Publ. Math. Debrecen 66/3-4 (2005), 417–426

A note on generalized inverses and a block-rank equation

By DRAGANA S. CVETKOVIĆ-ILIĆ (Niš)

Abstract. In this paper we study the rank equation $\operatorname{rank} \begin{bmatrix} A & B \\ C & X \end{bmatrix} = \operatorname{rank}(A)$ and find the necessary and sufficient conditions when $X = A^{(1,2)}$ and $X = A^d$ are the solutions of that equation. In both cases we give a explicit form of matrices B and C.

1. Introduction

Let $C^{m \times n}$ denote the set of complex $m \times n$ matrices. I_n denotes the unit matrix of order n. By A^* , R(A), rank(A) and N(A) we denote the conjugate transpose, the range, the rank and the null space of $A \in C^{n \times m}$. The symbol A^- stands for an arbitrary generalized inner inverse of A, i.e. A^- satisfies $AA^-A = A$. By A^{\dagger} we denote the Moore–Penrose inverse of A, i.e. the unique matrix A^{\dagger} satisfying

$$AA^{\dagger}A = A, \ A^{\dagger}AA^{\dagger} = A^{\dagger}, \ (AA^{\dagger})^* = AA^{\dagger}, \ (A^{\dagger}A)^* = A^{\dagger}A.$$

For $A \in C^{n \times n}$ the smallest nonnegative integer k such that $\operatorname{rank}(A^{k+1}) = \operatorname{rank}(A^k)$ is called the index of A and denoted by $\operatorname{ind}(A)$. If $A \in C^{n \times n}$, with $\operatorname{ind}(A) = k$, then the matrix $X \in C^{n \times n}$ which satisfies the following

Mathematics Subject Classification: 15A24, 15A09.

Key words and phrases: rank equation, generalized inverses, Drazin inverse.

Supported by Grant No. 1232 of the Ministry of Science, Technology and Development, Republic of Serbia.

Dragana S. Cvetković-Ilić

conditions

$$A^{\kappa}XA = A^{\kappa}, \ XAX = X, \ AX = XA,$$

is called the Drazin inverse of A and it is denoted by A^d . When ind(A) = 1 then the Drazin inverse A^d is called the group inverse and it is denoted by $A^{\#}$. Also, the matrix X which satisfies

$$AXA = A$$
 and $XAX = X$

is called the reflexive inverse of A and it is denoted by $A^{(1,2)}$. For other important properties of generalized inverses see [1] and [3].

In this paper we will consider the rank equation

1.

$$\operatorname{rank} \begin{bmatrix} A & B \\ C & X \end{bmatrix} = \operatorname{rank}(A), \tag{1}$$

for arbitrary $A \in C^{n \times n}$. First, we give a necessary and sufficient conditions such that $X = A^{(1,2)}$ is the solution of equation (1) and all possible matrices B and C are described. As a corollary we obtain the result of J. GROSS [8] and N. THOME and Y. WEI [7]. Moreover, we consider when $X = A^d$ is the solution of the equation (1), for an arbitrary matrix A with $ind(A) = k \ge 1$ and we obtain some interesting corollaries.

2. Main results

We start this section with some well-known results. The following lemma was proved in [4], [5] and [6].

Lemma 2.1. Let $A \in C^{n \times n}$, $B \in C^{n \times m}$, $C \in C^{m \times n}$ and $X \in C^{m \times m}$. Then

$$\operatorname{rank} \begin{bmatrix} A & B \\ C & X \end{bmatrix} = \operatorname{rank}(A) + \operatorname{rank}(L) + \operatorname{rank}(M) + \operatorname{rank}(W),$$

where $S = I_n - A^- A$, L = CS, M = SB and $W = (I_m - LL^-)(X - CA^- B)(I_m - M^- M)$.

The following theorem, which is proved by J. GROSS [8], gives a characterization of the existence of the solution of the equation (1) by means of geometrical conditions.

Theorem 2.1. Let $A \in C^{m \times n}$, $B \in C^{m \times m}$ and $C \in C^{n \times n}$. Then there exists a solution $X \in C^{n \times m}$ of the equation (1) if and only if $R(B) \subseteq R(A)$ and $R(C^*) \subseteq R(A^*)$, in which case $X = CA^{\dagger}B$.

Notice that the conditions $R(B) \subseteq R(A)$ and $R(C^*) \subseteq R(A^*)$ are equivalent to $AA^{\dagger}B = B$ and $CA^{\dagger}A = C$. Also, the matrix product $CA^{-}B$ is invariant with respect to the choice of generalized inverse A^{-} of A if and only if $R(B) \subseteq R(A)$ and $R(C^*) \subseteq R(A^*)$.

