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On permutation groups generated by time-varying
Mealy automata

By ADAM WORYNA (Gliwice)

Abstract. This paper is devoted to the groups generated by time-varying
Mealy automata with a changing alphabet. It is proved that any finitely generated
residually finite group can be realized as a group of some time-varying automaton
with a finite set of states. Groups generated by various time-varying automata
are considered.

1. Introduction

The theory of Mealy automata and groups generated by such automata
have rapidly expanded in recent years. The groups of automata can be
described as groups acting on the homogenous rooted tree. An extensive
presentation of this theory is included in [3]. The idea of an automaton
with a changing alphabet and a changing set of its internal states is a
natural generalization. It allows to construct groups acting on level ho-
mogenous rooted trees which may be not homogeneous.

Let A be a given time-varying automaton. Any state q from the set Q0

of its internal states defines a transformation fq on the set of words over the
changing alphabet. The (semi)group 〈fq : q ∈ Q0〉 is called the (semi)group
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generated by automaton A or the automaton (semi)group defined by A. If
the changing alphabet is finite any such (semi)group is residually finite.

The groups of automata are difficult to study for many simple au-
tomata. There is no standard to studying such groups. A changing alpha-
bet brings specific difficulties. For instance the word problem is solvable in
the class of groups generated by finite state automata with a fixed alpha-
bet (see for example [9]) but there are finitely generated residually finite
groups with undecidable word problem (for example [2], [6]). Hence the
word problem is undecidable in the class of groups generated by finite state
time-varying automata.

Section 2 contains definitions of a time-varying Mealy automaton and
functions defined by such automaton as well as the description of groups
generated by these functions in terms of wreath product. In Section 3 we
show that any finitely generated residually finite group can be realized as
a group of some time-varying automaton with a finite set of states. In
Section 4 we study the wreath product Z � Zn as a group of some 2-state
automaton. Section 5 gives an example of a 2-state automaton group in
which every finite group can be embedded.

2. Groups defined by time-varying Mealy automata

The paper [10] includes the primary notions about time-varying Mealy
automata, different types of such automata as well as a description of func-
tions defined by these automata was given. Recall some useful definitions
and facts.

A changing alphabet is an infinite sequence X = (Xt)t∈N0 of nonempty
finite sets Xt (sets of letters). A word over a given changing alphabet X
is a finite sequence x0x1 . . . xl, where xi ∈ Xi for i = 0, 1, . . . , l. We denote
by X∗ the set of all words over X (including the empty word ∅).

Definition 1. A time-varying Mealy automaton over the changing al-
phabet X is a quadruple

A = (Q,X,ϕ, ψ),
where:

(1) Q = (Qt)t∈N0 (sequence of sets of internal states),
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(2) ϕ = (ϕt)t∈N0 , ϕt : Qt ×Xt → Qt+1 (sequence of transition functions),

(3) ψ = (ψt)t∈N0 , ψt : Qt ×Xt → Xt (sequence of output functions).

An automaton A with a fixed initial state q ∈ Q0 is called the initial
automaton and denoted by Aq. If A is a given automaton then for every
state q ∈ Q0 the initial automaton Aq defines a function fq : X∗ → X∗ as
follows:

fq(x0x1 . . . xl) = ψ0(q0, x0)ψ1(q1, x1) . . . ψl(ql, xl), (1)

where q0 = q and qi = ϕi−1(qi−1, xi−1) for i = 1, . . . , l. The function fq is
called the automaton function defined by the initial automaton Aq.

An automaton A is called permutational if the mapping of the set Xt

defined as follows
x �→ ψt(q, x)

is permutation for any t ∈ N0 and q ∈ Qt. If A is a permutational automa-
ton then the functions fq are permutations on X∗ for all q ∈ Q0.

Let Aq0 = (Q,X,ϕA, ψA), Br0 = (R,X,ϕB , ψB) be initial automata
over a common alphabet X and fq0, hr0 be automaton functions defined
by the above automata. Then the superposition hr0 ◦ fq0 is an automaton
function defined by the automaton Cs0 = (S,X,ϕ, ψ) for which:

St = Qt ×Rt, s0 = (q0, r0),

ϕt((q, r), x) =
(
ϕA

t (q, x), ϕB
t

(
r, ψA

t (q, x)
))
,

ψt((q, r), x) = ψB
t

(
r, ψA

t (q, x)
)
.

