mutually inverse bijections between $\operatorname{Hom}_{\bar{\mathbb{C}}}(\bar{S}_a, \bar{X})$ and X_a , by (1).

Applying Lemma 1.1 to an abelian group object $\overline{G} = (G, \pi)$ of $\overline{\mathbb{C}}$ yields a partial addition on G.

Lemma 1.2. When $\overline{G} = (G, \pi)$ is an abelian group object over A:

- (1) π is surjective;
- (2) For every $a \in A$ an abelian group addition on G_a is defined by

$$g + h = (g^* + h^*)(1)$$

for all $g, h \in G_a$, and satisfies $(g+h)^* = g^* + h^*$;

- (3) $(g+h)^s = g^s + h^s$ for all $g, h \in G_a$ and $s \in S$;
- (4) The addition on $\operatorname{Hom}_{\overline{C}}(\overline{X}, \overline{G})$ is pointwise for every \overline{X} .

PROOF. (1, 2): Let $g, h \in G_a$. Then $g^*, h^* \in \operatorname{Hom}_{\bar{\mathbb{C}}}(\bar{S}_a, \bar{G})$ by Lemma 1.1; g^*, h^* may be added in $\operatorname{Hom}_{\bar{\mathbb{C}}}(\bar{S}_a, \bar{G})$; and $g + h \in G_a$ may be defined as in (2). Then

$$(g+h)^* = g^* + h^*,$$

since $(g+h)^*(1) = g+h = (g^*+h^*)(1)$. Then $g \mapsto g^*$ is an isomorphism of G_a onto $\operatorname{Hom}_{\bar{\mathbb{C}}}(\bar{S}_a, \bar{G})$, by Lemma 1.1, and G_a is an abelian group under addition. In particular, $G_a \neq \emptyset$ for all a; hence π is surjective.

(4): Let $\bar{g}, h: \bar{X} \to \bar{G}$. For every $x \in X_a$ we have $\bar{g} \circ x^* = \bar{g}(x)^*$, since $\bar{g}(x^*(1)) = \bar{g}(x)$. Hence

$$(\bar{g} + \bar{h}) \circ x^* = (\bar{g} \circ x^*) + (\bar{h} \circ x^*) = \bar{g}(x)^* + \bar{h}(x)^* = (\bar{g}(x) + \bar{h}(x))^*;$$

evaluating at 1 yields $(\bar{g} + \bar{h})(x) = \bar{g}(x) + \bar{h}(x)$.

(3): Since addition on $\operatorname{Hom}_{\bar{\mathbb{C}}}(\bar{S}_a, \bar{G})$ is pointwise we have

$$(g+h)^s = (g+h)^*(s) = (g^*+h^*)(s) = g^*(s) + h^*(s) = g^s + h^s.$$

By Lemma 1.2, $g \mapsto g^s$ is a homomorphism $\gamma_{a,s} : G_a \to G_{as}$ for every $a, s; \gamma_{a,1}$ is the identity on G_a , and $\gamma_{as,t} \circ \gamma_{a,s} = \gamma_{a,st}$ for all a, s, t, since $(g^s)^t = g^{st}$.

This suggests an abelian group valued functor on the transitivity category $\mathcal{T}(A)$ of A [4], whose objects are the elements of A and whose morphisms are all pairs $(a, s) \in A \times S$, with $(a, s) : a \to as$ and $(as, t) \circ (a, s) =$ (a, st); the identity on $a \in A$ is (a, 1). An abelian group valued functor $\mathbb{G} = (G, \gamma)$ on A (actually, on $\mathcal{T}(A)$) assigns an abelian group G_a to each $a \in A$ and a homomorphism $\gamma_{a,s} : G_a \to G_{as}$ to each $(a, s) \in A \times S$, so that $\gamma_{a,1}$ is the identity on G_a and $\gamma_{as,t} \circ \gamma_{a,s} = \gamma_{a,st}$, for all $s, t \in S$ and $a \in A$. It is convenient to write

$$\gamma_{a,s}(g) = g^s \in G_{as}$$
 when $g \in G_a$

so that

$$(g+h)^s = g^s + h^s, \ g^1 = g, \text{ and } (g^s)^t = g^{st}$$

for all $g, h \in G_a$ and all s, t. We call \mathbb{G} thin when $\gamma_{a,s}$ depends only on a and as (when as = at implies $\gamma_{a,s} = \gamma_{a,t}$).

When \overline{G} is an abelian group object over A, then the functor (G, γ) constructed after Lemma 1.2 is an abelian group valued functor on A. We state this as part of:

Proposition 1.3. When \bar{G} is an abelian group object over A, then $\mathbf{F}\bar{G} = (G,\gamma)$ is an abelian group valued functor on A. When $\varphi: \bar{G} \to \bar{H}$ is a homomorphism of abelian group objects over A, then $\mathbf{F}\varphi = (a\varphi_{|G_a})_{a\in A}$ is a natural transformation from $\mathbf{F}\bar{G}$ to $\mathbf{F}\bar{H}$.

PROOF. First, $\varphi(G_a) \subseteq H_a$, since φ is a homomorphism of right S-sets over A. Let $\varphi_a = \varphi_{|G_a|}$ be the restriction of φ to G_a . For every $g, h \in G_a$,

$$\varphi \circ (g+h)^* = \varphi \circ (g^*+h^*) = (\varphi \circ g^*) + (\varphi \circ h^*);$$

evaluating at 1 yields $\varphi(g + h) = \varphi(g) + \varphi(h)$, so that every φ_a is a homomorphism of abelian groups. Finally let $\mathbf{F}\bar{G} = (G, \gamma)$ and $\mathbf{F}\bar{H} = (H, \delta)$. Every square

$$\begin{array}{ccc} G_a & \xrightarrow{\varphi_a} & H_a \\ & & \downarrow \delta_{a,s} \\ G_{as} & \xrightarrow{\varphi_{as}} & H_{as} \end{array}$$

commutes: since φ preserves the action of S we have

$$\varphi_{as}(\gamma_{a,s}(g)) = \varphi(g^s) = \varphi(g)^s = \delta_{a,s}(\varphi_a(g))$$

for all $g \in G_a$, and $\mathbf{F}\varphi$ is a natural transformation from $\mathbf{F}\overline{G}$ to $\mathbf{F}\overline{H}$. \Box

3. The converse of Proposition 1.3 is:

Proposition 1.4. Let $\mathbb{G} = (G, \gamma)$ be an abelian group valued functor on A. Let $\overline{G} = (G', \pi)$, where G' is the disjoint union $G' = \bigcup_{a \in A} (G_a \times \{a\}),$ $(g, a)^s = (\gamma_{a,s}(g), as) = (g^s, as),$ and $\pi(g, a) = a$. With the addition on $\operatorname{Hom}_{\overline{\mathbb{C}}}(\overline{X}, \overline{G})$ defined for every \overline{X} by

$$(\bar{g} + \bar{h})(x) = (g_x + h_x, a), \text{ where } x \in X_a, \ \bar{g}(x) = (g_x, a), \ \bar{h}(x) = (h_x, a),$$

 $\mathbf{O}\mathbb{G} = \overline{G}$ is an abelian group object of $\overline{\mathbb{C}}$. When $\varphi : \mathbb{G} \to \mathbb{H}$ is a natural transformation of abelian group valued functors on A, then $\mathbf{O}\varphi : (g, a) \mapsto (\varphi_a(g), a)$ is a homomorphism of abelian group objects of $\overline{\mathbb{C}}$.

PROOF. G' is a right S-set since $(g, a)^1 = (g, a)$ and $((g, a)^s)^t = (g, a)^{st}$ when $g \in G_a$. Moreover π is action preserving. Hence \overline{G} is a right S-set over A.