First we consider a necessary and sufficient conditions such that $X = A^{(1,2)}$ is the solution of the equation (1) and in this case we find the explicit form for B and C.

Matrix $A \in C^{m \times n}$ such that $\operatorname{rank}(A) = r$ can be decomposed by

$$A = P \begin{bmatrix} D & 0\\ 0 & 0 \end{bmatrix} Q,$$
 (2)

where $P \in C^{m \times m}$, $Q \in C^{n \times n}$ and $D \in C^{r \times r}$ are invertible matrices. Given that decomposition arbitrary reflexive generalized inverse of A has the following form

$$A^{(1,2)} = Q^{-1} \begin{bmatrix} D^{-1} & U \\ V & VDU \end{bmatrix} P^{-1}$$
(3)

where U and V are arbitrary matrices of suitable size (see [2]).

The following theorem gives a sufficient and necessary conditions such that $X = A^{(1,2)}$ is the solution of the equation (1).

Theorem 2.2. Let $A \in C^{m \times n}$, $B \in C^{m \times m}$ $C \in C^{n \times n}$ and $X \in C^{n \times m}$ and let the matrix A and its reflexive generalized inverse be given by (2) and (3) respectively. Then $X = A^{(1,2)}$ is the solution of the equation (1) if and only if

$$B = P \begin{bmatrix} DL & (DLD)U \\ 0 & 0 \end{bmatrix} P^{-1} \quad and \quad C = Q^{-1} \begin{bmatrix} D^{-1}L^{-1} & 0 \\ VL^{-1} & 0 \end{bmatrix} Q$$
(4)

for some nonsingular matrix $L \in C^{r \times r}$.

PROOF. Suppose that $X = A^{(1,2)}$ is the solution of the equation (1). Then there exist matrices $G \in C^{n \times m}$ and $F \in C^{n \times m}$ such that B = AG, Dragana S. Cvetković-Ilić

C = FA and $CA^{-}B = A^{(1,2)}$. Let

$$QGP = \begin{bmatrix} G_1 & G_2 \\ G_3 & G_4 \end{bmatrix}$$
 and $QFP = \begin{bmatrix} F_1 & F_2 \\ F_3 & F_4 \end{bmatrix}$

Hence,

$$B = AG = P \begin{bmatrix} D & 0 \\ 0 & 0 \end{bmatrix} \begin{bmatrix} G_1 & G_2 \\ G_3 & G_4 \end{bmatrix} P^{-1} = P \begin{bmatrix} DG_1 & DG_2 \\ 0 & 0 \end{bmatrix} P^{-1}$$
(5)

and

$$C = FA = Q^{-1} \begin{bmatrix} F_1 & F_2 \\ F_3 & F_4 \end{bmatrix} \begin{bmatrix} D & 0 \\ 0 & 0 \end{bmatrix} Q = Q^{-1} \begin{bmatrix} F_1 D & 0 \\ F_3 D & 0 \end{bmatrix} Q.$$
 (6)

Also,

$$A^{(1,2)} = FAG = Q^{-1} \begin{bmatrix} F_1 DG_1 & F_1 DG_2 \\ F_3 DG_1 & F_3 DG_2 \end{bmatrix} P^{-1}.$$

Now, from (3) we have that

$$F_1 DG_1 = D^{-1}, \quad F_1 DG_2 = U, \quad F_3 DG_1 = V.$$

From the first equation we obtain that F_1 , G_1 are invertible matrices and $F_1D = D^{-1}G_1^{-1}$. Now, $DG_2 = F_1^{-1}U = DG_1DU$ and $F_3D = VG_1^{-1}$. If we replace that in (5) and (6) and put $G_1 = L$, we obtain (4).

Now, suppose that (4) holds. Then $AA^{-}B = B$ and $C = CA^{-}A$, for generalized inner inverse A^{-} of A, which is given by

$$A^{-} = Q^{-1} \begin{bmatrix} D^{-1} & 0\\ 0 & 0 \end{bmatrix} P^{-1}$$

So by Theorem 2.1 there exists a solution $X = CA^{-}B$ of the equation (1). By (4) we can easily check that $X = CA^{-}B = A^{(1,2)}$.

Remark that when we consider the special reflexive inverse of A,

$$A^{(1,2)} = Q^{-1} \begin{bmatrix} D^{-1} & 0\\ 0 & 0 \end{bmatrix} P^{-1},$$
(7)

for U = V = 0, we obtain the ([7], Theorem 3).

