Coexistence problems for Hill's equations with three-step potentials

By KAZUSHI YOSHITOMI (Tokyo)

Abstract

We study the coexistence of two linearly independent, periodic solutions of Hill's equation with a three-step potential. We give a simple, necessary and sufficient condition for the coexistence. Using this condition, we provide a formula for the number of nontrivial joints of the Arnold tongue of a family of Hill's equations with three-step potentials

1. Introduction

The purpose of this paper is to give a simple, necessary and sufficient condition for Hill's equation with a three-step potential to admit two linearly independent, periodic solutions.

Given a subdivision

$$
0=t_{0}<t_{1}<t_{2}<t_{3}=2 \pi
$$

of the interval $[0,2 \pi]$, we put

$$
t=\left(t_{1}, t_{2}\right) \quad \text { and } \quad s_{i}=t_{i}-t_{i-1} \quad \text { for } i=1,2,3
$$

For $a=\left(a_{1}, a_{2}, a_{3}\right) \in \mathbb{R}^{3}$, let $Q(a, t, \cdot): \mathbb{R} \rightarrow \mathbb{R}$ be a 2π-periodic step function such that

$$
Q(a, t, \cdot)=a_{i} \quad \text { on } \quad\left[t_{i-1}, t_{i}\right) \quad \text { for } i=1,2,3
$$

We are concerned with Hill's equation of the form

$$
\begin{equation*}
-y^{\prime \prime}(x)+Q(a, t, x) y(x)=\lambda y(x) \text { on } \mathbb{R}, \quad y, y^{\prime} \in A C_{\mathrm{loc}}(\mathbb{R}), \tag{1}
\end{equation*}
$$

where λ is a real parameter.
In order to formulate our claims, we recall from [5] some fundamental results and terminologies in the theory of Hill's equations. Let $y_{1}(a, t, \lambda, x)$ and $y_{2}(a, t, \lambda, x)$ be the solutions of the equation (1) subject to the initial conditions

$$
y_{1}(a, t, \lambda, 0)-1=y_{1}^{\prime}(a, t, \lambda, 0)=0
$$

and

$$
y_{2}(a, t, \lambda, 0)=y_{2}^{\prime}(a, t, \lambda, 0)-1=0,
$$

respectively. We introduce the discriminant of the equation (1):

$$
D(a, t, \lambda):=y_{1}(a, t, \lambda, 2 \pi)+y_{2}^{\prime}(a, t, \lambda, 2 \pi),
$$

which is analytic in λ. Denoting by $\lambda_{j}(a, t)$ the j th root of the equation $D(a, t, \cdot)^{2}-4=0$ counted with multiplicity for each $j \in \mathbb{N}$, we have by the Liapounoff oscillation theorem (see [5, Theorem 2.1])

$$
\begin{equation*}
\lambda_{1}(a, t)<\lambda_{2}(a, t) \leq \lambda_{3}(a, t)<\cdots<\lambda_{2 k}(a, t) \leq \lambda_{2 k+1}(a, t)<\cdots . \tag{2}
\end{equation*}
$$

This sequence also gives all the eigenvalues of (1) with the 4π-periodicity condition $y(\cdot+4 \pi)=y(\cdot)$ on \mathbb{R} repeated according to multiplicity, while the subsequence

$$
\lambda_{1}(a, t)<\lambda_{4}(a, t) \leq \lambda_{5}(a, t)<\cdots<\lambda_{4 k}(a, t) \leq \lambda_{4 k+1}(a, t)<\cdots
$$

provides all the eigenvalues of (1) with the 2π-periodicity condition repeated according to multiplicity. If the equation (1) admits two linearly independent, periodic solutions of period 2π or 4π, we say that two such solutions coexist (see [5, Section 7.1]). Such coexistence is equivalent to the condition

$$
\lambda=\lambda_{2 k}(a, t)=\lambda_{2 k+1}(a, t) \quad \text { for some } k \in \mathbb{N}=\{1,2,3, \ldots\} .
$$

