A note on generalized inverses and a block-rank equation

By DRAGANA S. CVETKOVIĆ-ILIĆ (Niš)

Abstract

In this paper we study the rank equation $\operatorname{rank}\left[\begin{array}{cc}A & B \\ C\end{array}\right]=\operatorname{rank}(A)$ and find the necessary and sufficient conditions when $X=A^{(1,2)}$ and $X=A^{d}$ are the solutions of that equation. In both cases we give a explicit form of matrices B and C.

1. Introduction

Let $C^{m \times n}$ denote the set of complex $m \times n$ matrices. I_{n} denotes the unit matrix of order n. By $A^{*}, R(A), \operatorname{rank}(A)$ and $N(A)$ we denote the conjugate transpose, the range, the rank and the null space of $A \in C^{n \times m}$. The symbol A^{-}stands for an arbitrary generalized inner inverse of A, i.e. A^{-}satisfies $A A^{-} A=A$. By A^{\dagger} we denote the Moore-Penrose inverse of A, i.e. the unique matrix A^{\dagger} satisfying

$$
A A^{\dagger} A=A, A^{\dagger} A A^{\dagger}=A^{\dagger},\left(A A^{\dagger}\right)^{*}=A A^{\dagger},\left(A^{\dagger} A\right)^{*}=A^{\dagger} A
$$

For $A \in C^{n \times n}$ the smallest nonnegative integer k such that $\operatorname{rank}\left(A^{k+1}\right)=$ $\operatorname{rank}\left(A^{k}\right)$ is called the index of A and denoted by $\operatorname{ind}(A)$. If $A \in C^{n \times n}$, with $\operatorname{ind}(A)=k$, then the matrix $X \in C^{n \times n}$ which satisfies the following

Mathematics Subject Classification: 15A24, 15A09.

Key words and phrases: rank equation, generalized inverses, Drazin inverse.
Supported by Grant No. 1232 of the Ministry of Science, Technology and Development, Republic of Serbia.
conditions

$$
A^{k} X A=A^{k}, X A X=X, A X=X A,
$$

is called the Drazin inverse of A and it is denoted by A^{d}. When $\operatorname{ind}(A)=1$ then the Drazin inverse A^{d} is called the group inverse and it is denoted by $A^{\#}$. Also, the matrix X which satisfies

$$
A X A=A \quad \text { and } \quad X A X=X
$$

is called the reflexive inverse of A and it is denoted by $A^{(1,2)}$. For other important properties of generalized inverses see [1] and [3].

In this paper we will consider the rank equation

$$
\operatorname{rank}\left[\begin{array}{ll}
A & B \tag{1}\\
C & X
\end{array}\right]=\operatorname{rank}(A)
$$

for arbitrary $A \in C^{n \times n}$. First, we give a necessary and sufficient conditions such that $X=A^{(1,2)}$ is the solution of equation (1) and all possible matrices B and C are described. As a corollary we obtain the result of J. Gross [8] and N. Thome and Y. Wei [7]. Moreover, we consider when $X=A^{d}$ is the solution of the equation (1), for an arbitrary matrix A with $\operatorname{ind}(A)=k \geq 1$ and we obtain some interesting corollaries.

2. Main results

We start this section with some well-known results. The following lemma was proved in [4], [5] and [6].

Lemma 2.1. Let $A \in C^{n \times n}, B \in C^{n \times m}, C \in C^{m \times n}$ and $X \in C^{m \times m}$. Then

$$
\operatorname{rank}\left[\begin{array}{cc}
A & B \\
C & X
\end{array}\right]=\operatorname{rank}(A)+\operatorname{rank}(L)+\operatorname{rank}(M)+\operatorname{rank}(W)
$$

where $S=I_{n}-A^{-} A, L=C S, M=S B$ and $W=\left(I_{m}-L L^{-}\right)(X-$ $\left.C A^{-} B\right)\left(I_{m}-M^{-} M\right)$.

The following theorem, which is proved by J. Gross [8], gives a characterization of the existence of the solution of the equation (1) by means of geometrical conditions.

