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Soluble groups with many 2-generator torsion-by-nilpotent
subgroups

By NADIR TRABELSI (Sétif)

Abstract. We prove in this paper that a finitely generated soluble group
in which every infinite subset contains a pair of distinct elements x, y such that
〈x, y〉 is torsion-by-nilpotent (respectively, 〈x, xy〉 is Chernikov-by-nilpotent), is
itself torsion-by-nilpotent (respectively, finite-by-nilpotent).

1. Introduction and results

Following a question of Erdős, B. H. Neumann proved in [18] that
a group is centre-by-finite if, and only if, every infinite subset contains a
commuting pair of distinct elements. Since this result, problems of simi-
lar nature have been the object of many papers (for example [1]–[7], [10],
[15]–[17], [21]–[23]). In particular, in [15] Lennox and Wiegold con-
sidered the class (Ω,∞) of groups in which every infinite subset contains
two distinct elements generating an Ω-group, where Ω is a given class of
groups. They characterised finitely generated soluble groups which be-
long to (Ω,∞) when Ω is the class of polycyclic, or nilpotent, or coherent
groups. Here we will consider the class (Ω,∞), when Ω is the class T N
of torsion-by-nilpotent groups, or the class CN of Chernikov-by-nilpotent
groups, and we will prove the following results:
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Theorem 1. Let G be a finitely generated soluble group in the class

(T N ,∞). Then G is torsion-by-nilpotent.

Let k be a positive integer and let Nk be the class of nilpotent groups
of class at most k. In [2], Abdollahi and Taeri proved that a finitely
generated metabelian group G is in (Nk,∞) if, and only if, G/Zk(G) is
finite; and a finitely generated soluble group G is in the class (Nk,∞),
if and only if, G belongs to FN (2)

k , where F is the class of finite groups
and N (2)

k denotes the class of groups whose 2-generated subgroups are
nilpotent of class at most k. Also let Ek be the class of k-Engel groups. In
[16], Longobardi proved that if G is a finitely generated locally graded
group in the class (Ek,∞), then G belongs to FEk. Combining the results
of [2], [16], and Theorem 1, we shall obtain the following consequences.

Corollary 2. Let k be a positive integer.

(i) A finitely generated soluble group G is in the class (T N k,∞) if and

only if G belongs to T N (2)
k .

(ii) A finitely generated metabelian group G is in the class (T N k,∞) if

and only if G belongs to T N k.

(iii) A finitely generated soluble group G is in the class (T Ek,∞) if and

only if G belongs to T Ek.

In the Chernikov-by-nilpotent case, we weaken the hypothesis by con-
sidering the class (CN ,∞)∗ of groups in which every infinite subset con-
tains two distinct elements x, y such that 〈x, xy〉 is in CN . More precisely,
we will prove the following result:

Theorem 3. Let G be a finitely generated soluble group in the class

(CN ,∞)∗. Then G is finite-by-nilpotent.

Note that Theorem 3 improves the result of [22, Proposition 2], where
it is proved that a finitely generated soluble group in the class (FN ,∞)
is finite-by-nilpotent.

Let k be a positive integer and let Ek(∞) be the class of groups in
which every infinite subset contains two distinct elements x, y such that
[x,k y] = 1. In [1], Abdollahi proved that a finitely generated metabelian
group G is in Ek(∞) if, and only if, G/Zk(G) is finite, and if G is a finitely
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generated soluble group in the class Ek(∞), then there exists an integer
c = c(k), depending only on k, such that G/Zc(G) is finite. Note that
(Nk,∞)∗ is contained in Ek+1(∞). Combining the results of [1], [2], [16]
and Theorem 3, we shall obtain the following consequences.

Corollary 4. Let k be a positive integer.

(i) If G is a finitely generated soluble group in the class (CN k,∞)∗, then

there is an integer c = c(k), depending only on k, such that G/Zc(G)
is finite.

(ii) A finitely generated metabelian group is in the class (CN k,∞)∗ if and

only if G/Zk+1(G) is finite.

Corollary 5. Let k be a positive integer.

(i) A finitely generated soluble group G is in the class (CN k,∞) if and

only if G belongs to FN (2)
k .