The sequence (2) also characterizes the stability of the solutions of (1). Whenever all solutions of (1) are bounded on \mathbb{R} we say that they are stable; otherwise we say that they are unstable. By the Liapounoff theorem, we
see that the solutions of (1) are stable if and only if $\{\lambda\}$ is an interior point of the set

$$
\bigcup_{k=1}^{\infty}\left[\lambda_{2 k-1}(a, t), \lambda_{2 k}(a, t)\right] .
$$

We call $\left(\lambda_{2 k}(a, t), \lambda_{2 k+1}(a, t)\right)$ the k th instability interval for $k \in \mathbb{N}$. So the coexistence is also equivalent to the absence of the instability interval.

We define

$$
p_{i}=p_{i}\left(a_{i}, \lambda\right)=\sqrt{\lambda-a_{i}}, \quad \arg p_{i} \in\left\{0, \frac{\pi}{2}\right\} \quad \text { for } i=1,2,3
$$

Our main result is the following claim.
Theorem 1. Let $k \in \mathbb{N}$. Assume that $a_{m} \neq a_{n}$ for $m \neq n$. Then the statements (i) and (ii) below are equivalent.
(i) $\lambda=\lambda_{2 k}(a, t)=\lambda_{2 k+1}(a, t)$.
(ii) $s_{1} p_{1}\left(a_{1}, \lambda\right)+s_{2} p_{2}\left(a_{2}, \lambda\right)+s_{3} p_{3}\left(a_{3}, \lambda\right)=k \pi$ and $s_{i} p_{i}\left(a_{i}, \lambda\right) \in \pi \mathbb{N}$ for $i=1,2,3$.
Remark. For $k \in \mathbb{N}$, we claim by Theorem 1 that the k th instability interval is absent if and only if there exists $\lambda \in \mathbb{R}$ satisfying the statement (ii). In particular, both the first instability interval and the second instability interval are always present, provided that $a_{m} \neq a_{n}$ for $m \neq n$.

Next we give an application of the above theorem. We consider the family of Hill's equations

$$
-y^{\prime \prime}(x)+\beta Q(a, t, x) y(x)=\lambda y(x) \text { on } \mathbb{R}, \quad \lambda \in \mathbb{R}
$$

indexed by $\beta \in \mathbb{R}$. For $k \in \mathbb{N}$, we define

$$
R_{k}(a, t)=\left\{(\mu, \beta) \in \mathbb{R}^{2} \mid \lambda_{2 k}(\beta a, t)<\mu<\lambda_{2 k+1}(\beta a, t)\right\}
$$

and

$$
P_{k}(a, t)=\left\{(\mu, \beta) \in \mathbb{R}^{2} \mid \mu=\lambda_{2 k}(\beta a, t)=\lambda_{2 k+1}(\beta a, t), \beta \neq 0\right\}
$$

The set $R_{k}(a, t)$ is called the Arnord tongue or the instability region. The elements of $P_{k}(a, t)$ are called the resonance pockets, which are the nontrivial joints of $R_{k}(a, t)$. For a finite set K, we denote its cardinality by $\sharp K$. We note that $\sharp P_{k}(a, t)$ is equal to the number of bounded, connected components of $R_{k}(a, t)$. The following theorem gives a formula for $\sharp P_{k}(a, t)$.

Theorem 2. Let $k \in \mathbb{N}$. Suppose that $a_{m} \neq a_{n}$ for $m \neq n$. Then it holds that

$$
\begin{gathered}
\sharp P_{k}(a, t)=\sharp\left\{\left(l_{1}, l_{2}, l_{3}\right) \in \mathbb{N}^{3} \left\lvert\, \frac{a_{2}-a_{3}}{s_{1}^{2}} l_{1}^{2}+\frac{a_{3}-a_{1}}{s_{2}^{2}} l_{2}^{2}+\frac{a_{1}-a_{2}}{s_{3}^{2}} l_{3}^{2}=0\right.,\right. \\
\\
\left.s_{2} l_{1} \neq s_{1} l_{2}, l_{1}+l_{2}+l_{3}=k\right\} .
\end{gathered}
$$