Let $\bar{g}, \bar{h}: \bar{X} \to \bar{G}$ be morphisms in $\bar{\mathbb{C}}$. If $x \in X_a$, then $\bar{g}(x), \bar{h}(x) \in G_a$ and $\bar{g}(x) = (g_x, a), \bar{h}(x) = (h_x, a)$ for some $g_x, h_x \in G_a$; hence a mapping $\bar{g} + \bar{h}: X \to G'$ may be defined by $(\bar{g} + \bar{h})(x) = (g_x + h_x, a)$ as in the statement. Since \bar{g} and \bar{h} are homomorphisms of right S-sets over A we have $\bar{g}(x^s) = \bar{g}(x)^s = (g_x, a)^s = (g_x^s, as), \bar{h}(x^s) = (h_x^s, as),$ and

$$(\bar{g} + \bar{h})(x^s) = (g_x^s + h_x^s, as) = (g_x + h_x, a)^s = ((\bar{g} + \bar{h})(x))^s;$$

thus $\bar{g} + \bar{h}$ is a homomorphism of right *S*-sets over *A*. Addition on Hom_{\bar{c}}(\bar{X}, \bar{G}) is commutative and associative like the addition on every G_a . The identity element $\bar{z} : \bar{X} \to \bar{G}$ of Hom_{\bar{c}}(\bar{X}, \bar{G}) is given by $\bar{z}(x) = (0, a)$ when $x \in X_a$: indeed

$$\bar{z}(x^s) = (0, as) = (0, a)^s = \bar{z}(x)^s,$$

so $\bar{z} \in \operatorname{Hom}_{\bar{\mathbb{C}}}(\bar{X}, \bar{G})$, and $\bar{z} + \bar{g} = \bar{g}$ for all $\bar{g} \in \operatorname{Hom}_{\bar{\mathbb{C}}}(\bar{X}, \bar{G})$. The opposite of $\bar{g} : \bar{X} \to \bar{G}$ is similarly defined by $(-\bar{g})(x) = (-g_x, a)$ when $x \in X_a$ and $\bar{g}(x) = (g_x, a); -\bar{g}$ is a homomorphism since $\bar{g}(x^s) = (g_x^s, as)$ and

$$(-\bar{g})(x^s) = (-g_x^s, as) = ((-g_x)^s, as) = (-g_x, a)^s = (-\bar{g})(x)^s.$$

Hom_{$\bar{\mathbb{C}}$} (\bar{X}, \bar{G}) is now an abelian group. If $f: \bar{W} \to \bar{X}$ is a morphism in $\bar{\mathbb{C}}$, then $(\bar{g} + \bar{h}) \circ f = (\bar{g} \circ f) + (\bar{h} \circ f)$ for all $\bar{g}, \bar{h}: \bar{X} \to \bar{G}$; hence \bar{G} is a abelian group object of $\bar{\mathbb{C}}$.

Let $\varphi : \mathbb{G} \to \mathbb{H} = (H, \eta)$ be a natural transformation of abelian group valued functors on A. Then $\bar{\varphi} : (g, a) \mapsto (\varphi_a(g), a)$ satisfies

$$\bar{\varphi}((g,a)^s) = \bar{\varphi}(\gamma_{a,s}(g), as) = (\varphi_{as}(\gamma_{a,s}(g)), as)$$
$$= (\eta_{a,s}(\varphi_a(g)), as) = (\varphi_a(g), a)^s = (\bar{\varphi}(g,k))^s$$

and $\bar{\varphi}$ is a homomorphism of right S-sets over A. Let $\bar{g}, \bar{h} : \bar{X} \to \bar{G}$ be morphisms in $\bar{\mathbb{C}}$. Let $x \in X_a$ and $\bar{g}(x) = (g_x, a), \bar{h}(x) = (h_x, a)$, so that $(\bar{g} + \bar{h})(x) = (g_x + h_x, a)$. Then $\bar{\varphi}(\bar{g}(x)) = (\varphi_a(g_x), a), \bar{\varphi}(\bar{h}(x)) = (\varphi_a(h_x), a)$, and

$$(\bar{\varphi}\circ\bar{g}+\bar{\varphi}\circ\bar{h})(x)=\left(\varphi_a(g_x)+\varphi_a(h_x),a\right)=\left(\varphi_a(g_x+h_x),a\right)=\bar{\varphi}\left((\bar{g}+\bar{h})(x)\right).$$

Thus $\mathbf{O}\varphi = \overline{\varphi}$ is a homomorphism of abelian group objects of \mathcal{C} .

Proposition 1.5. The functors **F** and **O** in Propositions 1.3 and 1.4 are equivalences of categories.

PROOF. Let \overline{G} be an abelian group object of $\overline{\mathbb{C}}$. Then $\mathbf{OF}\overline{G} = \overline{G}' = (G', \pi)$, where G' is the disjoint union $G' = \bigcup_{a \in A} (G_a \times \{a\}), (g, a)^s = (\gamma_{a,s}(g), as)$, and $\pi(g, a) = a$, and the addition on every $\operatorname{Hom}_{\overline{\mathbb{C}}}(\overline{X}, \overline{G}')$ is defined by

$$(\bar{g}+h)(x) = (g_x + h_x, a), \text{ where } x \in X_a, \ \bar{g}(x) = (g_x, a), \ h(x) = (h_x, a).$$

Define $\theta_G : \overline{G}' \to \overline{G}$ by $\theta_G(g, a) = g \in G_a$. Then θ_G is an isomorphism of right S-sets over A. If moreover $\varphi : \overline{G} \to \overline{H}$ is a homomorphism of abelian group objects, then $\overline{\varphi} = \mathbf{OF}\varphi$ sends (g, a) to $(\varphi(g), a)$ and we see that $\theta_H \circ \overline{\varphi} = \varphi \circ \theta_G$. Thus θ_G is natural in \overline{G} .

Conversely let $\mathbb{G} = (G, \gamma)$ be an abelian group valued functor on A; then $\mathbb{O}\mathbb{G} = \overline{G}' = (G', \pi)$, where G' is the disjoint union $G' = \bigcup_{a \in A} (G_a \times \{a\}),$ $(g, a)^s = (\gamma_{a,s}(g), as)$, and $\pi(g, a) = a$, and the addition on $a \in A$ every $\operatorname{Hom}_{\overline{\mathbb{C}}}(\overline{X}, \overline{G}')$ is defined by

$$(\bar{g} + \bar{h})(x) = (g_x + h_x, a), \text{ where } x \in X_a, \ \bar{g}(x) = (g_x, a), \ \bar{h}(x) = (h_x, a).$$

The induced addition on $G'_a = G_a \times \{a\}$ is given as before by

$$(g,a) + (h,a) = ((g,a)^* + (h,a)^*)(1)$$

for all $(g, a), (h, a) \in G'_a$ using the mappings x^* in Lemma 1.1; that is,

$$(g,a) + (h,a) = ((g,a)^* + (h,a)^*)(1) = (g+h,a)$$

since $(g, a)^*(1) = (g, a)$ and $(h, a)^*(1) = (h, a)$. Thus $\theta_a : (g, a) \mapsto g$ is an isomorphism of abelian groups of G'_a onto G_a . Moreover the homomorphism $\delta_{a,s}$ in $\mathbf{F}\bar{G}' = (G', \delta)$ are given by $\delta_{a,s}(g, a) = (g, a)^s = (\gamma_{a,s}(g), as)$, which show that $\theta = (\theta_a)_{a \in A}$ is an isomorphism from $\mathbf{F}\bar{G}'$ to \mathbb{G} . It is immediate that θ is natural in \mathbb{G} .

2. Beck extensions

1. In $\overline{\mathbb{C}}$, a *left action* of an abelian group object \overline{G} on an object \overline{E} assigns to every object \overline{X} of $\overline{\mathbb{C}}$ a left group action . of $\operatorname{Hom}_{\overline{\mathbb{C}}}(\overline{X},\overline{G})$ on

 $\operatorname{Hom}_{\bar{\mathbb{C}}}(\bar{X}, \bar{E})$ which is natural in \bar{X} ; equivalently, such that

$$(\bar{g} \cdot \bar{e}) \circ f = (\bar{g} \circ f) \cdot (\bar{e} \circ f)$$

for all morphisms $\bar{g}: \bar{X} \to \bar{G}, \bar{e}: \bar{X} \to \bar{E}, f: \bar{W} \to \bar{X}$. This "external" group action can be replaced by an "internal" action $\bar{G} \times \bar{E} \to \bar{E}$ as in Lemma 2.1 below.

In $\overline{\mathbb{C}}$, a *Beck extension* of an abelian group object \overline{G} by A is a right S-set $\overline{E} = (E, \pi)$ over A together with an action of \overline{G} on \overline{E} such that

(BE1) $\mathbb{U}\pi \circ \mu = 1_{\mathbb{U}A}$ for some $\mu : \mathbb{U}A \to \mathbb{U}E$, where $\mathbb{U} : \mathbb{C} \to$ Sets is the forgetful functor; in Sets this merely states that π is surjective;

(BE2) for every \bar{X} the action of $\operatorname{Hom}_{\bar{\mathbb{C}}}(\bar{X},\bar{G})$ on $\operatorname{Hom}_{\bar{\mathbb{C}}}(\bar{X},\bar{E})$ preserves projection to $A : \pi \circ (\bar{g} \cdot \bar{e}) = \pi \circ \bar{e}$ for every $\bar{g} : \bar{X} \to \bar{G}$ and $\bar{e} : \bar{X} \to \bar{E}$;

(BE3) for every \bar{X} the action of $\operatorname{Hom}_{\bar{\mathbb{C}}}(\bar{X}, \bar{G})$ on $\operatorname{Hom}_{\bar{\mathbb{C}}}(\bar{X}, \bar{E})$ is simply transitive: for every $\bar{e}, \bar{f}: \bar{X} \to \bar{E}$ there exists a unique $\bar{g}: \bar{X} \to \bar{G}$ such that $\bar{g} \cdot \bar{e} = \bar{f}$.