Corollary 2.1. Let $A \in C^{m \times n}$, $B \in C^{m \times m}$, $C \in C^{n \times n}$ and $X \in C^{n \times m}$. Let the matrix A and one its reflexive generalized inverse be given by (2) and (7) respectively. Then $X = A^{(1,2)}$ is the solution of the equation (1) if and only if

$$B = P \begin{bmatrix} DL & 0 \\ 0 & 0 \end{bmatrix} P^{-1} \quad and \quad C = Q^{-1} \begin{bmatrix} D^{-1}L^{-1} & 0 \\ 0 & 0 \end{bmatrix} Q,$$
(8)

for some nonsingular matrix $L \in C^{r \times r}$.

Now, we consider the singular value decomposition of $A \in C^{m \times n}$ such that $\mathrm{rank}(A) = r$

$$A = M \begin{bmatrix} D & 0\\ 0 & 0 \end{bmatrix} N^*, \tag{9}$$

421

where $M \in C^{m \times m}$ and $N \in C^{n \times n}$ are unitary and $D \in C^{r \times r}$ is a real positive definite diagonal matrix. By Theorem 2.2 we obtain ([8], Theorem 2).

Corollary 2.2. Let $A \in C^{m \times n}$, $B \in C^{m \times m}$, $C \in C^{n \times n}$ and $X \in C^{n \times m}$. Let the matrix A be given by (9). Then $X = A^{\dagger}$ is the solution of the equation (1) if and only if

$$B = M \begin{bmatrix} DL & 0\\ 0 & 0 \end{bmatrix} M^* \quad and \quad C = N \begin{bmatrix} D^{-1}L^{-1} & 0\\ 0 & 0 \end{bmatrix} N^*, \tag{10}$$

for some nonsingular matrix $L \in C^{r \times r}$.

PROOF. Taking P = M and $Q = N^*$ in (2), we obtain that the matrix A has the representation (9) and in that case $A^{\dagger} = N \begin{bmatrix} D_0^{-1} & 0 \\ 0 & 0 \end{bmatrix} M^*$, which has the form (7). Hence, the result follows from Corollary 2.1.

In the rest of the paper, we consider the following question: When $X = A^d$ is the solution of the equation (1)?

First, let $A \in C^{n \times n}$ and ind(A) = 1. Using the Jordan canonical form of A, there exist nonsingular matrices $P \in C^{n \times n}$ and $D \in C^{r \times r}$ such that

$$A = P \begin{bmatrix} D & 0\\ 0 & 0 \end{bmatrix} P^{-1}.$$
 (11)

We obtain the result of N. THOME and Y. WEI ([7], Theorem 2).

Theorem 2.3. Let $A \in C^{n \times n}$ with ind(A) = 1 and rank(A) = r be given by (11) and $B, C, X \in C^{n \times n}$. Then $X = A^{\#}$ is the solution of the equation (1) if and only if

$$B = P \begin{bmatrix} DL & 0 \\ 0 & 0 \end{bmatrix} P^{-1} \text{ and } C = P \begin{bmatrix} D^{-1}L^{-1} & 0 \\ 0 & 0 \end{bmatrix} P^{-1}, \quad (12)$$

for some nonsingular matrix $L \in C^{r \times r}$.

PROOF. If the matrix A is given by (11), then $A^{\#} = P \begin{bmatrix} D^{-1} & 0 \\ 0 & 0 \end{bmatrix} P^{-1}$. Hence, the result follows from Corollary 2.1 taking $Q = P^{-1}$ and noticing that $A^{\#}$ is given by (7).

Now, we consider a more general case when $A \in C^{n \times n}$ is such that $ind(A) = k \ge 1$ and rank(A) = r. Then the matrix A can be written as

$$A = P^{-1} \begin{bmatrix} M & 0\\ 0 & N \end{bmatrix} P,$$
(13)

where $P \in C^{n \times n}$, $M \in C^{r \times r}$ are nonsingular matrices and $N \in C^{(n-r) \times (n-r)}$ is nilpotent, that is $N^k = 0$. In this case

$$A^d = P^{-1} \begin{bmatrix} M^{-1} & 0\\ 0 & 0 \end{bmatrix} P.$$

Theorem 2.4. Let $A \in C^{n \times n}$, with index (A) = k, be represented by (13) and $B, C, X \in C^{n \times n}$. Then $X = A^d$ is the solution of the equation (1) if and only if there exist $G_1, F_1 \in C^{r \times r}, G_2, F_2 \in C^{r \times (n-r)}, G_3, F_3 \in C^{(n-r) \times r}$ and $G_4, F_4 \in C^{(n-r) \times (n-r)}$ such that

$$B = P^{-1} \begin{bmatrix} MG_1 & MG_2 \\ NG_3 & NG_4 \end{bmatrix} P \text{ and } C = P^{-1} \begin{bmatrix} F_1M & F_2N \\ F_3M & F_4N \end{bmatrix} P$$
(14)

and

$$F_1MG_1 + F_2NG_3 = M^{-1},$$

$$F_1MG_2 + F_2NG_4 = 0,$$

$$F_3MG_1 + F_4NG_3 = 0,$$

$$F_3MG_2 + F_4NG_4 = 0.$$

(15)