The coexistence problems for Hill's equations with two-step potentials have been studied in [2]-[4], and [6]. In order to review those results, we introduce needed notations. Given $0<\kappa<2 \pi$ and $b=\left(b_{1}, b_{2}\right) \in \mathbb{R}^{2}$ with $b_{1} \neq b_{2}$, let $W(b, \kappa, \cdot): \mathbb{R} \rightarrow \mathbb{R}$ be a 2π-periodic function such that $W(b, \kappa, \cdot)=b_{1}$ on $[0, \kappa)$ and that $W(b, \kappa, \cdot)=b_{2}$ on $[\kappa, 2 \pi)$. E. Meissner [6] was the first to study the characteristic value problem

$$
-z^{\prime \prime}(x)=\nu^{2} W(b, \kappa, x) z(x) \text { on } \mathbb{R}, \quad \nu>0
$$

where $b_{1}, b_{2}>0$. He solved the coexistence problem for this equation in the case when $\kappa=\pi$. Furthermore, H. Hochstadt [4] investigated this problem for general κ. He proved that two linearly independent, periodic solutions to this equation can coexist for some ν if and only if the number $\sqrt{b_{2} / b_{1}}(2 \pi-\kappa) / \kappa$ is rational. His method is based on a factorization of the function $\Delta(\nu) \pm 2$, where $\Delta(\nu)$ stands for the discriminant of this equation. Recently, Shaobo Gan and Meirong Zhang [2], [3] studied the eigenvalue problem

$$
-z^{\prime \prime}(x)+W(b, \kappa, x) z(x)=\nu z(x) \text { on } \mathbb{R}, \quad \nu \in \mathbb{R}
$$

where $b_{1}, b_{2} \in \mathbb{R}$. They obtained a necessary and sufficient condition for the coexistence (see [2, Theorem 2.3] and [3, Proposition 3.1]). They also proved that the number of the resonance pockets in the nth instability region of the family of equations

$$
-z^{\prime \prime}(x)+\alpha W(b, \kappa, x) z(x)=\nu z(x) \text { on } \mathbb{R}, \quad \nu \in \mathbb{R}, \alpha \in \mathbb{R}
$$

is given by

$$
\begin{cases}n-2 & \text { for } \frac{n \kappa}{2 \pi} \in \mathbb{N} \\ n-1 & \text { for } \frac{n \kappa}{2 \pi} \notin \mathbb{N}\end{cases}
$$

Their method is based on a characterization of the eigenvalue by the rotation number of the Prüfer transform of the solution.

Our idea to prove Theorem 1 is different from the ones in [2]-[4], and [6]; we make effective use of the full components of the monodromy matrix. This enables us to reduce the problem to a simple arithmetic.

2. Proof of theorems

By $M(a, t, \lambda)$ we denote the monodromy matrix of (1) :

$$
M(a, t, \lambda)=\left(\begin{array}{ll}
y_{1}(a, t, \lambda, 2 \pi) & y_{2}(a, t, \lambda, 2 \pi) \\
y_{1}^{\prime}(a, t, \lambda, 2 \pi) & y_{2}^{\prime}(a, t, \lambda, 2 \pi)
\end{array}\right)
$$

Using $-y_{j}^{\prime \prime}(x)=\left(\lambda-a_{i}\right) y_{j}(x)$ on $\left(t_{i-1}, t_{i}\right)$ for $i=1,2,3$ and $j=1,2$, we have, in the case when $p_{1}\left(a_{1}, \lambda\right) p_{2}\left(a_{2}, \lambda\right) p_{3}\left(a_{3}, \lambda\right) \neq 0$,