A homomorphism $\varphi : \overline{E} \to \overline{F}$ of Beck extensions of \overline{G} by A is a morphism in $\overline{\mathbb{C}}$ which preserves the action of \overline{G} :

$$\varphi \circ (\bar{g} \cdot \bar{e}) = \bar{g} \cdot (\varphi \circ \bar{e})$$

for all \bar{X} and morphisms $\bar{g}: \bar{X} \to \bar{G}, \bar{e}: \bar{X} \to \bar{E}$.

2. Applying Lemma 1.1 to a Beck extension \overline{E} of \overline{G} by A yields a partial action of G on E.

Lemma 2.1. Let \overline{E} be a Beck extension of \overline{G} by A; let $\mathbf{F}\overline{G} = (G, \gamma)$.

(1) For every $a \in A$ a simply transitive group action of G_a on E_a is defined by

$$g \cdot x = (g^* \cdot x^*)(1)$$

for all $g \in G_a$, $x \in E_a$, and satisfies $(g \cdot x)^* = g^* \cdot x^*$.

- (2) $(g \cdot x)^s = g^s \cdot x^s$ for all $g \in G_a$, $x \in X_a$, and $s \in S$.
- (3) The action of $\operatorname{Hom}_{\bar{\mathbb{C}}}(\bar{X}, \bar{G})$ on $\operatorname{Hom}_{\bar{\mathbb{C}}}(\bar{X}, \bar{E})$ is pointwise, for every \bar{X} .

PROOF. (1): When $g \in G_a$ and $x \in E_a$, then $g^* \in \operatorname{Hom}_{\bar{\mathbb{C}}}(\bar{S}_a, \bar{G})$, $x^* \in \operatorname{Hom}_{\bar{\mathbb{C}}}(\bar{S}_a, \bar{E})$ by Lemma 1.1, and $g^* \cdot x^*$ is defined in $\operatorname{Hom}_{\bar{\mathbb{C}}}(\bar{S}_a, \bar{E})$, and $g \cdot x \in E_a$ may be defined by $g \cdot x = (g^* \cdot x^*)(1)$. Then

$$(g \cdot x)^* = g^* \cdot x^*,$$

since $(g \cdot x)^*(1) = g \cdot x = (g^* \cdot x^*)(1)$. The isomorphism $g \mapsto g^*$ and bijection $x \mapsto x^*$ take the action of G_a on E_a to the action of $\operatorname{Hom}_{\bar{\mathbb{C}}}(\bar{S}_a, \bar{G})$ on $\operatorname{Hom}_{\bar{\mathbb{C}}}(\bar{S}_a, \bar{E})$; therefore the former is, like the latter, a simply transitive group action.

(3): Let $\bar{g} : \bar{X} \to \bar{G}$ and $\bar{e} : \bar{X} \to \bar{E}$. For every $x \in X_a$ we have $\bar{g} \circ x^* = \bar{g}(x)^*$, since $\bar{g}(x^*(1)) = \bar{g}(x)$, and $\bar{e} \circ x^* = \bar{e}(x)^*$. Hence

$$(\bar{g}\cdot\bar{e})\circ x^* = (\bar{g}\circ x^*)\cdot(\bar{e}\circ x^*) = \bar{g}(x)^*\cdot\bar{e}(x)^* = (\bar{g}(x)\cdot\bar{e}(x))^*;$$

evaluating at 1 yields $(\bar{g} \cdot \bar{e})(x) = \bar{g}(x) \cdot \bar{e}(x)$.

(2): Since the action of $\operatorname{Hom}_{\overline{\mathbb{C}}}(\overline{S}_a, \overline{G})$ on $\operatorname{Hom}_{\overline{\mathbb{C}}}(\overline{S}_a, \overline{E})$ is pointwise we have

$$(g \cdot x)^s = (g \cdot x)^*(s) = (g^* \cdot x^*)(s) = g^*(s) \cdot x^*(s) = g^s \cdot x^s.$$

This last equation can be rewritten

$$(g \cdot x)^s = \gamma_{a,s}(g) \cdot x$$

and implies that E is a group coextension of A by $\mathbf{F}\overline{G}$ as defined in [4]. Specifically, a group coextension $(E, \pi, .)$ of A by a group valued functor $\mathbb{G} = (G, \gamma)$ on A consists of a right S-set E, an action-preserving surjection $\pi : E \to A$, and, for every $a \in A$, a simply transitive action . of G_a on E_a such that

$$(g \cdot x)^s = \gamma_{a,s}(g) \cdot x^s = g^s \cdot x^s$$

for all $g \in G_a$, $x \in E_a$, $a \in A$, and $s \in S$. An equivalence $\theta : (E, \pi, .) \to (F, \rho, .)$ of group coextensions of A by \mathbb{G} is a bijection $\theta : E \to F$ which preserves the action of $S(\theta(x^s) = \theta(x)^s)$, projection to $A(\rho(\theta(x)) = \pi(x))$ and the action of $\mathbb{G}(\theta(g \cdot x) = g \cdot \theta(x))$.

Proposition 2.2. Let \bar{G} be an abelian group object of $\bar{\mathbb{C}}$ and $\mathbb{G} = \mathbf{F}\bar{G}$. When $\bar{E} = (E, \pi)$ is a Beck extension of \bar{G} by A, then $\mathbf{C}\bar{E} = (E, \pi, \cdot)$ is a group coextension of A by \mathbb{G} . When $\varphi : \overline{E} \to \overline{F}$ is a homomorphism of Beck extensions of \overline{G} by A, then $\mathbf{C}\varphi = \varphi : \mathbf{C}\overline{E} \to \mathbf{C}\overline{F}$ is an equivalence of group coextensions.

PROOF. First, φ preserves projection to A ($\varphi(E_a) \subseteq F_a$) and the action of S, since φ is a homomorphism of right S-sets over A. For every $g \in G_a$ and $x \in E_a$,

$$\varphi \circ (g \cdot x)^* = \varphi \circ (g^* \cdot x^*) = g^* \cdot (\varphi \circ x^*);$$

evaluating at 1 yields $\varphi(g \cdot x) = g \cdot \varphi(x)$, so that φ preserves the action of \mathbb{G} .

3. The converse of Proposition 2.2 is:

Proposition 2.3. Let $\overline{C} = (C, \pi, \cdot)$ be a group coextension of A by an abelian group valued functor $\mathbb{G} = (G, \gamma)$ on A; let $\overline{G} = \mathbf{O}\mathbb{G}$. With the action \cdot of $\operatorname{Hom}_{\overline{C}}(\overline{X}, \overline{G})$ on $\operatorname{Hom}_{\overline{C}}(\overline{X}, \overline{C})$ defined for every \overline{X} by

$$(\bar{g}\cdot\bar{c})(x) = g_x\cdot\bar{c}(x), \text{ where } x\in X_a, \ \bar{g}(x) = (g_x,a),$$

 \overline{C} is a Beck extension $\mathbf{E}\overline{C}$ of \overline{G} by A. When $\theta:\overline{C}\to\overline{D}$ is an equivalence of group coextensions of A by \mathbb{G} , $\mathbf{E}\theta=\theta$ is a homomorphism of Beck extensions of \overline{G} by A.