Theorem 2.1. Let $A \in C^{m \times n}, B \in C^{m \times m}$ and $C \in C^{n \times n}$. Then there exists a solution $X \in C^{n \times m}$ of the equation (1) if and only if $R(B) \subseteq R(A)$ and $R\left(C^{*}\right) \subseteq R\left(A^{*}\right)$, in which case $X=C A^{\dagger} B$.

Notice that the conditions $R(B) \subseteq R(A)$ and $R\left(C^{*}\right) \subseteq R\left(A^{*}\right)$ are equivalent to $A A^{\dagger} B=B$ and $C A^{\dagger} A=C$. Also, the matrix product $C A^{-} B$ is invariant with respect to the choice of generalized inverse A^{-}of A if and only if $R(B) \subseteq R(A)$ and $R\left(C^{*}\right) \subseteq R\left(A^{*}\right)$.

First we consider a necessary and sufficient conditions such that $X=$ $A^{(1,2)}$ is the solution of the equation (1) and in this case we find the explicit form for B and C.

Matrix $A \in C^{m \times n}$ such that $\operatorname{rank}(A)=r$ can be decomposed by

$$
A=P\left[\begin{array}{ll}
D & 0 \tag{2}\\
0 & 0
\end{array}\right] Q
$$

where $P \in C^{m \times m}, Q \in C^{n \times n}$ and $D \in C^{r \times r}$ are invertible matrices. Given that decomposition arbitrary reflexive generalized inverse of A has the following form

$$
A^{(1,2)}=Q^{-1}\left[\begin{array}{cc}
D^{-1} & U \tag{3}\\
V & V D U
\end{array}\right] P^{-1}
$$

where U and V are arbitrary matrices of suitable size (see [2]).
The following theorem gives a sufficient and necessary conditions such that $X=A^{(1,2)}$ is the solution of the equation (1).

Theorem 2.2. Let $A \in C^{m \times n}, B \in C^{m \times m} C \in C^{n \times n}$ and $X \in C^{n \times m}$ and let the matrix A and its reflexive generalized inverse be given by (2) and (3) respectively. Then $X=A^{(1,2)}$ is the solution of the equation (1) if and only if

$$
B=P\left[\begin{array}{cc}
D L & (D L D) U \tag{4}\\
0 & 0
\end{array}\right] P^{-1} \quad \text { and } \quad C=Q^{-1}\left[\begin{array}{cc}
D^{-1} L^{-1} & 0 \\
V L^{-1} & 0
\end{array}\right] Q
$$

for some nonsingular matrix $L \in C^{r \times r}$.
Proof. Suppose that $X=A^{(1,2)}$ is the solution of the equation (1). Then there exist matrices $G \in C^{n \times m}$ and $F \in C^{n \times m}$ such that $B=A G$,
$C=F A$ and $C A^{-} B=A^{(1,2)}$. Let

$$
Q G P=\left[\begin{array}{ll}
G_{1} & G_{2} \\
G_{3} & G_{4}
\end{array}\right] \quad \text { and } \quad Q F P=\left[\begin{array}{ll}
F_{1} & F_{2} \\
F_{3} & F_{4}
\end{array}\right]
$$

Hence,

$$
B=A G=P\left[\begin{array}{cc}
D & 0 \tag{5}\\
0 & 0
\end{array}\right]\left[\begin{array}{ll}
G_{1} & G_{2} \\
G_{3} & G_{4}
\end{array}\right] P^{-1}=P\left[\begin{array}{cc}
D G_{1} & D G_{2} \\
0 & 0
\end{array}\right] P^{-1}
$$

and

$$
C=F A=Q^{-1}\left[\begin{array}{ll}
F_{1} & F_{2} \tag{6}\\
F_{3} & F_{4}
\end{array}\right]\left[\begin{array}{cc}
D & 0 \\
0 & 0
\end{array}\right] Q=Q^{-1}\left[\begin{array}{ll}
F_{1} D & 0 \\
F_{3} D & 0
\end{array}\right] Q
$$

Also,

$$
A^{(1,2)}=F A G=Q^{-1}\left[\begin{array}{ll}
F_{1} D G_{1} & F_{1} D G_{2} \\
F_{3} D G_{1} & F_{3} D G_{2}
\end{array}\right] P^{-1}
$$

Now, from (3) we have that

$$
F_{1} D G_{1}=D^{-1}, \quad F_{1} D G_{2}=U, \quad F_{3} D G_{1}=V
$$

From the first equation we obtain that F_{1}, G_{1} are invertible matrices and $F_{1} D=D^{-1} G_{1}^{-1}$. Now, $D G_{2}=F_{1}^{-1} U=D G_{1} D U$ and $F_{3} D=V G_{1}^{-1}$. If we replace that in (5) and (6) and put $G_{1}=L$, we obtain (4).