$$
\begin{align*}
& y_{1}(a, t, \lambda, 2 \pi) \\
& \quad=\cos s_{1} p_{1} \cos s_{2} p_{2} \cos s_{3} p_{3}-\frac{p_{1}}{p_{2}} \sin s_{1} p_{1} \sin s_{2} p_{2} \cos s_{3} p_{3} \\
& \quad-\frac{p_{1}}{p_{3}} \sin s_{1} p_{1} \cos s_{2} p_{2} \sin s_{3} p_{3}-\frac{p_{2}}{p_{3}} \cos s_{1} p_{1} \sin s_{2} p_{2} \sin s_{3} p_{3} \tag{3}
\end{align*}
$$

$$
\begin{align*}
& y_{1}^{\prime}(a, t, \lambda, 2 \pi) \\
& \qquad=-p_{1} \sin s_{1} p_{1} \cos s_{2} p_{2} \cos s_{3} p_{3}-p_{2} \cos s_{1} p_{1} \sin s_{2} p_{2} \cos s_{3} p_{3} \\
& \quad-p_{3} \cos s_{1} p_{1} \cos s_{2} p_{2} \sin s_{3} p_{3}+\frac{p_{1} p_{3}}{p_{2}} \sin s_{1} p_{1} \sin s_{2} p_{2} \sin s_{3} p_{3} \tag{4}
\end{align*}
$$

$$
=\frac{1}{p_{1}} \sin s_{1} p_{1} \cos s_{2} p_{2} \cos s_{3} p_{3}+\frac{1}{p_{2}} \cos s_{1} p_{1} \sin s_{2} p_{2} \cos s_{3} p_{3}
$$

$$
\begin{equation*}
+\frac{1}{p_{3}} \cos s_{1} p_{1} \cos s_{2} p_{2} \sin s_{3} p_{3}-\frac{p_{2}}{p_{1} p_{3}} \sin s_{1} p_{1} \sin s_{2} p_{2} \sin s_{3} p_{3} \tag{5}
\end{equation*}
$$

$$
\begin{align*}
& y_{2}^{\prime}(a, t, \lambda, 2 \pi) \\
& \quad=\cos s_{1} p_{1} \cos s_{2} p_{2} \cos s_{3} p_{3}-\frac{p_{2}}{p_{1}} \sin s_{1} p_{1} \sin s_{2} p_{2} \cos s_{3} p_{3} \\
& \quad-\frac{p_{3}}{p_{1}} \sin s_{1} p_{1} \cos s_{2} p_{2} \sin s_{3} p_{3}-\frac{p_{3}}{p_{2}} \cos s_{1} p_{1} \sin s_{2} p_{2} \sin s_{3} p_{3} \tag{6}
\end{align*}
$$

$$
y_{2}(a, t, \lambda, 2 \pi)
$$

Notice that the statement (i) in Theorem 1 is equivalent to the condition

$$
M(a, t, \lambda)=(-1)^{k}\left(\begin{array}{ll}
1 & 0 \tag{7}\\
0 & 1
\end{array}\right) \quad \text { and } \quad \lambda \in\left\{\lambda_{2 k}(a, t), \lambda_{2 k+1}(a, t)\right\}
$$

(see the proof of [5, Lemma 2.4]). Let us demonstrate Theorem 1.
Proof of Theorem 1. It suffices to show that (ii) in Theorem 1 and (7) are equivalent.

Let us prove that (7) yields (ii). Assume that (7) holds. Our first task is to deduce that $\sin s_{1} p_{1} \sin s_{2} p_{2} \sin s_{3} p_{3}=0$ by contradiction. Suppose that $\sin s_{1} p_{1} \sin s_{2} p_{2} \sin s_{3} p_{3} \neq 0$. We put $x_{i}=\cot s_{i} p_{i}$ for $i=1,2,3$. Inserting (3) $\sim(6)$ into the equalities
$y_{1}^{\prime}(a, t, \lambda, 2 \pi)=0, \quad y_{2}(a, t, \lambda, 2 \pi)=0, \quad y_{2}^{\prime}(a, t, \lambda, 2 \pi)-y_{1}(a, t, \lambda, 2 \pi)=0$, and dividing those by $\sin s_{1} p_{1} \sin s_{2} p_{2} \sin s_{3} p_{3}$, we obtain