The automaton Cs0 is called the product of the automata Aq0, Br0. If
Aq0 is a permutational automaton then fq0 is a permutation. The inverse
function f−1

q0
is also an automaton permutation defined by the automaton

Dq0 = (Q,X,ϕ, ψ) for which

ϕt(q, x) = ϕA
t (q, x′), ψt(q, x) = x′,

where the letter x′ is defined by the equality ψA
t (s, x′) = x. The automaton

Dq0 is called the inverse to the automaton Aq0.
We consider the set SA(X) of all automaton functions defined by time-

varying automata over a given changing alphabet X. Since the identity
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function idX∗ is an automaton transformation and the superposition of au-
tomaton functions is also of this type, the set SA(X) forms a monoid with
idX∗ as the neutral element. The construction of the product of automata
and the inverse automaton allows to specify the following submonoids in
SA(X) (see [10]):

(1) automaton functions defined by automata with a constant sequence of
its sets of states,

(2) automaton functions defined by automata with equi-bounded sets of
states,

(3) the set GA(X) of automaton functions defined by permutational au-
tomata.

Let A = (Q,X,ϕ, ψ) be a time-varying automaton. If there exist
T > 0 and τ ≥ 0 such that

Qt+T = Qt, Xt+T = Xt, ϕt+T = ϕt, ψt+T = ψt

for every t ≥ τ then A is called a (T, τ)-periodic automaton and the
alphabet X – a (T, τ)-periodic alphabet.

Let v ∈ X∗ be a word of the length n = |v| and f be an automaton
function defined by some initial automaton over X. Then we can define a
function fv : X(n) → X(n) by equality (see [10])

f(vu) = f(v)fv(u),

where X(n) denotes the set of all finite sequences of letters in which the
i-th letter belongs to Xn+i−1 for any i = 1, 2, . . . . The function fv is called
the v-remainder of f .

Let X be a given changing alphabet. We consider the set PSA(X) of
automaton functions defined by all periodic automata over X as well as
the set FRSA(X) of automaton functions with a finite set of remainders.
The above sets are nonempty only if X is periodic (see [10], Theorem 4.3).

Let X be a (T, τ)-periodic alphabet. If f, h ∈ PSA(X), where f is de-
fined by some (T1, τ1)-periodic automaton and h is defined by some (T2, τ2)-
periodic automaton then the product of these automata is a (T ′, τ ′)-pe-
riodic automaton for T ′ = lcm(T1, T2), τ ′ = max(τ1, τ2). Of course the
identity function idX∗ ∈ PSA(X).
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For the set FRSA(X) we have: idX∗ ∈ FRSA(X) since all remainders
of idX∗ are defined by words of length at most T + τ . Moreover, for any
v-remainder of f ◦ h we have (f ◦ h)v = fh(v) ◦ hv. Hence, if Rf and Rh

are sets of remainders then |Rf◦h| ≤ |Rf | · |Rh|.
Thus, if X is a periodic alphabet then PSA(X) and FRSA(X) form

submonoids of SA(X). It is worth seeing that FRSA(X) is a proper sub-
monoid of PSA(X) (see [10], Example 4.1).

The set GA(X) is the group of invertible elements of SA(X). The
group GA(X) may be characterized as a certain wreath product.

Definition 2. The wreath product over an infinite sequence (G0,M0),
(G0,M0), . . . of permutation groups is the group of all permutations g of
the set M =

∏∞
i=0Mi, satisfying the following conditions

(i) if g(x0, x1, . . . ) = y0, y1, . . . then yi depends only on i+ 1 first coordi-
nates x0, x1, . . . , xi for any i = 0, 1, . . . ,

(ii) if we fix x0
0, . . . , x

0
i−1 then the transformation

gx0
0,...,x0

i−1
: xi �→ yi

induced by g is a permutation from the group Gi.

This wreath product we denote by

�∞i=0(Gi,Mi) = �∞i=0Gi.

Proposition 1. The set GA(X) of all automaton permutations de-

fined by permutational time-varying automata over the changing alphabet

X forms (under superposition) a group isomorphic to the wreath product

over the infinite sequence of symmetric groups on sets X0,X1,X2, . . .

GA(X) ∼= �∞i=0S(Xi).