PROOF. Suppose that $X = A^d$ is the solution of the equation (1). From Theorem 2.1 we have that $R(B) \subseteq R(A)$ and $R(C^*) \subseteq R(A^*)$, so there exist matrices G and F such that B = AG and C = FA and $A^d = CA^{\dagger}B$. Let

$$PGP^{-1} = \begin{bmatrix} G_1 & G_2 \\ G_3 & G_4 \end{bmatrix}$$
 and $PFP^{-1} = \begin{bmatrix} F_1 & F_2 \\ F_3 & F_4 \end{bmatrix}$.

It follows that

$$B = P^{-1} \begin{bmatrix} M & 0 \\ 0 & N \end{bmatrix} \begin{bmatrix} G_1 & G_2 \\ G_3 & G_4 \end{bmatrix} P = P^{-1} \begin{bmatrix} MG_1 & MG_2 \\ NG_3 & NG_4 \end{bmatrix} P$$

and

$$C = P^{-1} \begin{bmatrix} F_1 & F_2 \\ F_3 & F_4 \end{bmatrix} \begin{bmatrix} M & 0 \\ 0 & N \end{bmatrix} P = P^{-1} \begin{bmatrix} F_1 M & F_2 N \\ F_3 M & F_4 N \end{bmatrix} P.$$

Since the matrix A has the form (13), it follows that

$$A^{d} = P^{-1} \begin{bmatrix} M^{-1} & 0 \\ 0 & 0 \end{bmatrix} P$$
 and $A^{\dagger} = P^{-1} \begin{bmatrix} M^{-1} & 0 \\ 0 & N^{\dagger} \end{bmatrix} P.$

Hence,

$$\begin{split} A^{d} &= P^{-1} \begin{bmatrix} M^{-1} & 0\\ 0 & 0 \end{bmatrix} P \\ &= P^{-1} \begin{bmatrix} F_{1}M & F_{2}N\\ F_{3}M & F_{4}N \end{bmatrix} \begin{bmatrix} M^{-1} & 0\\ 0 & N^{\dagger} \end{bmatrix} \begin{bmatrix} MG_{1} & MG_{2}\\ NG_{3} & NG_{4} \end{bmatrix} P \\ &= P^{-1} \begin{bmatrix} F_{1}MG_{1} + F_{2}NG_{3} & F_{1}MG_{2} + F_{2}NG_{4}\\ F_{3}MG_{1} + F_{4}NG_{3} & F_{3}MG_{2} + F_{4}NG_{4} \end{bmatrix} P. \end{split}$$

We obtain the following system

$$F_1MG_1 + F_2NG_3 = M^{-1},$$

$$F_1MG_2 + F_2NG_4 = 0,$$

$$F_3MG_1 + F_4NG_3 = 0,$$

$$F_3MG_2 + F_4NG_4 = 0.$$

Conversely, suppose that the matrices B and C satisfied (14). Then we see that $AA^{\dagger}B = B$ and $C = CA^{\dagger}A$. From Theorem 2.1 we have that there exists a solution $X = CA^{\dagger}B$ of the equation (1). Now, from the system (15) it follows that $CA^{\dagger}B = A^d$, so $X = A^d$ is the solution of the equation (1).

Notice that Theorem 2.4 is a generalization of Theorem 2.3.

Now, we state some interesting results.

Theorem 2.5. Let $A \in C^{n \times n}$, with ind(A) = k has the form (13), let p, m, n be positive integers and $m, n \ge k$. Then $X = A^d$ is the solution of the equation

$$\operatorname{rank} \begin{bmatrix} A^p & A^n \\ A^m & X \end{bmatrix} = \operatorname{rank}(A^p), \tag{16}$$

if and only if $M^{m+n-p} = M^{-1}$.