$$
\begin{gather*}
\frac{p_{1} p_{3}}{p_{2}}-p_{1} x_{2} x_{3}-p_{2} x_{1} x_{3}-p_{3} x_{1} x_{2}=0 \tag{8}\\
-\frac{p_{2}}{p_{1} p_{3}}+\frac{1}{p_{1}} x_{2} x_{3}+\frac{1}{p_{2}} x_{1} x_{3}+\frac{1}{p_{3}} x_{1} x_{2}=0 \tag{9}\\
x_{3}=-\frac{\left(p_{1}^{2}-p_{3}^{2}\right) p_{2}}{\left(p_{1}^{2}-p_{2}^{2}\right) p_{3}} x_{2}-\frac{\left(p_{2}^{2}-p_{3}^{2}\right) p_{1}}{\left(p_{1}^{2}-p_{2}^{2}\right) p_{3}} x_{1} \tag{10}
\end{gather*}
$$

We deduce from (8) and (9) that

$$
\begin{equation*}
\left(-p_{1} p_{2}^{2}+p_{1} p_{3}^{2}\right) x_{2} x_{3}+\left(-p_{2}^{3}+\frac{p_{1}^{2} p_{3}^{2}}{p_{2}}\right) x_{1} x_{3}+\left(-p_{3} p_{2}^{2}+p_{1}^{2} p_{3}\right) x_{1} x_{2}=0 \tag{11}
\end{equation*}
$$

Plugging (10) into (11), we have
$\left(p_{2}^{2}-p_{3}^{2}\right)\left(p_{1}^{2}-p_{3}^{2}\right) p_{1} p_{2} x_{2}^{2}+2 p_{1}^{2}\left(p_{2}^{2}-p_{3}^{2}\right)^{2} x_{1} x_{2}-\frac{p_{1}\left(p_{1}^{2} p_{3}^{2}-p_{2}^{4}\right)\left(p_{2}^{2}-p_{3}^{2}\right)}{p_{2}} x_{1}^{2}=0$
and hence

$$
\begin{equation*}
x_{2}=\left\{-\frac{p_{1}\left(p_{2}^{2}-p_{3}^{2}\right)}{p_{2}\left(p_{1}^{2}-p_{3}^{2}\right)} \pm \frac{p_{3}\left(p_{1}^{2}-p_{2}^{2}\right)}{p_{2}\left(p_{1}^{2}-p_{3}^{2}\right)}\right\} x_{1} . \tag{12}
\end{equation*}
$$

This together with (10) implies that

$$
\begin{equation*}
x_{3}=\mp x_{1} . \tag{13}
\end{equation*}
$$

Combining (8) with (12) and (13), we conclude that

$$
x_{1}^{2}=-1
$$

This violates the fact that $\cot z \neq \pm \sqrt{-1}$ for $z \in \mathbb{C}$. Thus we get $\sin s_{1} p_{1} \sin s_{2} p_{2} \sin s_{3} p_{3}=0$.

Next we shall show that $p_{1} p_{2} p_{3} \neq 0$. Let us first prove that $p_{1} \neq 0$ by contradiction. Suppose that $p_{1}=0$. Noting $y_{j}^{\prime \prime}(x)=0$ on $\left(t_{0}, t_{1}\right)$ for $j=1,2$, we have