(ii) A finitely generated metabelian group G is in the class (CN k,∞) if

and only if G/Zk(G) is finite.

(iii) A finitely generated soluble group G is in the class (CEk,∞) if and

only if G belongs to FEk.

2. Proof of the results

To prove our theorems, we will use recent results of Endimioni and
Traustasson [9] on torsion-by-nilpotent groups.

Lemma 6. Let c > 0 be an integer and let G be a group in NcT . If

G belongs to (T N ,∞) then it is in (T N c,∞).

Proof. Let x, y ∈ G such that 〈x, y〉 ∈ T N . Clearly 〈x, y〉 belongs
also to NcT and the set of its torsion elements is a subgroup T . Hence
〈x, y〉/T is a torsion-free nilpotent group which belongs to NcT . It follows
from [19, Lemma 6.33] that 〈x, y〉/T ∈ Nc, so 〈x, y〉 ∈ T N c. Consequently,
if G belongs to (T N ,∞), then it is in (T N c,∞). �

Lemma 7. Let G be a soluble group in the class (T N ,∞). If G is

abelian-by-torsion then it is torsion-by-abelian.
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Proof. By Lemma 6, G belongs to (T A,∞), where A denotes the
class of abelian groups. First of all, we show that the set of torsion elements
of G is a subgroup. Let x, y ∈ G be two elements of finite order. Then
H = 〈x, y〉 is a finitely generated soluble group which belongs to AT , so
it is abelian-by-finite. Clearly we may assume H infinite. Therefore H

has a torsion-free normal abelian subgroup A of finite index. Let 1 �=
a ∈ A and let h ∈ H, then the subset {aih : i > 0} is infinite. By
the property (T A,∞), there are two distinct positive integers i, j such
that 〈aih, ajh〉 ∈ T A, so 〈ai−j, aih〉 ∈ T A. Hence [ai−j , aih]m = 1 for
some positive integer m. Since A is abelian and normal in H we obtain
[a, h](i−j)m = 1, and this gives [a, h] = 1 as A is torsion-free. It follows that
A is contained in the centre of H. So H is a centre-by-finite group. Thus,
by a result of Schur [19, Theorem 4.12], H ′ is finite and therefore H is a
finitely generated finite-by-abelian group. This contradicts the fact that
H is infinite. Consequently, H is a finite group, so xy−1 is of finite order.
This means that the elements of finite order in G form a subgroup T , as
claimed. Now G/T is a torsion-free group in the class (T A,∞). So G/T

belongs to (A,∞). It follows by the result of B. H. Neumann [18] that
G/T is centre-by-finite. Thus G/T is finite-by-abelian and, therefore, G is
torsion-by-abelian, as required. �

Lemma 8. Let G be a finitely generated abelian-by-nilpotent group

with abelian Fitting subgroup A and let x∈G. Suppose that for each a∈A,

there are integers n ≥ 0, m1 > 0 and m2 > 0 such that [a, xm1 ,n xm2 ] = 1.
Then there is a positive integer d, depending only on G, such that xd ∈ A.

Proof. Since G is a finitely generated abelian-by-nilpotent group, we
may therefore apply a result of Lennox and Roseblade [14, Theorem B],
which asserts that in a finitely generated abelian-by-nilpotent group G,
there is a positive integer d, depending only on G, such that for all i > 0
and for all g in G the inclusion CG(gi) ≤ CG(gd) holds. We firstly show
by induction on n that if a is an element of A satisfying the hypothesis of
the lemma, then [a,n+1 xd] = 1. If n = 0, then we have [a, xm1 ] = 1 hence
[a, xd] = 1, as desired. Now assume that n > 0 and [a, xm1 ,n xm2 ] = 1.
So we obtain [a, xm1 ,n−1 xm2 , xd] = 1. Now 〈a, x〉 being metabelian, it is
easy to see that [a, xi, xj ] = [a, xj , xi] for any integers i, j. Thus we get
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that [a, xd, xm1 ,n−1 xm2 ] = 1, and by the inductive hypothesis we obtain
[a,n+1 xd] = 1, as required.