PROOF. By definition, $\overline{G} = (G', \alpha)$, where G' is the disjoint union $G' = \bigcup_{a \in A} (G_a \times \{a\}), (g, a)^s = (g^s, as), \alpha(g, a) = a$, and addition on $\operatorname{Hom}_{\overline{\mathbb{R}}}(\overline{X}, \overline{G})$ is given by

$$(\bar{g} + \bar{h})(x) = (g_x + h_x, a), \text{ where } x \in X_a, \ \bar{g}(x) = (g_x, a), \ \bar{h}(x) = (h_x, a).$$

Let $\bar{g} : \bar{X} \to \bar{G}$ and $\bar{c} : \bar{X} \to \bar{C}$ be morphisms in $\bar{\mathbb{C}}$. If $x \in X_a$, then $\bar{c}(x) \in C_a$ and $\bar{g}(x) \in G'_a$, $\bar{g}(x) = (g_x, a)$ for some $g_x \in G_a$; hence a mapping $\bar{g} \cdot \bar{c} : X \to G'$ may be defined by $(\bar{g} \cdot \bar{c})(x) = g_x \cdot \bar{c}(x)$ as in the statement. Since \bar{g} and \bar{c} are homomorphisms of right S-sets over A we have $\bar{g}(x^s) = \bar{g}(x)^s = (g_x, a)^s = (g_x^s, as), \ \bar{c}(x^s) = \bar{c}(x)^s$, and

$$(\bar{g}\cdot\bar{c})(x^s) = g_x^s\cdot\bar{c}(x)^s = \left(g_x\cdot\bar{c}(x)\right)^s = \left((\bar{g}\cdot\bar{c})(x)\right)^s;$$

thus $\bar{g} \cdot \bar{c}$ is a homomorphism of right S-sets over A. The definition of $\bar{g} \cdot \bar{c}$ shows that $(\bar{g} \cdot \bar{c}) \circ f = (\bar{g} \circ f) \cdot (\bar{c} \circ f)$ whenever $f : \bar{W} \to \bar{X}$ is a morphism

in $\overline{\mathbb{C}}$. The action of $\operatorname{Hom}_{\overline{\mathbb{C}}}(\overline{X},\overline{G})$ on $\operatorname{Hom}_{\overline{\mathbb{C}}}(\overline{X},\overline{C})$ is a simple group action like the action of G_a on C_a . To show transitivity let $\overline{c}, \overline{d} : \overline{X} \to \overline{C}$ be morphisms in $\overline{\mathbb{C}}$. Define a mapping $\overline{g} : X \to G'$ as follows: when $x \in$ X_a , then $\overline{c}(x), \ \overline{d}(x) \in C_a$ and there exists a unique $g_x \in G_a$ such that $g_x \cdot \overline{c}(x) = \overline{d}(x)$; let $\overline{g}(x) = (g_x, a)$. We have

$$\bar{d}(x^s) = \bar{d}(x)^s = \left(g_x \cdot \bar{c}(x)\right)^s = g_x^s \cdot \bar{c}(x)^s = g_x^s \cdot \bar{c}(x^s);$$

hence

$$\bar{g}(x^s) = (g_x^s, as) = (g_x, a)^s = \bar{g}(x)^s$$

and $\bar{g}: \bar{X} \to \bar{G}$ is a homomorphism of right S-sets over A. Also $\bar{g} \cdot \bar{c} = \bar{d}$ by definition. Hence \bar{C} is a Beck extension $\mathbf{E}\bar{C}$ of \bar{G} by A.

Let $\theta : \overline{C} \to \overline{D} = (D, \delta)$ be an equivalence of group coextensions of A by \mathbb{G} . Then θ is a morphism in $\overline{\mathbb{C}}$. Let $\overline{g} : \overline{X} \to \overline{G}$ and $\overline{c} : \overline{X} \to \overline{C}$ be homomorphisms of right S-sets over A. When $x \in X_a$ we have $\overline{g}(x) = (g_x, a)$ for some $g_x \in G_a$ and

$$\theta((\bar{g}\cdot\bar{c})(x)=\theta(g_x\cdot\bar{c}(x))=g_x\cdot\theta(\bar{c}(x))=(\bar{g}\cdot(\theta\circ\bar{c}))(x);$$

hence $\theta \circ (\bar{g} \cdot \bar{c}) = \bar{g} \cdot (\theta \circ \bar{c})$. Thus θ is a homomorphism of Beck extensions.

Proposition 2.4. The functors **C** and **E** in Propositions 2.2 and 2.3 are isomorphisms of categories.

PROOF. Let $\overline{C} = (C, \pi, \cdot)$ be a group coextension of A by $\mathbb{G} = (G, \gamma)$. Let $\overline{G} = \mathbf{O}\mathbb{G}$, so that $\overline{G} = (G', \alpha)$, where G' is the disjoint union $G' = \bigcup_{a \in A} (G_a \times \{a\}), (g, a)^s = (\gamma_{a,s}(g), as), \alpha(g, a) = a$, and addition on each $\operatorname{Hom}_{\overline{\mathbb{C}}}(\overline{X}, \overline{G})$ is given by

$$(\bar{g}+h)(x) = (g_x + h_x, a), \text{ where } x \in X_a, \ \bar{g}(x) = (g_x, a), \ h(x) = (h_x, a).$$

Then $\mathbf{E}\overline{C} = \overline{C}$ is a Beck extension of \overline{G} by A; the action of $\operatorname{Hom}_{\overline{\mathbb{C}}}(\overline{X},\overline{G})$ on $\operatorname{Hom}_{\overline{\mathbb{C}}}(\overline{X},\overline{C})$ is given by

$$(\overline{g} \cdot \overline{c})(x) = g_x \cdot \overline{c}(x), \text{ where } x \in X_a, \ \overline{g}(x) = (g_x, a).$$

Next, $\mathbf{CE}\overline{C} = (C, \pi, \cdot)$ is a group coextension of A by $\mathbf{F}\overline{G}$, in which G'_a acts on C_a by

$$(g,a) \cdot x = ((g,a)^* \cdot x^*)(1)$$

for all $(g, a) \in G'_a$, $x \in C_a$; that is,

$$((g,a)^* \cdot x^*)(1) = g \cdot x^*(1) = g \cdot x,$$

since $(g, a)^*(1) = (g, a)$ and $x^*(1) = x$. Thus, up to the isomorphism $\mathbf{F}\bar{G} \cong \mathbb{G}$, the action of G'_a on C_a in $\mathbf{C}\mathbf{E}\bar{C}$ coincides with the given action in \bar{C} , and $\mathbf{C}\mathbf{E}\bar{C} = \bar{C}$.

Conversely let \overline{E} be a Beck extension of \overline{G} by A. Then $\mathbf{C}\overline{E} = \overline{C} = (E, \pi, \cdot)$ is a group coextension of A by $\mathbf{F}\overline{G}$, in which G_a acts on E_a by

$$g \cdot x = (g^* \cdot x^*)(1)$$

for all $g \in G_a$, $x \in E_a$; then the action of $\operatorname{Hom}_{\bar{\mathbb{C}}}(\bar{X}, \bar{G})$ on $\operatorname{Hom}_{\bar{\mathbb{C}}}(\bar{X}, \bar{E})$ is pointwise. Next, $\mathbf{E}\bar{C} = \bar{C}$ is a Beck extension of $\mathbf{OF}\bar{G}$ by A. Now $\mathbf{OF}\bar{G} = \bar{G}' = (G', \alpha)$, where G' is the disjoint union $G' = \bigcup_{a \in A} (A_a \times \{a\})$. The action of $\operatorname{Hom}_{\bar{\mathbb{C}}}(\bar{X}, \bar{G}')$ on $\operatorname{Hom}_{\bar{\mathbb{C}}}(\bar{X}, \bar{C})$ is given by

$$(\overline{g}' \cdot \overline{c})(x) = g_x \cdot \overline{c}(x), \text{ where } x \in X_a, \ \overline{g}'(x) = (g_x, a).$$

Let $\bar{g} \in \operatorname{Hom}_{\bar{\mathbb{C}}}(\bar{X}, \bar{G}), \ \bar{c} \in \operatorname{Hom}_{\bar{\mathbb{C}}}(\bar{X}, \bar{C});$ when $x \in X_a$, then $\bar{g}'(x) = (\bar{g}(x), a)$ defines $\bar{g}' \in \operatorname{Hom}_{\bar{\mathbb{C}}}(\bar{X}, \bar{G}')$, and

$$(\bar{g}' \cdot \bar{c})(x) = \bar{g}(x) \cdot \bar{c}(x) = (\bar{g} \cdot \bar{c})(x),$$

since the action of $\operatorname{Hom}_{\bar{\mathbb{C}}}(\bar{X}, \bar{G})$ on $\operatorname{Hom}_{\bar{\mathbb{C}}}(\bar{X}, \bar{E})$ is pointwise. Thus, up to the isomorphism $\mathbf{OF}\bar{G} \cong \bar{G}$, \bar{E} and $\mathbf{EC}\bar{E}$ have the same action of $\operatorname{Hom}_{\bar{\mathbb{C}}}(\bar{X}, \bar{G})$ on $\operatorname{Hom}_{\bar{\mathbb{C}}}(\bar{X}, \bar{E})$, and $\mathbf{EC}\bar{E} = \bar{E}$.

3. Cohomology

1. The ingredients of triple cohomology are: categories \mathcal{Z} and \mathcal{C} ; a functor $\mathbb{U} : \mathcal{C} \to \mathcal{Z}$ with a left adjoint $\mathbb{F} : \mathcal{Z} \to \mathcal{C}$, providing natural transformations $\eta : 1_{\mathcal{A}} \to \mathbb{UF}$ and $\epsilon : \mathbb{FU} \to 1_{\mathcal{C}}$; an object A of \mathcal{C} ; and an abelian group object \overline{G} in the category $\overline{\mathcal{C}}$ of objects of \mathcal{C} over A.