$$
\begin{align*}
y_{1}(a, t, \lambda, 2 \pi)= & \cos s_{2} p_{2} \cos s_{3} p_{3}-\frac{p_{2}}{p_{3}} \sin s_{2} p_{2} \sin s_{3} p_{3} \tag{14}\\
y_{2}^{\prime}(a, t, \lambda, 2 \pi)= & \cos s_{2} p_{2} \cos s_{3} p_{3}-\frac{p_{3}}{p_{2}} \sin s_{2} p_{2} \sin s_{3} p_{3} \\
& -s_{1}\left(p_{2} \sin s_{2} p_{2} \cos s_{3} p_{3}+p_{3} \cos s_{2} p_{2} \sin s_{3} p_{3}\right) \tag{15}\\
y_{1}^{\prime}(a, t, \lambda, 2 \pi)= & -p_{2} \sin s_{2} p_{2} \cos s_{3} p_{3}-p_{3} \cos s_{2} p_{2} \sin s_{3} p_{3} \tag{16}\\
y_{2}(a, t, \lambda, 2 \pi)= & s_{1} \cos s_{2} p_{2} \cos s_{3} p_{3}-\frac{s_{1} p_{2}}{p_{3}} \sin s_{2} p_{2} \sin s_{3} p_{3} \\
& +\frac{1}{p_{2}} \sin s_{2} p_{2} \cos s_{3} p_{3}+\frac{1}{p_{3}} \cos s_{2} p_{2} \sin s_{3} p_{3} \tag{17}
\end{align*}
$$

Inserting (14) and (15) into $y_{1}(a, t, \lambda, 2 \pi)-y_{2}^{\prime}(a, t, \lambda, 2 \pi)=0$, and combining that with (16) and $y_{1}^{\prime}(a, t, \lambda, 2 \pi)=0$, we obtain

$$
\frac{p_{2}^{2}-p_{3}^{2}}{p_{2} p_{3}} \sin s_{2} p_{2} \sin s_{3} p_{3}=0
$$

and hence

$$
\sin s_{2} p_{2} \sin s_{3} p_{3}=0
$$

This together with $y_{1}(a, t, \lambda, 2 \pi)=(-1)^{k}$ and (14) implies that

$$
\cos s_{2} p_{2} \cos s_{3} p_{3}=(-1)^{k}
$$

and thus $\sin s_{2} p_{2}=\sin s_{3} p_{3}=0$. Therefore, we infer by (17) that

$$
y_{2}(a, t, \lambda, 2 \pi)=s_{1}(-1)^{k} \neq 0
$$

which is a contradiction. Hence we have $p_{1} \neq 0$. Similarly we get $p_{2} \neq 0$ and $p_{3} \neq 0$.

Next we shall show that $\sin s_{1} p_{1}=\sin s_{2} p_{2}=\sin s_{3} p_{3}=0$. Because $\sin s_{1} p_{1} \sin s_{2} p_{2} \sin s_{3} p_{3}=0$, we have $\sin s_{1} p_{1}=0$ or $\sin s_{2} p_{2}=0$ or $\sin s_{3} p_{3}=0$. We first consider the case that $\sin s_{1} p_{1}=0$. By (3), (6), and $y_{1}(a, t, \lambda, 2 \pi)=y_{2}^{\prime}(a, t, \lambda, 2 \pi)= \pm 1$, we obtain

$$
\begin{gathered}
\cos s_{2} p_{2} \cos s_{3} p_{3}-\frac{p_{2}}{p_{3}} \sin s_{2} p_{2} \sin s_{3} p_{3} \\
=\cos s_{2} p_{2} \cos s_{3} p_{3}-\frac{p_{3}}{p_{2}} \sin s_{2} p_{2} \sin s_{3} p_{3}= \pm 1 .
\end{gathered}
$$

Thus we have $\sin s_{1} p_{1}=\sin s_{2} p_{2}=\sin s_{3} p_{3}=0$. This conclusion also follows from $\sin s_{2} p_{2}=0$ or $\sin s_{3} p_{3}=0$ in a similar manner.

Because $\sin s_{1} p_{1}=\sin s_{2} p_{2}=\sin s_{3} p_{3}=0$ and $p_{1} p_{2} p_{3} \neq 0$, we have $s_{i} p_{i} \in \pi \mathbb{N}$ for $i=1,2,3$. So we get

$$
y_{1}(a, t, \lambda, x)= \begin{cases}\cos x p_{1} & \text { for } x \in\left[0, t_{1}\right) \\ \cos \left(x-t_{1}\right) p_{2} \cos s_{1} p_{1} & \text { for } x \in\left[t_{1}, t_{2}\right) \\ \cos \left(x-t_{2}\right) p_{3} \cos s_{2} p_{2} \cos s_{1} p_{1} & \text { for } x \in\left[t_{2}, 2 \pi\right)\end{cases}
$$