Now, suppose that (4) holds. Then $A A^{-} B=B$ and $C=C A^{-} A$, for generalized inner inverse A^{-}of A, which is given by

$$
A^{-}=Q^{-1}\left[\begin{array}{cc}
D^{-1} & 0 \\
0 & 0
\end{array}\right] P^{-1}
$$

So by Theorem 2.1 there exists a solution $X=C A^{-} B$ of the equation (1). By (4) we can easily check that $X=C A^{-} B=A^{(1,2)}$.

Remark that when we consider the special reflexive inverse of A,

$$
A^{(1,2)}=Q^{-1}\left[\begin{array}{cc}
D^{-1} & 0 \tag{7}\\
0 & 0
\end{array}\right] P^{-1}
$$

for $U=V=0$, we obtain the $([7]$, Theorem 3).

Corollary 2.1. Let $A \in C^{m \times n}, B \in C^{m \times m}, C \in C^{n \times n}$ and $X \in$ $C^{n \times m}$. Let the matrix A and one its reflexive generalized inverse be given by (2) and (7) respectively. Then $X=A^{(1,2)}$ is the solution of the equation (1) if and only if

$$
B=P\left[\begin{array}{cc}
D L & 0 \tag{8}\\
0 & 0
\end{array}\right] P^{-1} \quad \text { and } \quad C=Q^{-1}\left[\begin{array}{cc}
D^{-1} L^{-1} & 0 \\
0 & 0
\end{array}\right] Q,
$$

for some nonsingular matrix $L \in C^{r \times r}$.
Now, we consider the singular value decomposition of $A \in C^{m \times n}$ such that $\operatorname{rank}(A)=r$

$$
A=M\left[\begin{array}{ll}
D & 0 \tag{9}\\
0 & 0
\end{array}\right] N^{*},
$$

where $M \in C^{m \times m}$ and $N \in C^{n \times n}$ are unitary and $D \in C^{r \times r}$ is a real positive definite diagonal matrix. By Theorem 2.2 we obtain ([8], Theorem 2).

Corollary 2.2. Let $A \in C^{m \times n}, B \in C^{m \times m}, C \in C^{n \times n}$ and $X \in$ $C^{n \times m}$. Let the matrix A be given by (9). Then $X=A^{\dagger}$ is the solution of the equation (1) if and only if

$$
B=M\left[\begin{array}{cc}
D L & 0 \tag{10}\\
0 & 0
\end{array}\right] M^{*} \quad \text { and } \quad C=N\left[\begin{array}{cc}
D^{-1} L^{-1} & 0 \\
0 & 0
\end{array}\right] N^{*},
$$

for some nonsingular matrix $L \in C^{r \times r}$.
Proof. Taking $P=M$ and $Q=N^{*}$ in (2), we obtain that the matrix A has the representation (9) and in that case $A^{\dagger}=N\left[\begin{array}{cc}D_{0}^{-1} & 0 \\ 0 & 0\end{array}\right] M^{*}$, which has the form (7). Hence, the result follows from Corollary 2.1.

In the rest of the paper, we consider the following question: When $X=A^{d}$ is the solution of the equation (1)?

First, let $A \in C^{n \times n}$ and $\operatorname{ind}(A)=1$. Using the Jordan canonical form of A, there exist nonsingular matrices $P \in C^{n \times n}$ and $D \in C^{r \times r}$ such that

$$
A=P\left[\begin{array}{ll}
D & 0 \tag{11}\\
0 & 0
\end{array}\right] P^{-1} .
$$

We obtain the result of N. Thome and Y. Wei ([7], Theorem 2).