Proof. For any g ∈ �∞i=0S(Xi) we consider a function fg : X∗ → X∗

defined as:

fg(x0x1 . . . xl) = g∅(x0)gx0(x1)gx0,x1(x2) . . . gx0,x1,...,xl−1
(xl)

for an arbitrary word x0x1 . . . xl, where gx0,...,xi−1 ∈ S(Xi) are transforma-
tions induced by g according to the above definition of the wreath product.
The map g �→ fg defines the required isomorphism. �
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3. Representation of groups by means
of time-varying automata

For every permutational automaton A we construct the group

G(A) = 〈fq : q ∈ Q0〉.

The group G(A) is called the group generated by automaton A. It is a
residually finite group for every automaton A. It turns out that groups of
this form include the class of finitely generated residually finite groups.

Theorem 1. For any n-generated residually finite group G there is a

time-varying automaton A with an n-element set of states and such that

G ∼= G(A).

Proof. Since G is countable, its elements can be put in sequence

g−1 = 1, g0, g1, . . . .

For the element gi (i ≥ 0) there is a normal subgroup Ni � G of finite
index such that gi /∈ Ni. The map

g �→ (gNi)i∈N0

defines the embedding of G into the cartesian product
∏∞

i=0G/Ni. For any
i = 0, 1, . . . since |G/Ni| <∞, there is a finite setXi such that G/Ni can be
embedded into the symmetric group S(Xi). Hence, the group

∏∞
i=0G/Ni

and consequently the group G can be embedded into the cartesian product∏∞
i=0 S(Xi) of symmetric groups. Let

K = 〈κ0, κ1, . . . , κn−1〉

be the subgroup of
∏∞

i=0 S(Xi) isomorphic to G. We construct an automa-
ton A = (Q,X,ϕ, ψ) in the following way:

(1) X = (Xt)t∈N0 ,

(2) Qt = {κ0, κ1, . . . , κn−1},
(3) ϕt(κi, x) = κi, i = 0, 1, . . . , n− 1,

(4) ψt(κi, x) = κ
(t)
i (x), i = 0, 1, . . . , n− 1,
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where κ(t)
i is the permutation at the (t+1)-th position in κi. The automa-

ton A is permutational by definition.
Let fκi be the generator of G(A) defined by the initial automaton Aκi .

Then for any word x0x1 . . . xl ∈ X∗ we have according to (1):

fκi(x0x1 . . . xl) = ψ0(κi, x0)ψ1(κi, x1) . . . ψl(κi, xl)

= κ
(0)
i (x0)κ

(1)
i (x1) . . . κ

(l)
i (xl).

For every κ ∈ K we define a function fκ : X∗ → X∗ as follows

fκ(x0x1 . . . xl) = κ(0)(x0)κ(1)(x1) . . . κ(l)(xl).

Then for any κ, κ′ ∈ K the equality fκ◦κ′ = fκ ◦ fκ′ holds and fκ ∈ G(A)
according to definition of K. Furthermore if κ, κ′ ∈ K are different then
κ(t)(x) 
= κ′(t)(x) for some t ∈ N0, x ∈ Xt and fκ 
= fκ′ . Hence the map
κ �→ fκ defines the required isomorphism. �

We denote by +k and −k the respective arithmetical operations
(mod k). Let n > 1 be a given integer and X = (Xt)t∈N0 be a chang-
ing alphabet of the form Xt = {0, 1, . . . , t+n− 1}. If u = z0z1 . . . zl is any
sequence of letters such that zi ∈ Xi+τ for some τ ∈ N0, i = 0, 1, . . . , l then
for every integer m we denote by u⊕m the following sequence of letters

(z0 +τ+n m)(z1 +τ+n+1 m) . . . (zl +τ+n+l m).

Example. Let A = (Q,X,ψ, ϕ) be an automaton for which:

(1) Xt = {0, 1, . . . , t+ 1},
(2) Q0 = {q0, q1}, Qt = {q1} for t ∈ N,

(3) ϕt(q, x) = q1 for t ∈ N0, q ∈ Qt,

(4) ψ0(q0, x) = x for x ∈ X0,

ψt(q1, x) = x+t+2 1.