The adjunction $(\mathbb{F}, \mathbb{U}, \eta, \epsilon)$ lifts to an adjunction $(\overline{\mathbb{F}}, \overline{\mathbb{U}}, \overline{\eta}, \overline{\epsilon})$ between $\overline{\mathcal{C}}$ and the category $\overline{\mathcal{Z}}$ of objects of \mathcal{Z} over $\mathbb{U}A$; when $\zeta : Z \to \mathbb{U}A$ and $\rho : C \to A$, then

$$\bar{\mathbb{F}}(Z,\zeta) = (\mathbb{F}Z,\bar{\zeta}), \ \bar{\mathbb{U}}(C,\rho) = (\mathbb{U}C,\mathbb{U}\rho), \ \bar{\eta}_{(Z,\zeta)} = \eta_Z, \ \bar{\epsilon}_{(C,\rho)} = \epsilon_C,$$

where $\bar{\zeta} : \mathbb{F}Z \to A$ is the unique morphism such that $\mathbb{U}\bar{\zeta} \circ \eta_Z = \zeta$ (equivalently, $\bar{\zeta} = \epsilon_A \circ \mathbb{F}\zeta$). Let $\mathbb{V} = \bar{\mathbb{F}}\bar{\mathbb{U}}$. When \bar{C} is an object of $\bar{\mathbb{C}}$ and $n \geq 1$,

$$C^n(\bar{C},\bar{G}) = \operatorname{Hom}_{\bar{\mathcal{C}}}(\mathbb{V}^n\bar{C},\bar{G})$$

is an abelian group. The coboundary $\delta^n : C^n(\bar{C}, \bar{G}) \to C^{n+1}(\bar{C}, \bar{G})$ is

$$\delta^{n}(\varphi) = \sum_{0 \le i_{n}} (-1)^{i} \varphi \circ \epsilon_{C}^{n,i}$$

for every $\varphi : \mathbb{V}^n \bar{C} \to \bar{G}$, where

$$\epsilon_C^{n,i} = \mathbb{V}^{n-i} \epsilon_{\mathbb{V}^i \bar{C}} : \mathbb{V}^{n+1} \bar{C} \to \mathbb{V}^n \bar{C};$$

also $\delta 0 = 0 : 0 \to C^1(\bar{C}, \bar{G})$. A standard argument, using the identity $\epsilon^{n,j} \circ \epsilon^{n+1,i} = \epsilon^{n,i} \circ \epsilon^{n+1,j+1}$ which holds for all $i, j = 0, 1, \ldots, n$, yields $\delta^{n+1} \circ \delta^n = 0$. Hence

$$B^n(\bar{C},\bar{G}) = \operatorname{Im} \delta^{n-1} \subseteq \operatorname{Ker} \delta^n = Z^n(\bar{C},\bar{G})$$

for all $n \ge 1$. By definition

$$H^n(\bar{C},\bar{G}) = Z^n(\bar{C},\bar{G})/B^n(\bar{C},\bar{G})$$

for all $n \geq 1$. In particular,

$$H^n(A,\bar{G}) = H^n(\bar{A},\bar{G}),$$

where $\bar{A} = (A, 1_A)$. In [2], [1], $H^n(\bar{C}, \bar{G})$ is called $H^{n-1}(\bar{C}, \bar{G})$; here we use a more traditional numbering.

For this cohomology, BECK proved the following properties ([2], Theorems 2 and 6).

Theorem A. $H^n(\bar{\mathbb{F}}\bar{X},\bar{G}) = 0$ for all $n \geq 2$, and $H^1(\mathbb{V}\bar{C},\bar{G}) \cong C^1(\bar{C},\bar{G})$.

A sequence $\bar{G} \to \bar{G}' \to \bar{G}''$ of abelian group objects and morphisms is *short* \mathbb{V} -*exact* when

$$0 \to \operatorname{Hom}_{\bar{\operatorname{C}}}(\mathbb{V}\bar{C}, \bar{G}) \to \operatorname{Hom}_{\bar{\operatorname{C}}}(\mathbb{V}\bar{C}, \bar{G}') \to \operatorname{Hom}_{\bar{\operatorname{C}}}(\mathbb{V}\bar{C}, \bar{G}'') \to 0$$

is short exact for every \bar{C} .

Theorem B. Every short \mathbb{V} -exact sequence $\mathcal{E} : \overline{G} \to \overline{G}' \to \overline{G}''$ of abelian group objects of $\overline{\mathbb{C}}$ induces an exact sequence

$$\cdots H^n(\bar{C},\bar{G}) \to H^n(\bar{C},\bar{G}') \to H^n(\bar{C},\bar{G}'') \to H^{n+1}(\bar{C},\bar{G}) \cdots$$

which is natural in \mathcal{E} and \overline{C} .

Theorem C. When \mathcal{C} is tripleable over \mathcal{Z} , there is a one-to-one correspondence between elements of $H^2(A, \overline{G})$ and isomorphy classes of Beck extensions of \overline{G} by A.

Up to natural isomorphism, $H^n(\bar{C}, -)$ is the only abelian group valued functor for which Theorems A and B hold [1]; [1] has a similar characterization of $H^n(-,\bar{G})$.

2. Now let S be a monoid, C be the category of right S-sets and action preserving mapping s, A be a fixed right S-set, and $\overline{\mathbb{C}}$ be the category of right S-sets over A and their homomorphism s, as in Sections 1 and 2; $\mathbb{U} : \mathbb{C} \to \text{Sets}$ is the forgetful functor to the category Sets of sets and mappings, which strips right S-sets of the action of S.

Every set Z has a free right S-set $\mathbb{F}Z = Z \times S$, in which $(z,s)^t = (z,st)$; when $f: Z \to T$ is a mapping, then $\mathbb{F}f: (z,s) \mapsto (f(z),s)$ is action preserving. The mapping $\eta_Z: z \mapsto (z,1)$ has the requisite universal property: for every mapping $f: Z \to Y$ of Z into a right S-set Y there is a unique action preserving mapping $g: \mathbb{F}Z \to Y$ such that $g \circ \eta_Z = f$, namely, $g(z,s) = f(z)^s$. Thus $\mathbb{F} = - \times S$ is a left adjoint of U. In this adjunction, $\epsilon_X: X \times S = \mathbb{F}\mathbb{U}X \to X$ is the action of S: indeed ϵ_X is the unique action preserving mapping such that $\mathbb{U}\epsilon_X \circ \eta_X = 1_{\mathbb{U}X}$; hence $\epsilon_X(x,1) = x$ and $\epsilon_X(x,s) = x^s$.

The adjunction $(\mathbb{F}, \mathbb{U}, \eta, \epsilon)$ lifts to an adjunction $(\mathbb{F}, \mathbb{U}, \bar{\eta}, \bar{\epsilon})$ between \mathcal{C} and the category of sets over $\mathbb{U}A$, as follows. When (Z, f) is a set over A(where $f : Z \to A$ is a mapping), $\overline{\mathbb{F}}(Z, f) = (\mathbb{F}Z, \bar{f}) = (Z \times S, \bar{f})$, where $\bar{f} : Z \times S \to A$ is the unique morphism such that $\mathbb{U}\bar{f} \circ \eta_X = \pi$:

$$\bar{f}(z,s) = f(z)^s,$$

equivalently, $\bar{f} = \epsilon_A \circ \mathbb{F}f$. For any right S-set $\bar{X} = (X, \pi)$ over A, $\bar{\mathbb{U}}\bar{X} = (\mathbb{U}X, \mathbb{U}\pi) = (X, \pi)$ strips \bar{X} of the action of S; $\bar{\eta}_{(X,f)} = \eta_X$; and $\bar{\epsilon}_{(X,\pi)} = \epsilon_X$.

When $\overline{X} = (X, \pi)$ is a right S-set over A,

$$\mathbb{V}\bar{X} = \mathbb{FU}(X,\pi) = (X \times S,\bar{\pi}),$$

where $(x,s)^t = (x,st)$ and $\bar{\pi}(x,s) = \pi(x)^s$; if $f: \bar{X} \to \bar{Y}$ is a homomorphism of right S-sets over A, then $\mathbb{V}f = f \times S: (x,s) \mapsto (f(x),s)$.

We identify $(X \times S^{n-1}) \times S$ with $X \times S^n$, and $((x, s_1, \ldots, s_{n-1}), s_n)$ with $(x, s_1, \ldots, s_{n-1}, s_n)$. When $n \ge 1$,

$$\mathbb{V}^n \bar{X} = (X \times S^n, \pi_n);$$

S acts on $\mathbb{V}^n\bar{X}$ by

$$(x, s_1, \dots, s_{n-1}, s_n)^s = (x, s_1, \dots, s_{n-1}, s_n s);$$

and $\pi_n = \bar{\pi}_{n-1}$ is found by induction:

$$\pi_n(x, s_1, \dots, s_{n-1}, s_n) = \pi_{n-1}(x, s_1, \dots, s_{n-1})^{s_n}$$

= $\pi_{n-2}(x, s_1, \dots, s_{n-2})^{s_{n-1}, s_n} = \cdots$
= $\pi(x)^{s_1 \dots s_{n-1} s_n}$.