Theorem 2.3. Let $A \in C^{n \times n}$ with $\operatorname{ind}(A)=1$ and $\operatorname{rank}(A)=r$ be given by (11) and $B, C, X \in C^{n \times n}$. Then $X=A^{\#}$ is the solution of the equation (1) if and only if

$$
B=P\left[\begin{array}{cc}
D L & 0 \tag{12}\\
0 & 0
\end{array}\right] P^{-1} \quad \text { and } \quad C=P\left[\begin{array}{cc}
D^{-1} L^{-1} & 0 \\
0 & 0
\end{array}\right] P^{-1}
$$

for some nonsingular matrix $L \in C^{r \times r}$.
Proof. If the matrix A is given by (11), then $A^{\#}=P\left[\begin{array}{cc}D^{-1} & 0 \\ 0 & 0\end{array}\right] P^{-1}$. Hence, the result follows from Corollary 2.1 taking $Q=P^{-1}$ and noticing that $A^{\#}$ is given by (7).

Now, we consider a more general case when $A \in C^{n \times n}$ is such that $\operatorname{ind}(A)=k \geq 1$ and $\operatorname{rank}(A)=r$. Then the matrix A can be written as

$$
A=P^{-1}\left[\begin{array}{cc}
M & 0 \tag{13}\\
0 & N
\end{array}\right] P
$$

where $P \in C^{n \times n}, M \in C^{r \times r}$ are nonsingular matrices and $N \in C^{(n-r) \times(n-r)}$ is nilpotent, that is $N^{k}=0$. In this case

$$
A^{d}=P^{-1}\left[\begin{array}{cc}
M^{-1} & 0 \\
0 & 0
\end{array}\right] P
$$

Theorem 2.4. Let $A \in C^{n \times n}$, with index $(A)=k$, be represented by (13) and $B, C, X \in C^{n \times n}$.Then $X=A^{d}$ is the solution of the equation (1) if and only if there exist $G_{1}, F_{1} \in C^{r \times r}, G_{2}, F_{2} \in C^{r \times(n-r)}, G_{3}, F_{3} \in$ $C^{(n-r) \times r}$ and $G_{4}, F_{4} \in C^{(n-r) \times(n-r)}$ such that

$$
B=P^{-1}\left[\begin{array}{cc}
M G_{1} & M G_{2} \tag{14}\\
N G_{3} & N G_{4}
\end{array}\right] P \text { and } C=P^{-1}\left[\begin{array}{ll}
F_{1} M & F_{2} N \\
F_{3} M & F_{4} N
\end{array}\right] P
$$

and

$$
\begin{align*}
& F_{1} M G_{1}+F_{2} N G_{3}=M^{-1} \\
& F_{1} M G_{2}+F_{2} N G_{4}=0 \\
& F_{3} M G_{1}+F_{4} N G_{3}=0 \tag{15}\\
& F_{3} M G_{2}+F_{4} N G_{4}=0
\end{align*}
$$

Proof. Suppose that $X=A^{d}$ is the solution of the equation (1). From Theorem 2.1 we have that $R(B) \subseteq R(A)$ and $R\left(C^{*}\right) \subseteq R\left(A^{*}\right)$, so there exist matrices G and F such that $B=A G$ and $C=F A$ and $A^{d}=C A^{\dagger} B$. Let

$$
P G P^{-1}=\left[\begin{array}{ll}
G_{1} & G_{2} \\
G_{3} & G_{4}
\end{array}\right] \quad \text { and } \quad P F P^{-1}=\left[\begin{array}{ll}
F_{1} & F_{2} \\
F_{3} & F_{4}
\end{array}\right] .
$$

It follows that

$$
B=P^{-1}\left[\begin{array}{cc}
M & 0 \\
0 & N
\end{array}\right]\left[\begin{array}{ll}
G_{1} & G_{2} \\
G_{3} & G_{4}
\end{array}\right] P=P^{-1}\left[\begin{array}{cc}
M G_{1} & M G_{2} \\
N G_{3} & N G_{4}
\end{array}\right] P
$$

and

$$
C=P^{-1}\left[\begin{array}{ll}
F_{1} & F_{2} \\
F_{3} & F_{4}
\end{array}\right]\left[\begin{array}{cc}
M & 0 \\
0 & N
\end{array}\right] P=P^{-1}\left[\begin{array}{ll}
F_{1} M & F_{2} N \\
F_{3} M & F_{4} N
\end{array}\right] P .
$$