Now consider the subgroup K = 〈A,x〉. Since G/A is nilpotent, K

is subnormal in G. For every y ∈ K, there exist a ∈ A and an integer
r such that y = xra. As we have just shown, there is a positive integer
d such that [a,n+1 xd] = 1 for some non-negative integer n, so we have
[y,n+1 xd] = [xra,n+1 xd] = [a,n+1 xd] = 1. Thus xd is a left Engel element
of K. Since K is soluble, the set of its left Engel elements coinc̈ıdes with
its Hirsch–Plotkin radical A1 [19, Theorem 7.34], so xd ∈ A1. Since K is
subnormal in G, A1 is a subnormal locally nilpotent subgroup in G. So
A1 is contained in the Hirsch–Plotkin radical of G [20, 12.1.4]. Now G is
a finitely generated abelian-by-nilpotent group, so it satisfies the maximal
condition on normal subgroups [12]. Therefore the Hirsch–Plotkin radical
of G cöıncides with its Fitting subgroup, hence xd ∈ A as claimed. �

Proof of Theorem 1. Let G be a finitely generated soluble group
in the class (T N ,∞). To prove that G is torsion-by-nilpotent, we proceed
by induction on the derived length d of G. If d = 1 there is nothing to
prove, so we can assume d > 1. By the inductive hypothesis, G/G(d−1) is
torsion-by-nilpotent. Thus G is in the class (AT )N , and by Lemma 7 it
belongs to T (AN ). Therefore, we may suppose G abelian-by-nilpotent, so
G satisfies the maximal condition on normal subgroups [12] and (T N ,∞)
is a quotient closed class, we may assume that G is a just-non-(torsion-
by-nilpotent) group, that is, G /∈ T N but every proper quotient of G

is torsion-by-nilpotent. In [9, Corollary 1.3], it is proved that if H is a
normal subgroup of a locally soluble group G such that H and G/H ′ are
torsion-by-nilpotent, then G is torsion-by-nilpotent. It follows that every
normal torsion-by-nilpotent subgroup of G is abelian. In particular, the
Fitting subgroup A of G, is abelian. Moreover, it is easy to see that any
normal torsion subgroup of G must be trivial. Thus A is torsion-free. Let
1 �= a ∈ A and let xA be an element of infinite order in G/A. Then the
subset {xia : i > 0} is infinite. Hence there exist two positive integers i,
j such that 〈xia, xja〉 is torsion-by-nilpotent. So 〈xia, xi−j〉 is torsion-by-
nilpotent. Then there is an integer n ≥ 0 such that γn+1(〈xia, xi−j〉) is a
torsion group. If n = 0, then 〈xia, xi−j〉 is a torsion group. So (xia)m = 1
for some positive integer m. Hence xim ∈ A, this is a contradiction and so
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n > 0. Thus there is a positive integer m such that [a,n xi−j]m = 1. Hence
[a,n xi−j] = 1 as A is torsion-free. It follows by Lemma 8 that there exists
a positive integer d such that xd ∈ A, this is a contradiction and so G/A

is a torsion group. Therefore G is abelian-by-finite, so by Lemma 7 G is
torsion-by-abelian, a contradiction which completes the proof.

Proof of Corollary 2. Let k be a positive integer.

(i) If G is a finitely generated soluble group in (T N k,∞), then from
Theorem 1, G is torsion-by-nilpotent. Thus G has a torsion subgroup T .
Clearly G/T is in (T N k,∞), hence G/T being torsion-free is in (Nk,∞).
So by [2], G/T ∈ FN (2)

k . Consequently, G ∈ T N (2)
k , as required. It is easy

to see that if G is in T N (2)
k , then it belongs to (T N k,∞).

(ii) If G is a finitely generated metabelian group in (T N k,∞), then
as in (i) there is a torsion normal subgroup T such that G/T is a finitely
generated metabelian group in (Nk,∞). So by [2], G/T ∈ FN k. Thus
G ∈ T N k, as required. The converse is obvious.

(iii) Let G be a finitely generated soluble group in the class (T Ek,∞).
Since soluble Engel groups are locally nilpotent [20, 12.3.3], G belongs to
(T N ,∞). It follows, by Theorem 1, that G is torsion-by-nilpotent. Let T

be the torsion subgroup of G. So G/T is a torsion-free group in the class
(T Ek,∞). We deduce that G/T is in (Ek,∞). It follows, from [16], that
G/T is in FEk. Thus G is in T Ek. The converse is obvious.