A similar induction yields $\epsilon_X^{n,i} = \mathbb{V}^{n-i} \epsilon_{\mathbb{V}^i \bar{X}} : \mathbb{V}^{n+1} \bar{X} \to \mathbb{V}^n \bar{X}$. First, $\epsilon_X^{n,n} = \epsilon_{\mathbb{V}^n \bar{X}}$:

$$\epsilon_X^{n,n}(x,s_1,\ldots,s_n,s_{n+1}) = (x,s_1,\ldots,s_{n-1},s_n)^{s_{n+1}} = (x,s_1,\ldots,s_{n-1},s_ns_{n+1}).$$

If 0 < i < n, then $\epsilon_X^{n,i} = \mathbb{V} \epsilon_X^{n-1,i}$ and

$$\begin{aligned} \epsilon_X^{n,i}(x, s_1, \dots, s_n, s_{n+1}) &= \left(\epsilon_X^{n-1,i}(x, s_1, \dots, s_n), s_{n+1}\right) \\ &= \left(\epsilon_X^{n-2,i}(x, s_1, \dots, s_{n-1})s_n, s_{n+1}\right) = \cdots \\ &= \left(\epsilon_X^{i,i}(x, s_1, \dots, s_i, s_{i+1}), s_{i+2}, \dots, s_n, s_{n+1}\right) \\ &= (x, s_1, \dots, s_{i-1}, s_i s_{i+1}, s_{i+2}, \dots, s_{n+1}).\end{aligned}$$

Similarly, $\epsilon_X^{n,0} = \mathbb{V}^n \epsilon_X$ and

$$\epsilon_X^{n,0}(x, s_1, \dots, s_n, s_{n+1}) = (x^{s_1}, s_2, \dots, s_n, s_{n+1})$$

since $\epsilon_X^{0,0}(x, s_1) = \epsilon_X(x, s_1) = x^{s_1}$.

3. We now turn to cochains.

Lemma 3.1. Let $\overline{X} = (X, \pi)$ be a right S-set over A, \overline{G} be an abelian group object over A, and $\mathbb{G} = (G, \gamma) = \mathbf{F}\overline{G}$. There is an isomorphism

$$\Theta: C^n(\bar{X}, \bar{G}) \to \prod_{c \in \mathbb{V}^{n-1}\bar{X}} G_{\pi_{n-1}c}$$

which is natural in \overline{X} and \overline{G} . When $v \in C^n(\overline{X}, \overline{G})$,

$$\Theta(v) = \left(v(x, s_1, \dots, s_{n-1}, 1)\right)_{(x, s_1, \dots, s_{n-1}) \in \mathbb{V}^{n-1}\bar{X}};$$

when $u = (u(c))_{c \in \mathbb{V}^{n-1}\bar{X}}, v = \Theta^{-1}(u)$ is given for all $(x, s_1, \dots, s_n) \in \mathbb{V}^n \bar{X}$ by

$$v(x, s_1, \dots, s_{n-1}, s_n) = u(x, s_1, \dots, s_{n-1})^{s_n}$$

PROOF. When $u = (u(c))_{c \in \mathbb{V}^{n-1}\bar{X}} \in \prod_{c \in \mathbb{V}^{n-1}\bar{X}} G_{\pi_{n-1}c}$, define $v = \Xi(u) : \mathbb{V}^n \bar{X} \to G$ for all $(x, s_1, \dots, s_n) \in \mathbb{V}^n \bar{X}$ by

$$v(x, s_1, \dots, s_{n-1}, s_n) = u(x, s_1, \dots, s_{n-1})^{s_n}$$

as calculated in \overline{G} ; $\Xi(u)$ will be $\Theta^{-1}(u)$. If $a = \pi_{n-1}(x, s_1, \ldots, s_{n-1})$, then $u(x, s_1, \ldots, s_{n-1}) \in G_a$ and

$$v(x, s_1, \dots, s_{n-1}, s_n) = u(x, s_1, \dots, s_{n-1})^{s_n} \in G_{as_n};$$

thus v preserves projection to A. Also

$$v((x, s_1, \dots, s_{n-1}, s_n)^s) = v((x, s_1, \dots, s_{n-1}, s_n s))$$

= $u(x, s_1, \dots, s_{n-1})^{s_n s} = (v(x, s_1, \dots, s_{n-1}, s_n)^s).$

Therefore v is a homomorphism of right S-sets over A and

$$v \in \operatorname{Hom}_{\bar{\mathbb{C}}}(\mathbb{V}^n \bar{X}, \bar{G}) = C^n(\bar{X}, \bar{G}).$$

We see that $\Theta(v) = u$.

Conversely, let v be an n-cochain $v \in C^n(\bar{X}, \bar{G}) = \operatorname{Hom}_{\bar{\mathbb{C}}}(\mathbb{V}^n \bar{X}, \bar{G})$. If $a = \pi_{n-1}(x, s_1, \ldots, s_{n-1})$, then $v(x, s_1, \ldots, s_{n-1}, 1) \in G_a$ and $u = \Theta(v) \in \prod_{c \in \mathbb{V}^{n-1}\bar{X}} G_{\pi_{n-1}c}$, since $u(c) \in G_a$ when $c = (x, s_1, \ldots, s_{n-1})$ and $\pi_{n-1}c = a$. The calculation above shows that $v = \Xi(u)$. Thus Θ and Ξ are mutually inverse bijections. Since the addition on $\prod_{c \in \mathbb{V}^{n-1}\bar{X}} G_{\pi_{n-1}c}$ is componentwise, and the addition on $\operatorname{Hom}_{\bar{\mathbb{C}}}(\mathbb{V}^n \bar{X}, \bar{A})$ is pointwise, Θ is in fact an isomorphism. Naturality is immediate. \Box

4. Lemma 3.1 suggests that we define

$$C^{n}(\bar{X}, \mathbb{G}) = \prod_{c \in \mathbb{V}^{n-1}\bar{X}} G_{\pi_{n-1}c}$$

Note that the latter depends only on \mathbb{G} . Then $C^n(\bar{X}, \bar{G}) \cong C^n(\bar{X}, \mathbb{G})$ when $\mathbb{G} = \mathbf{F}\bar{G}$. The coboundary becomes:

Lemma 3.2. Up to the natural isomorphisms $C^n(\bar{X}, \bar{G}) \cong C^n(\bar{X}, \mathbb{G})$,

$$(\delta^{n}u)(x, s_{1}, \dots, s_{n}) = u(x^{s_{1}}, s_{2}, \dots, s_{n}) + \sum_{0 < i < n} (-1)^{i}u(x, s_{1}, \dots, s_{i-1}, s_{i}s_{i+1}, s_{i+2}, \dots, s_{n}) + (-1)^{n}u(x, s_{1}, \dots, s_{n-1})^{s_{n}}$$

for all $u \in C^n(\overline{X}, \mathbb{G})$.

PROOF. The coboundary $C^n(\bar{X}, \mathbb{G}) \to C^{n+1}(\bar{X}, \mathbb{G})$ is really $\Theta \circ \delta^n \circ \Theta^{-1}$, where $\Theta : C^n(\bar{X}, \bar{G}) \to C^n(\bar{X}, \mathbb{G})$ is the natural isomorphism in Lemma 3.1. When $u \in C^n(\bar{X}, \mathbb{G})$, $v = \Theta^{-1}(u) : \mathbb{V}^n \bar{X} \to \bar{G}$ is given by

$$v(x, s_1, \dots, s_{n-1}, s_n) = u(x, s_1, \dots, s_{n-1})^{s_n}.$$

Then $w = \delta^n(v) = \sum_{0 \le i \le n} (-1)^i v \circ \epsilon_X^{n,i} : \mathbb{V}^{n+1} \bar{X} \to \bar{G}$ is given by

$$w(x, s_1, \dots, s_n, s_{n+1}) = \sum_{0 \le i \le n} (-1)^i v(\epsilon_X^{n,i}(x, s_1, \dots, s_n, s_{n+1}))$$

$$= v(x^{s_1}, s_2, \dots, s_n, s_{n+1}) + \sum_{0 < i < n} (-1)^i v(x, s_1, \dots, s_{i-1}, s_i s_{i+1}, s_{i+2}, \dots, s_{n+1}) + (-1)^n v(x, s_1, \dots, s_{n-1}, s_n s_{n+1})$$