Since the matrix A has the form (13), it follows that

$$
A^{d}=P^{-1}\left[\begin{array}{cc}
M^{-1} & 0 \\
0 & 0
\end{array}\right] P \quad \text { and } \quad A^{\dagger}=P^{-1}\left[\begin{array}{cc}
M^{-1} & 0 \\
0 & N^{\dagger}
\end{array}\right] P .
$$

Hence,

$$
\begin{aligned}
A^{d} & =P^{-1}\left[\begin{array}{cc}
M^{-1} & 0 \\
0 & 0
\end{array}\right] P \\
& =P^{-1}\left[\begin{array}{ll}
F_{1} M & F_{2} N \\
F_{3} M & F_{4} N
\end{array}\right]\left[\begin{array}{cc}
M^{-1} & 0 \\
0 & N^{\dagger}
\end{array}\right]\left[\begin{array}{cc}
M G_{1} & M G_{2} \\
N G_{3} & N G_{4}
\end{array}\right] P \\
& =P^{-1}\left[\begin{array}{ll}
F_{1} M G_{1}+F_{2} N G_{3} & F_{1} M G_{2}+F_{2} N G_{4} \\
F_{3} M G_{1}+F_{4} N G_{3} & F_{3} M G_{2}+F_{4} N G_{4}
\end{array}\right] P .
\end{aligned}
$$

We obtain the following system

$$
\begin{aligned}
& F_{1} M G_{1}+F_{2} N G_{3}=M^{-1}, \\
& F_{1} M G_{2}+F_{2} N G_{4}=0, \\
& F_{3} M G_{1}+F_{4} N G_{3}=0, \\
& F_{3} M G_{2}+F_{4} N G_{4}=0 .
\end{aligned}
$$

Conversely, suppose that the matrices B and C satisfied (14). Then we see that $A A^{\dagger} B=B$ and $C=C A^{\dagger} A$. From Theorem 2.1 we have that there exists a solution $X=C A^{\dagger} B$ of the equation (1). Now, from the system (15) it follows that $C A^{\dagger} B=A^{d}$, so $X=A^{d}$ is the solution of the equation (1).

Notice that Theorem 2.4 is a generalization of Theorem 2.3.
Now, we state some interesting results.
Theorem 2.5. Let $A \in C^{n \times n}$, with $\operatorname{ind}(A)=k$ has the form (13), let p, m, n be positive integers and $m, n \geq k$. Then $X=A^{d}$ is the solution of the equation

$$
\operatorname{rank}\left[\begin{array}{cc}
A^{p} & A^{n} \tag{16}\\
A^{m} & X
\end{array}\right]=\operatorname{rank}\left(A^{p}\right)
$$

if and only if $M^{m+n-p}=M^{-1}$.
Proof. Suppose that $X=A^{d}$ is the solution of the equation (16). Then $A^{d}=A^{m}\left(A^{p}\right)^{-} A^{n}$. Hence,

$$
\begin{aligned}
& P^{-1} {\left[\begin{array}{cc}
M^{-1} & 0 \\
0 & 0
\end{array}\right] P } \\
&=P^{-1}\left[\begin{array}{cc}
M^{m} & 0 \\
0 & 0
\end{array}\right]\left[\begin{array}{cc}
M^{-p} & 0 \\
0 & \left(N^{p}\right)^{-}
\end{array}\right]\left[\begin{array}{cc}
M^{n} & 0 \\
0 & 0
\end{array}\right] P \\
& \quad=P^{-1}\left[\begin{array}{cc}
M^{(m+n-p)} & 0 \\
0 & 0
\end{array}\right] P,
\end{aligned}
$$

i.e. $M^{m+n-p}=M^{-1}$.