Lemma 9. Let G be a finitely generated soluble group in the class

(CN ,∞)∗. Then G is nilpotent-by-finite.

Proof. Let G be a finitely generated soluble group in the class
(CN ,∞)∗. By [8, Corollary 2] G is nilpotent-by-finite if, and only if, for
each 2-generator subgroup H, the factor group H/H ′′ is nilpotent-by-finite.
It follows that we may assume G metabelian. Since (CN ,∞)∗ is a quotient
closed class of groups and finitely generated nilpotent-by-finite groups are
finitely presented, it follows, by [19, Lemma 6.17], that we may suppose
that G is a just-non-(nilpotent-by-finite) group. In [13, Lemma 2.1] it is
proved that the Fitting subgroup A of G is therefore abelian and either A is
torsion-free, or it is an elementary abelian p-group of infinite rank for some
prime p. Let 1 �= a ∈ A and let xA be an element of infinite order in G/A.
Then the subset {xia : i > 0} is infinite. Hence there exist two positive
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integers i, j such that 〈(xia)x
ja, xia〉 = 〈[xja, xia], xia〉 is Chernikov-by-

nilpotent. Using the facts that A is abelian and normal in G we have
[xja, xia] = [xj , a][a, xi] = [a, x−j ]x

j
[a, xi] = [a, xix−j ]x

j
= [axj

, xi−j]. Set
H = 〈[axj

, xi−j ], xia〉, then there is an integer n ≥ 0 such that γn+1(H) is
a Chernikov group. On the other hand γ2(H) is contained in A as G is
metabelian. If n = 0, then H is finite since Chernikov groups are locally
finite. So (xia)m = 1 for some positive integer m. Hence xim ∈ A, this
is a contradiction and so n > 0. It follows that γn+1(H) is a Chernikov
subgroup of A.

Suppose that A is torsion-free. Then γn+1(H) = 1 and hence[
[axj

, xi−j],n xia
]

= 1, so [a, xi−j ,n xi] = 1. By Lemma 8 there is, therefore,
a positive integer d such that xd ∈ A, and this contradicts the fact that
xA is of infinite order.

It follows that we may assume that A is an elementary abelian p-group.
So γn+1(H) is a Chernikov and an elementary abelian p-group, hence fi-
nite. Thus H is finite-by-nilpotent, so H is nilpotent-by-finite. Therefore
there exists a positive integer m such that [[axj

, xi−j ],n+1 (xia)m] = 1, so
[a, xi−j ,n+1 xim] = 1. This gives, by Lemma 8, that xd ∈ A, for some
positive integer d, a contradiction which completes the proof. �

Corollary 10. Let G be a finitely generated soluble group. Then,

G ∈ (CN ,∞)∗ if and only if G ∈ (FN ,∞)∗.

Proof. Let G be a finitely generated soluble group in the class
(CN ,∞)∗. By Lemma 9, G is nilpotent-by-finite. So G satisfies max,
the maximal condition on subgroups. Since Chernikov groups are locally
finite, it follows that G is in the class (FN ,∞)∗. �

Lemma 11. Let G be a finitely generated abelian-by-finite group in

the class (FN ,∞)∗. Then G is finite-by-nilpotent.

Proof. Let A be a normal abelian subgroup of finite index in G.
Since G is finitely generated, we may assume that A is torsion-free. Let
x ∈ G and let a ∈ A of infinite order. Then the subset {aix : i > 0} is
infinite. So there are two positive integers i, j such that 〈[ajx, aix], aix〉 ∈
FN . Hence 〈[aj−i, x]x, aix〉 ∈ FN , and therefore 〈[aj−i, x], xai〉 ∈ FN .
Thus there exist two positive integers m, n such that [aj−i, x,n xai]m =
[a, x,n xai](j−i)m = [a, x,n x](j−i)m = 1. Since A is torsion-free, we obtain
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[a,n+1 x] = 1. It follows that a is a right Engel element of G. Since G

satisfies max, the set of its right Engel elements cöıncides with a term of the
upper central series [20, 12.3.7]. Hence A ≤ Zk(G) for some integer k > 0.
So G/Zk(G) is finite and this gives that G is finite-by-nilpotent [11]. �

Proof of Theorem 3. Let G be a finitely generated soluble in the
class (CN ,∞)∗. It follows, from Lemma 9 and Corollary 10, that G is a
nilpotent-by-finite group in the class (FN ,∞)∗. Then G satisfies max. It
is proved in [9, Theorem 1.1] that if Ω is a class of groups which is closed
under taking subgroups and quotients and if all metabelian groups of Ω are
torsion-by-nilpotent, then all soluble groups of Ω are torsion-by-nilpotent.
So, by taking Ω to be the class of groups in (FN ,∞)∗ which satisfy max,
we may assume G metabelian. Since G is a finitely generated nilpotent-by-
finite group, there is a normal torsion-free subgroup H such that H ∈ Nc

and |G/H| = d for some positive integers c, d. We prove that G ∈ FN
by induction on c. From Lemma 11, this is true if c = 1. Assume that
c > 1. Clearly G/γc(H) ∈ Nc−1F , so by the inductive hypothesis we have
that G/γc(H) ∈ FN . Thus there are two positive integers m, n such that
(γn+1(G))m ≤ γc(H), so [(γn+1(G))m,H] = 1. Now γn+1(G) is abelian as
G is metabelian. Hence [(γn+1(G))m,H] = [γn+1(G),H]m = 1, and this
gives [γn+1(G),H] = 1 since H is torsion-free. It follows that [H,n G] ≤
γc(H). It is proved in [9, Lemma 2.1] that if H, K are normal subgroups
of a group G and if for some integer n > 0 we have [H,n G] ≤ K, then
for any integer c > 0 we have [γc(H),c(n−1)+1 G] ≤ [K,c−1 H]. By taking
K = γc(H), we obtain [γc(H),c(n−1)+1 G] ≤ [γc(H),c−1 H] ≤ γc+1(H) =
1. It follows that [γc(H),c(n−1)+1 G] = 1, and this means that γc(H) ≤
Zc(n−1)+1(G). Since G/γc(H) ∈ FN , then G/Zc(n−1)+1(G) ∈ FN , which
implies that G ∈ FN , as required.

Proof of Corollary 4. Let k be a positive integer and let G be
a finitely generated soluble group in (CN k,∞)∗. From Theorem 3, G is
finite-by-nilpotent. Thus G contains a normal finite subgroup H such that
G/H is nilpotent and finitely generated, so its torsion subgroup T/H is
finite, and consequently T is finite. Clearly G/T is in (CN k,∞)∗, so G/T ,
being torsion-free, is in (Nk,∞)∗. Since (Nk,∞)∗ is contained in Ek+1(∞),
we can deduce that:

(i) G/T is a finitely generated soluble group in Ek+1(∞), so by [1,



Finitely generated soluble groups 101

Theorem 3], there exists an integer c = c(k), depending only on k, such
that (G/T )/Zc(G/T ) is finite. So, by [11, Theorem 1] we obtain that
γc+1(G/T ) = γc+1(G)T/T is finite. Since T is finite, it follows that γc+1(G)
is finite. Thus by [11, 1.5] we get that G/Zc(G) is finite.

(ii) G/T is a finitely generated metabelian group in Ek+1(∞), so by
[1, Theorem 2], (G/T )/Zk+1(G/T ) is finite. Hence by [11, Theorem 1] we
obtain that γk+2(G/T ) = γk+2(G)T/T is finite. Since T is finite, it follows
that γk+2(G) is finite. So by [11, 1.5] we deduce that G/Zk+1(G) is finite.

Proof of Corollary 5. Note that if G is a finitely generated soluble
group in the class (CN ,∞), then by Theorem 3 it satisfies max. Therefore
Corollary 5 follows from Corollary 2 and the fact that finitely generated
torsion soluble groups are finite.

References

[1] A. Abdollahi, Some Engel conditions on infinite subsets of certain groups, Bull.
Austral. Math. Soc. 62 (2000), 141–148.

[2] A. Abdollahi and B. Taeri, A condition on finitely generated soluble groups,
Comm. Algebra 27 (1999), 5633–5638.

[3] A. Abdollahi and N. Trabelsi, Quelques extensions d’un problème de Paul Erdős
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