Therefore we see that the number of zeros of $y_{1}(a, t, \lambda, \cdot)$ inside $[0,2 \pi)$ is

$$
\left(s_{1} p_{1}+s_{2} p_{2}+s_{3} p_{3}\right) / \pi .
$$

Since

$$
M(a, t, \lambda)=(-1)^{k}\left(\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right),
$$

we infer that $y_{1}(a, t, \lambda, x)$ is a periodic solution of (1) of period 2π or 4π. Because $\lambda \in\left\{\lambda_{2 k}(a, t), \lambda_{2 k+1}(a, t)\right\}$, the Haupt Theorem (see [1, Chapter 8, Theorem 3.1]) implies that $y_{1}(a, t, \lambda, \cdot)$ has exactly k zeros in $[0,2 \pi)$. Thus it follows that $\left(s_{1} p_{1}+s_{2} p_{2}+s_{3} p_{3}\right) / \pi=k$. Hence we obtain (ii).

Finally we shall prove that (ii) implies (7). Suppose that (ii) holds. By (3) ~ (6) we have

$$
M(a, t, \lambda)=(-1)^{k}\left(\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right) .
$$

As in the above observation, we see that $y_{1}(a, t, \lambda, x)$ is a periodic solution of (1) of period 2π or 4π and that the number of zeros of $y_{1}(a, t, \lambda, \cdot)$ inside
$[0,2 \pi)$ is k. Thus the Haupt theorem again implies that

$$
\lambda \in\left\{\lambda_{2 k}(a, t), \lambda_{2 k+1}(a, t)\right\} .
$$

Hence we obtain (7).
We are now in a position to demonstrate Theorem 2.
Proof of Theorem 2. Notice that $s_{i} p_{i}\left(\beta a_{i}, \lambda\right) \in \pi \mathbb{N}$ if and only if there exists $m_{i} \in \mathbb{N}$ such that

$$
\lambda-\beta a_{i}=\frac{\pi^{2} m_{i}^{2}}{s_{i}^{2}} .
$$

Thus we see by Theorem 1 that, for $\beta \in \mathbb{R}-\{0\}$, the equality

$$
\lambda_{2 k}(\beta a, t)=\lambda_{2 k+1}(\beta a, t)
$$

holds if and only if there exist $\left(l_{1}, l_{2}, l_{3}\right) \in \mathbb{N}^{3}$ and $\lambda \in \mathbb{R}$ satisfying the conditions (18) $\sim(21)$ below.

$$
\begin{align*}
& \lambda-\beta a_{1}=\frac{\pi^{2} l_{1}^{2}}{s_{1}^{2}} \tag{18}\\
& \lambda-\beta a_{2}=\frac{\pi^{2} l_{2}^{2}}{s_{2}^{2}} \tag{19}\\
& \lambda-\beta a_{3}=\frac{\pi^{2} l_{3}^{2}}{s_{3}^{2}} \tag{20}\\
& l_{1}+l_{2}+l_{3}=k \tag{21}
\end{align*}
$$

We find that the existence of such $\left(l_{1}, l_{2}, l_{3}\right) \in \mathbb{N}^{3}$ and $\lambda \in \mathbb{R}$ is unique, since the function $\mathbb{R} \ni t \mapsto t-\beta a_{i} \in \mathbb{R}$ is strictly monotone increasing. Both (18) and (19) hold if and only if both

$$
\beta=\frac{\pi^{2}}{a_{2}-a_{1}}\left(\frac{l_{1}^{2}}{s_{1}^{2}}-\frac{l_{2}^{2}}{s_{2}^{2}}\right) \quad \text { and } \quad \lambda=\frac{\pi^{2}}{a_{2}-a_{1}}\left(\frac{a_{2} l_{1}^{2}}{s_{1}^{2}}-\frac{a_{1} l_{2}^{2}}{s_{2}^{2}}\right)
$$

are valid. Plugging these into (20) and $\beta \neq 0$, we obtain

$$
\frac{a_{2}-a_{3}}{s_{1}^{2}} l_{1}^{2}+\frac{a_{3}-a_{1}}{s_{2}^{2}} l_{2}^{2}+\frac{a_{1}-a_{2}}{s_{3}^{2}} l_{3}^{2}=0 \quad \text { and } \quad s_{2} l_{1} \neq s_{1} l_{2}
$$

respectively. Thus we get the assertion of Theorem 2 .