On the contrary, suppose that $M^{m+n-p}=M^{-1}$. First, we show that there exists a solution X of the equation (16), i.e. that $R\left(A^{n}\right) \subseteq R\left(A^{p}\right)$ and $N\left(A^{p}\right) \subseteq N\left(A^{m}\right)$.

If $y \in R\left(A^{n}\right)$, then there exists x such that $y=A^{n} x$, i.e.

$$
y=P^{-1}\left[\begin{array}{c}
M^{n} z_{1} \\
0
\end{array}\right], \quad \text { where } \quad P x=\left[\begin{array}{l}
z_{1} \\
z_{2}
\end{array}\right]
$$

Now,

$$
y=P^{-1}\left[\begin{array}{cc}
M^{p} & 0 \\
0 & N^{p}
\end{array}\right]\left[\begin{array}{c}
M^{(p-n)} z_{1} \\
0
\end{array}\right]
$$

implying that $y=A^{p} x^{\prime}$, where $x^{\prime}=P^{-1}\left[\begin{array}{c}M^{(p-n)} z_{1} \\ 0\end{array}\right]$. Hence, $R\left(A^{n}\right) \subseteq$ $R\left(A^{p}\right)$ and analogously $N\left(A^{p}\right) \subseteq N\left(A^{m}\right)$. Using the same computation as in the first part, we obtain that $X=A^{d}$ is the solution of the equation (16).

Remark 1. Notice that Theorem 2.5 is also valid if we put $f(n)$ and $g(m)$ instead of n, m, where f, g are arbitrary positive functions.

Corollary 2.3. Let $A \in C^{n \times n}$, with $\operatorname{ind}(A)=k$ has the form (13), let p, m, n be positive integers such that $m, n \geq k$ and $m+n=p-1$. Then $X=A^{d}$ is the solution of the equation (16).

Corollary 2.4. Let $A \in C^{n \times n}$, then

$$
\operatorname{rank}\left[\begin{array}{cc}
A^{(2 l+1)} & A^{l} \\
A^{l} & A^{d}
\end{array}\right]=\operatorname{rank} A^{(2 l+1)},
$$

for arbitrary integer $l \geq \operatorname{ind}(A)$.
Corollary 2.5. Let $A \in C^{n \times n}$ and $\operatorname{ind}(A)=1$, then

$$
\operatorname{rank}\left[\begin{array}{cc}
A^{3} & A \\
A & A^{\#}
\end{array}\right]=\operatorname{rank}\left(A^{3}\right) .
$$

References

[1] A. Ben-Israel and T. N. E. Greville, Generalized inverses: Theory and Applications, Springer-Verlag, New York, 2003.
[2] R. Bru and N. Thome, Group inverse and group involutory matrices, Lin. Multilin. Alg. 45 (2-3) (1998), 207-218.
[3] S. R. Caradus, Generalized Inverses and Operator Theory, Queen's Paper in Pure and Applied Mathematics, Queen's University, Kingston, Ontario, 1978.
[4] G. Marsaglia and G. P. H. Styan, Equalities and inequalities for ranks of matrices, Lin. Multilin. Alg. 2 (1974), 269-292.
[5] C. D. Meyer Jr, Generalized inverses and ranks of block matrices, SIAM Journal on Applied Mathematics 25 (1973), 597-602.
[6] D. V. Quellette, Schur complements and statistics, Linear Algebra Appl. $\mathbf{3 6}$ (1981), 187-295.
[7] N. Thome and Y. Wei, Generalized inverses and a block-rank equation, Appl. Math. Comput. 141 (2003), 471-476.
[8] J. Gross, Solution to a rank equation, Linear Algebra Appl. 289 (1999), 127-130.
[9] Y. Wei, A characterization and representation of the Drazin inverse, SIAM J. Matrix. Anal. Appl. 17 (1996), 744-747.

DRAGANA S. CVETKOVIĆ-ILIĆ
DEPARTMENT OF MATHEMATICS
FACULTY OF SCIENCES AND MATHEMATICS
UNIVERSITY OF NIŠ
P.O. BOX 224, VIŠEGRADSKA 33, 18000 NIŠ

SERBIA
E-mail: dragana@pmf.ni.ac.yu, gagamaka@ptt.yu
(Received August 25, 2003; revised December 30, 2003)