PROOF. Suppose that $X = A^d$ is the solution of the equation (16). Then $A^d = A^m (A^p)^- A^n$. Hence,

$$P^{-1} \begin{bmatrix} M^{-1} & 0 \\ 0 & 0 \end{bmatrix} P$$

= $P^{-1} \begin{bmatrix} M^m & 0 \\ 0 & 0 \end{bmatrix} \begin{bmatrix} M^{-p} & 0 \\ 0 & (N^p)^{-} \end{bmatrix} \begin{bmatrix} M^n & 0 \\ 0 & 0 \end{bmatrix} P$
= $P^{-1} \begin{bmatrix} M^{(m+n-p)} & 0 \\ 0 & 0 \end{bmatrix} P$,

i.e. $M^{m+n-p} = M^{-1}$.

On the contrary, suppose that $M^{m+n-p} = M^{-1}$. First, we show that there exists a solution X of the equation (16), i.e. that $R(A^n) \subseteq R(A^p)$ and $N(A^p) \subseteq N(A^m)$.

If $y \in R(A^n)$, then there exists x such that $y = A^n x$, i.e.

$$y = P^{-1} \begin{bmatrix} M^n z_1 \\ 0 \end{bmatrix}$$
, where $Px = \begin{bmatrix} z_1 \\ z_2 \end{bmatrix}$.

Now,

$$y = P^{-1} \begin{bmatrix} M^p & 0\\ 0 & N^p \end{bmatrix} \begin{bmatrix} M^{(p-n)} z_1\\ 0 \end{bmatrix},$$

implying that $y = A^p x'$, where $x' = P^{-1} \begin{bmatrix} M^{(p-n)}z_1 \\ 0 \end{bmatrix}$. Hence, $R(A^n) \subseteq R(A^p)$ and analogously $N(A^p) \subseteq N(A^m)$. Using the same computation as in the first part, we obtain that $X = A^d$ is the solution of the equation (16).

Remark 1. Notice that Theorem 2.5 is also valid if we put f(n) and g(m) instead of n, m, where f, g are arbitrary positive functions.

Corollary 2.3. Let $A \in C^{n \times n}$, with ind(A) = k has the form (13), let p, m, n be positive integers such that $m, n \ge k$ and m + n = p - 1. Then $X = A^d$ is the solution of the equation (16).

Corollary 2.4. Let $A \in C^{n \times n}$, then

$$\operatorname{rank} \begin{bmatrix} A^{(2l+1)} & A^l \\ A^l & A^d \end{bmatrix} = \operatorname{rank} A^{(2l+1)},$$

for arbitrary integer $l \ge ind(A)$.

Corollary 2.5. Let $A \in C^{n \times n}$ and ind(A) = 1, then

$$\operatorname{rank} \begin{bmatrix} A^3 & A \\ A & A^{\#} \end{bmatrix} = \operatorname{rank}(A^3).$$

References

- A. BEN-ISRAEL and T. N. E. GREVILLE, Generalized inverses: Theory and Applications, Springer-Verlag, New York, 2003.
- [2] R. BRU and N. THOME, Group inverse and group involutory matrices, *Lin. Multilin. Alg.* 45 (2–3) (1998), 207–218.
- [3] S. R. CARADUS, Generalized Inverses and Operator Theory, Queen's Paper in Pure and Applied Mathematics, *Queen's University, Kingston, Ontario*, 1978.
- [4] G. MARSAGLIA and G. P. H. STYAN, Equalities and inequalities for ranks of matrices, *Lin. Multilin. Alg.* 2 (1974), 269–292.
- [5] C. D. MEYER JR, Generalized inverses and ranks of block matrices, SIAM Journal on Applied Mathematics 25 (1973), 597–602.

- D. S. Cvetković-Ilić : A note on generalized inverses...
- [6] D. V. QUELLETTE, Schur complements and statistics, *Linear Algebra Appl.* 36 (1981), 187–295.
- [7] N. THOME and Y. WEI, Generalized inverses and a block-rank equation, Appl. Math. Comput. 141 (2003), 471–476.
- [8] J. GROSS, Solution to a rank equation, Linear Algebra Appl. 289 (1999), 127-130.
- [9] Y. WEI, A characterization and representation of the Drazin inverse, SIAM J. Matrix. Anal. Appl. 17 (1996), 744–747.

DRAGANA S. CVETKOVIĆ-ILIĆ DEPARTMENT OF MATHEMATICS FACULTY OF SCIENCES AND MATHEMATICS UNIVERSITY OF NIŠ P.O. BOX 224, VIŠEGRADSKA 33, 18000 NIŠ SERBIA

426

E-mail: dragana@pmf.ni.ac.yu, gagamaka@ptt.yu

(Received August 25, 2003; revised December 30, 2003)