Hence

$$\Theta(w)(x, s_1, \dots, s_n) = w(x, s_1, \dots, s_n, 1)$$

= $v(x^{s_1}, s_2, \dots, s_n, 1)$
+ $\sum_{0 \le i \le n} (-1)^i v(x, s_1, \dots, s_{i-1}, s_i s_{i+1}, s_{i+2}, \dots, s_n, 1)$

$$+ (-1)^{n} v(x, s_{1}, \dots, s_{n-1}, s_{n})$$

$$= u(x^{s_{1}}, s_{2}, \dots, s_{n})$$

$$+ \sum_{0 < i < n} (-1)^{i} u(x, s_{1}, \dots, s_{i-1}, s_{i}s_{i+1}, s_{i+2}, \dots, s_{n})$$

$$+ (-1)^{n} u(x, s_{1}, \dots, s_{n-1})^{s_{n}}.$$

In particular, a 1-cochain $u \in C^1(\bar{X}, \mathbb{G}) = \prod_{c \in \mathbb{V}^0 \bar{X}} G_{\pi_0 c} = \prod_{x \in X} G_{\pi x}$ is a family $u = (u(x))_{x \in X}$ such that $u(x) \in G_{\pi x}$ for all x, equivalently $u(x) \in G_a$ for all $x \in X_a$. Its coboundary is

$$(\delta u)(x,s) = u(x^s) - u(x)^s$$

A 1-cocycle is a 1-cochain z such that $z(x^s) = z(x)^s = \gamma_{a,s}(z(x))$ for all $x \in X_a$.

A 2-cochain $u \in \prod_{c \in \mathbb{V}^1 \bar{X}} G_{\pi_1 c} = \prod_{(x,s) \in X \times S} G_{\pi(x)s}$ is a family $u = (u(x,s))_{(x,s) \in X \times S}$ such that $u(x,s) \in G_{\pi(x)s}$ for all s, x; equivalently $u(x,s) \in G_{as}$ when $x \in X_a$. Its coboundary is

$$(\delta u)(x,s,t) = u(x^s,t) - u(x,st) + u(x,s)^t.$$

A 2-cocycle is a 2-cochain z such that $z(x, st) = z(x^s, t) + z(x, s)^t$ for all s, t, x. A 2-coboundary is a 2-cochain b of the form $b(x, s) = u(x^s) - u(x)^s$ for some 1-cochain u.

In general, Lemma 3.2 yields:

Theorem 3.3. Let $\overline{X} = (X, \pi)$ be a right S-set over A, \overline{G} be an abelian group object over A, and $\mathbb{G} = (G, \gamma) = \mathbf{F}\overline{G}$. Up to an isomorphism which is natural in \overline{X} and \overline{G} , the triple cohomology groups of \overline{X} with coefficients in \overline{G} are the homology groups $H^n(\overline{X}, \mathbb{G})$ of the complex

$$0 \to C^1(\bar{X}, \mathbb{G}) \to \cdots \to C^n(\bar{X}, \mathbb{G}) \xrightarrow{\delta^n} C^{n+1}(\bar{X}, \mathbb{G}) \to \cdots$$

in Lemma 3.2.

In other words, $H^n(\bar{X}, \bar{G}) \cong H^n(\bar{X}, \mathbb{G}) = Z^n(\bar{X}, \mathbb{G})/B^n(\bar{X}, \mathbb{G})$, where $Z^n(\bar{X}, \mathbb{G}) = \operatorname{Ker} \delta^n$, $B^n(\bar{X}, \mathbb{G}) = \operatorname{Im} \delta^{n-1}$ if $n \ge 2$, and $B^1(\bar{X}, \mathbb{G}) = 0$. Replacing $\bar{X} = (X, \pi)$ by $\bar{A} = (A, 1_A)$ in Theorem 3.3 yields the cohomology of A.

The cohomology of S-sets

5. Theorems A, B, and C yield basic properties of triple cohomology.

Theorem 3.4. If A is a free right S-set, then for every abelian group valued functor \mathbb{G} on A we have $H^n(A, \mathbb{G}) = 0$ for all $n \geq 2$.

This follows from Theorem A.

Theorem 3.5. Every short exact sequence $\mathcal{E} : 0 \to \mathbb{G} \to \mathbb{G}' \to \mathbb{G}'' \to 0$ of abelian group valued functors on A induces an exact sequence

$$\cdots H^n(A, \mathbb{G}) \to H^n(A, \mathbb{G}') \to H^n(A, \mathbb{G}'') \to H^{n+1}(A, \mathbb{G}) \cdots$$

which is natural in \mathcal{E} .

PROOF. This follows from Theorem B, applied to $\bar{X} = (A, 1_A)$. Exactness in the abelian category of abelian group valued functors on Ais pointwise [7]: $0 \to \mathbb{G} \to \mathbb{G}' \to \mathbb{G}'' \to 0$ is exact if and only if $0 \to G_a \to G'_a \to G''_a \to 0$ is exact for every $a \in A$. When \mathbb{G} is identified with the corresponding abelian group object $\mathbf{O}\mathbb{G}$, Lemma 3.1 provides for any $\bar{X} = (X, \xi) \in \bar{\mathbb{C}}$ a natural isomorphism

$$\operatorname{Hom}_{\bar{\mathbb{C}}}(\mathbb{V}\bar{X},\mathbb{G}) \cong C^1(\bar{X},\mathbb{G}) = \prod_{x \in X} G_{\xi x}.$$

Now

$$0 \to \prod_{x \in X} G_{\xi x} \to \prod_{x \in X} G'_{\xi x} \to \prod_{x \in X} G''_{\xi x} \to 0$$

is exact. Hence $\mathbb{G} \to \mathbb{G}' \to \mathbb{G}''$ is short \mathbb{V} -exact, and Theorem 3.5 follows from Theorem B.

Theorem 3.6. There is a one-to-one correspondence between elements of $H^2(A, \mathbb{G})$ and equivalence classes of group coextensions of A by \mathbb{G} .

This follows either from Theorem C and Proposition 2.4, or from [4] and the above descriptions of 2-cocycles and 2-coboundaries.

6. We prove one more property. As in [3] we show that the cohomology of A is that of a projective complex in the category \mathcal{F} of abelian group valued functors on A. This provides a more direct proof of Theorem 3.5.

For each $n \ge 1$ and $a \in A$ let

$$C_n(a) = \{(x, s_1, \dots, s_n) \in A \times S^n \mid x s_1 \dots s_n = a\}.$$

Let $C_n(A)_a$ be the free abelian group on $C_n(a)$. For each $s \in S$ there is a unique homomorphism $\kappa_{a,s} : C_n(A)_a \to C_n(A)_{as}$ such that

$$\kappa_{a,s}(x, s_1, \dots, s_n) = (x, s_1, \dots, s_{n-1}, s_n s).$$

Lemma 3.7. For every $n \ge 1$:

- (1) $\mathbb{C}_n(A) = (C_n(A), \kappa)$ is an abelian group valued functor on A;
- (2) there is an isomorphism $\operatorname{Hom}_{\mathfrak{F}}(\mathbb{C}_n(A), \mathbb{G}) \cong C^n(A, \mathbb{G})$ which is natural in \mathbb{G} ;
- (3) $\mathbb{C}_n(A)$ is projective in \mathfrak{F} .

PROOF. (1): $\kappa_{a,1}$ is the identity on $C_n(A)_a$, since it leaves fixed every generator of $C_n(A)_a$; $\kappa_{as,t} \circ \kappa_{a,s} = \kappa_{a,st}$ for all $s, t \in S$, since

$$\kappa_{as,t}(\kappa_{a,s}(x,s_1,\ldots,s_n)) = (x,s_1,\ldots,s_{n-1},s_nst)$$
$$= \kappa_{a,st}(x,s_1,\ldots,s_n)$$

for every generator of $C_n(A)_a$.

(2): Let $\varphi = (\varphi_a)_{a \in A}$ be a natural transformation $\varphi : \mathbb{C}_n(A) \to \mathbb{G} = (G, \gamma)$, so that $\gamma_{a,s} \circ \varphi_a = \varphi_{as} \circ \kappa_{a,s}$ for all a, s. For every $(x, s_1, \ldots, s_n) \in A \times S^n$,

$$\varphi_a(x, s_1, \dots, s_n) = \varphi_a(\kappa_{b, s_n}(x, s_1, \dots, s_{n-1}, 1))$$
$$= \gamma_{b, s_n}(\varphi_b(x, s_1, \dots, s_{n-1}, 1))$$

where $a = xs_1 \dots s_n$, $b = xs_1 \dots s_{n-1}$. Therefore φ is uniquely determined by the *n*-cochain $u = \Theta(\varphi)$ defined by

$$u(x, s_1, \dots, s_{n-1}) = \varphi_b(x, s_1, \dots, s_{n-1}, 1) \in G_b,$$

where $b = xs_1 \dots s_{n-1} = \pi_{n-1}(x, s_1, \dots, s_{n-1})$. In other words, the additive homomorphism Θ is injective.