Remark. For Hill's equation with a four-step potential, there is no analogy to Theorem 1. To see this we give a counterexample. We put

$$
\begin{aligned}
& t_{0}=0, \quad t_{1}=\frac{\pi}{6}, \quad t_{2}=\frac{\pi}{2}, \quad t_{3}=\frac{3}{2} \pi, \quad t_{4}=2 \pi \\
& s_{j}=t_{j}-t_{j-1}, \quad a_{j}=-\frac{\pi^{2}}{4 s_{j}^{2}} \quad \text { for } j=1,2,3,4
\end{aligned}
$$

Let $V: \mathbb{R} \rightarrow \mathbb{R}$ be a 2π-periodic function such that

$$
V(\cdot)=a_{j} \text { on }\left[t_{j-1}, t_{j}\right) \quad \text { for } j=1,2,3,4
$$

We consider the equation of the form

$$
-y^{\prime \prime}(x)+V(x) y(x)=0 \quad \text { on } \mathbb{R}
$$

We define

$$
T_{j}=\left(\begin{array}{cc}
\cos s_{j} \sqrt{-a_{j}} & \frac{1}{\sqrt{-a_{j}}} \sin s_{j} \sqrt{-a_{j}} \\
-\sqrt{-a_{j}} \sin s_{j} \sqrt{-a_{j}} & \cos s_{j} \sqrt{-a_{j}}
\end{array}\right) \quad \text { for } j=1,2,3,4
$$

We notice that the equation (22) admits two linearly independent, periodic solutions of period 2π, because its monodromy matrix is given by

$$
T_{4} T_{3} T_{2} T_{1}=\left(\begin{array}{cc}
\frac{s_{2} s_{4}}{s_{1} s_{3}} & 0 \\
0 & \frac{s_{1} s_{3}}{s_{2} s_{4}}
\end{array}\right)=\left(\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right)
$$

However, we have

$$
s_{j} \sqrt{-a_{j}}=\frac{\pi}{2} \notin \pi \mathbb{N} \quad \text { for } j=1,2,3,4 .
$$

Acknowledgements. The author thanks the referees for their valuable suggestions which improved the paper.

References

[1] E. Coddington and N. Levinson, Theory of ordinary differential equations, Mc-Graw-Hill, New York, 1955.
[2] Shaobo Gan and Meirong Zhang, Constructing resonance calabashes of Hill's equations using step potentials, Math. Proc. Camb. Phil. Soc. 129 (2000), 153-164.
[3] Shaobo Gan and Meirong Zhang, Resonance pockets of Hill's equations with two-step potentials, SIAM J. Math. Anal. 32 (2000), 651-664.
[4] H. Hochstadt, A special Hill's equation with discontinuous coefficients, Amer. Math. Monthly 70 (1963), 18-26.
[5] W. Magnus and S. Winkler, Hill's equation, Interscience, New York, 1966.
[6] E. Meissner, Ueber schüttelerscheinungen in systemen mit periodisch veränderlicher elastizität, Schweizer Bauzeitung 72, no. 10 (1918), 95-98.

```
KAZUSHI YOSHITOMI
DEPARTMENT OF MATHEMATICS
TOKYO METROPOLITAN UNIVERSITY
MINAMI-OHSAWA 1-1
HACHIOJI-SHI, TOKYO 192-0397
JAPAN
E-mail: yositomi@comp.metro-u.ac.jp
```

(Received September 2, 2003; revised February 5, 2004)