Conversely let $u \in C^n(A, \mathbb{G}) = \prod_{c \in \mathbb{V}^{n-1}\bar{X}} G_{\pi_{n-1}c}$. For every $a \in A$ there is a unique homomorphism $\varphi_a : C_n(A)_a \to G_a$ such that

$$\varphi_a(x, s_1, \dots, s_n) = \gamma_{b, s_n} \big(u(x, s_1, \dots, s_{n-1}) \big)$$

The cohomology of S-sets

whenever $xs_1 \ldots s_n = a$, where $b = xs_1 \ldots s_{n-1}$. Then

$$\varphi_{as}(\kappa_{a,s}(x,s_1,\ldots,s_n)) = \varphi_{as}(x,s_1,\ldots,s_{n-1},s_ns)$$

= $\gamma_{b,s_ns}(u(x,s_1,\ldots,s_{n-1}))$
= $\gamma_{a,s}(\gamma_{b,s_n}(u(x,s_1,\ldots,s_{n-1})))$
= $\gamma_{a,s}(\varphi_a(x,s_1,\ldots,s_n))$

whenever $xs_1 \ldots s_n = a$, so that $\gamma_{a,s} \circ \varphi_a = \varphi_{as} \circ \kappa_{a,s}$ and $\varphi = (\varphi_a)_{a \in A}$ is a natural transformation $\varphi = \Phi(u) : \mathbb{C}_n(A) \to \mathbb{G}$. We have $\Theta(\varphi) = u$: indeed

$$(\Theta(\varphi))(x, s_1, \dots, s_{n-1}) = \varphi_a(x, s_1, \dots, s_{n-1}, 1) = u(x, s_1, \dots, s_{n-1})$$

where $a = xs_1 \dots s_{n-1}$, since $\gamma_{a,1}$ is the identity. If conversely $\varphi : \mathbb{C}_n(A) \to \mathbb{G}$ is a natural transformation, then

$$\Phi(\Theta(\varphi))_{a}(x, s_{1}, \dots, s_{n}) = \gamma_{b,s_{n}}(\Theta(\varphi)(x, s_{1}, \dots, s_{n-1}))$$
$$= \gamma_{b,s_{n}}(\varphi_{b}(x, s_{1}, \dots, s_{n-1}, 1))$$
$$= \varphi_{bs_{n}}(\kappa_{b,s_{n}}(x, s_{1}, \dots, s_{n-1}, 1))$$
$$= \varphi_{a}(x, s_{1}, \dots, s_{n})$$

whenever $xs_1 \ldots s_n = a$, with $b = xs_1 \ldots s_{n-1}$ as before. Therefore $\Phi(\Theta(\varphi))\bar{r} = \varphi$. Thus Θ and Φ are mutually inverse isomorphisms. Naturality is immediate.

(3): Epimorphisms in \mathcal{F} are pointwise [7]. If $\sigma : \mathbb{G} \to \mathbb{H}$ is an epimorphism, then every $\sigma_a : G_a \to H_a$ is surjective, and so is the induced homomorphism $\sigma^* : C^n(A, \mathbb{G}) \to C^n(A, \mathbb{H})$: indeed σ^* is given by

$$(\sigma^*(u))(c) = \sigma_{\pi c}(u(c))$$

for all $c \in C_n(A)$; given $v \in C^n(A, \mathbb{H})$ there is for every $v(c) \in H_{\pi c}$ some $u(c) \in G_{\pi c}$ such that $\sigma_{\pi c}(u(c)) = v(c)$, and then $u \in C^n(A, \mathbb{G})$ satisfies $\sigma^*(u) = v$. Then $\operatorname{Hom}_{\mathcal{F}}(\mathbb{C}_n(A), \mathbb{G}) \to \operatorname{Hom}_{\mathcal{F}}(\mathbb{C}_n(A), \mathbb{H})$ is an epimorphism, by (2), showing that $\mathbb{C}_n(A)$ is projective in \mathcal{F} . (This also follows from [7].)

Proposition 3.8. Up to natural isomorphisms, $H^n(A, \mathbb{G})$ is the cohomology of the projective complex

$$0 \leftarrow \mathbb{C}_1(A) \leftarrow \cdots \leftarrow \mathbb{C}_n(A) \leftarrow \mathbb{C}_{n+1}(A) \leftarrow \cdots$$

where $\partial : \mathbb{C}_n(A) \to \mathbb{C}_{n-1}(A)$ is given for all $n \ge 2$ by

$$\partial_a(x, s_1, \dots, s_n) = (xs_1, s_2, \dots, s_n) + \sum_{0 < i < n} (-1)^i (x, s_1, \dots, s_{i-1}, s_i s_{i+1}, s_{i+2}, \dots, s_n)$$

whenever $xs_1 \dots s_n = a$.

Proof. For every $u \in C^n(A, \mathbb{G})$

$$\begin{array}{cccc}
\mathbb{C}_{n-1}(A) & \longleftarrow & \mathbb{C}_n(A) \\
\Phi(u) & & & \downarrow \varphi \\
\mathbb{G} & & \mathbb{G}
\end{array}$$

we show that $\varphi = \Phi(u) \circ \partial$ satisfies $\Theta(\varphi) = \delta u$, where Φ and Θ are the natural isomorphisms in the proof of Lemma 3.7. We have

$$\begin{aligned} \varphi_a(x, s_1, \dots, s_n) &= \left(\Phi(u)\right)_a \left(\partial(x, s_1, \dots, s_n)\right) \\ &= \left(\Phi(u)\right)_a (xs_1, s_2, \dots, s_n) \\ &+ \sum_{0 < i < n-1} (-1)^i \left(\Phi(u)\right)_a (x, s_1, \dots, s_{i-1}, s_i s_{i+1}, s_{i+2}, \dots, s_n) \\ &+ (-1)^{n-1} \left(\Phi(u)\right)_a (x, s_1, \dots, s_{n-2}, s_{n-1} s_n) \\ &= \gamma_{b, s_n} \left(u(xs_1, s_2, \dots, s_{n-1})\right) \\ &+ \sum_{0 < i < n-1} (-1)^i \gamma_{b, s_n} \left(u(x, s_1, \dots, s_{i-1}, s_i s_{i+1}, s_{i+2}, \dots, s_{n-1})\right) \\ &+ (-1)^{n-1} \gamma_{c, s_{n-1} s_n} \left(u(x, s_1, \dots, s_{n-2})\right) \end{aligned}$$

whenever $xs_1 \ldots s_n = a$, with $b = xs_1 \ldots s_{n-1}$ and $c = xs_1 \ldots s_{n-2}$. Then

$$(\Theta(\varphi))(x, s_1, \dots, s_{n-1}) = \varphi_b(x, s_1, \dots, s_{n-1}, 1) = (u(xs_1, s_2, \dots, s_{n-1})) + \sum_{0 < i < n-1} (-1)^i (u(x, s_1, \dots, s_{i-1}, s_i s_{i+1}, s_{i+2}, \dots, s_{n-1})) + (-1)^{n-1} \gamma_{c, s_{n-1}} (u(x, s_1, \dots, s_{n-2})) = (\delta u)(x, s_1, \dots, s_{n-1}),$$

since $\gamma_{b,1}$ is the identity and

$$u(x, s_1, \dots, s_{n-2})^{s_{n-1}} = \gamma_{c, s_{n-1}} (u(x, s_1, \dots, s_{n-2})).$$

References

- M. BARR and J. BECK, Homology and standard constructions, Seminar on Triples and Categorical Homology Theory, Lecture Notes in Math., no. 80, Springer, Berlin - New York, 1969, 245–335.
- [2] J. BECK, Triples, algebras, and cohomology, Doct. Diss., Columbia Univ., 1967.
- [3] P. A. GRILLET, Commutative semigroups, Chapter XII, Kluwer Acad. Publ., Dordrecht, 2001.
- [4] P. A. GRILLET, Coset extensions of S-sets, (to appear in Acta Math. Hungar.).
- [5] J. LEECH, H-coextensions of monoids, Mem. Amer. Math. Soc. 157 (1975), 1-66.
- [6] S. MACLANE, Categories for the working mathematician, Springer-Verlag, New York, 1971.
- [7] B. MITCHELL, Theory of Categories, Acad. Press, New York, 1965.
- [8] C. WELLS, Extension theories for monoids, Semigroup Forum 16 (1978), 13-35.

PIERRE ANTOINE GRILLET TULANE UNIVERSITY NEW ORLEANS LA 70118 USA

(Received June 20, 2003; revised June 21, 2004)