The above automaton is presented in the picture (1 and πi constitute the
neutral element and the cycle (0, 1, . . . , i+1) of the symmetric group Si+2

for any i = 0, 1, . . .).
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We denote the generators fq0 and fq1 of G(A) by a and b respectively.
The generators transform a word εu ∈ X∗ with ε ∈ {0, 1} in the following
way a(εu) = ε(u⊕ 1), b(εu) = (ε⊕ 1)(u⊕ 1) and both a and b have infinite
order. Furthermore, ab(εu) = (ε ⊕ 1)(u ⊕ 2) = ba(εu). Let c = a−1b. We
easily check that c2 is the identity function. Hence every element of G(A)
is of the form cras, r ∈ {0, 1}, s ∈ Z. We have cras(εu) = (ε ⊕ r)(u ⊕ s)
and the mapping cras �→ (r, s) defines an isomorphism G(A) ∼= Z2 × Z.

4. The wreath product Z � Zn as a 2-state
automaton group

Let n > 1 be a given number and A = (Q,X,ψ, ϕ) be an automaton
in which:

(1) Xt = {0, 1, . . . , n+ t− 1},
(2) Qt = {q0, q1},
(3) ϕ0(q0, 0) = q1, ϕt(q0, x) = q0 for x 
= 0,

ϕt(q1, x) = q1,

(4) ψt(q0, x) = x,
ψt(q1, x) = x+t+n 1.

q1

q0 � � � �

0,..., -1n

1,..., -1n

0

0,...,n

0,...,n

0,..., 1n+

0,..., 1n+

�n
�n+3�n+2�n+1
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We denote the generators fq0, fq1 of G(A) by α and β respectively.
For a word εu ∈ X∗ with ε ∈ {0, 1, . . . , n− 1} we have:

α(0u) = 0(u⊕ 1), α(εu) = εu for ε = 1, . . . , n− 1,

β(εu) = (ε⊕ 1)(u ⊕ 1).

In particular both α and β have infinite order.

Lemma 1. If an element γ of G(A) is represented by a word in α, β

of the form

αr1βs1αr2βs2 . . . αrkβsk , (2)
then we have

γ(εu) = (ε⊕ s)(u⊕ (s+ r(ε))), (3)

where s =
∑k

i=1 si, r(ε) =
∑

i ri, where we sum over all i for which

n | si + · · · + sk + ε (if there are no suitable indexes, we assume r(ε) = 0).

Proof. By induction on the length of (2). �

Thus the word (2) defines a unique (n+ 1)-tuple of integers

(s, r(0), r(1), . . . , r(n− 1)). (4)

Using Lemma 1 we obtain the following algorithms solving the word
and the conjugacy problem in G(A):

Let w, w′ be words in α, β. We calculate the (n+ 1)-tuples

(s, r(0), r(1), . . . , r(n − 1)),

(s′, r′(0), r′(1), . . . , r′(n− 1))

defined by w and w′ respectively. Then

w = w′ ⇔ n | s− s′ and s′ + r′(i) = s+ r(i) (5)

for i = 0, 1, . . . , n − 1. For the conjugacy problem we have w, w′ are
conjugate ⇔ n | s− s′ and there is ξ ∈ {0, 1, . . . , n− 1} such that

η−1∑
i=0

(
s′ + r′(is+n j)

)
=

η−1∑
i=0

(s+ r(is+n j +n ξ))
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for j = 0, 1, . . . , gcd(n, s) − 1, where η = n
gcd(n,s) .

The wreath product Z � Zn is a semi-direct product
∏

Zn
Z � Zn with

the action of Zn on Z
n by a cyclic shift. In a sense this group is dual to the

wreath product Zn � Z which is known as the lamplighter group (see [4]).
We mention some properties of the group Z � Zn. The center of Z � Zn is
isomorphic to Z and its quotient group is isomorphic to the semi-direct
product Z

n−1
� Zn, where Zn acts on Z

n−1 by linear transformations as
follows

z �−→




0 0 . . . 0 0 −1
1 0 . . . 0 0 −1
0 1 . . . 0 0 −1
. . . . . . . . . . . . . . . . . .

0 0 . . . 1 0 −1
0 0 . . . 0 1 −1




i

· z, z ∈ Z
n−1,

for every i ∈ Zn. The wreath product Z �Zn is a metabelian, nonnilpotent
group. The commutator subgroup (Z � Zn)′ is isomorphic to the cartesian
product Z

n−1. The abelianization of Z � Zn is isomorphic to Z × Zn.

Theorem 2. Let G = G(A) be the group generated by the automa-

ton A. Then

(i) G ∼= Z � Zn,

(ii) the stabilizer StG(k) ∼= Z
n for any k ≥ 1,

(iii) the quotient group G/StG(1) is a cyclic group of order n generated by

βStG(1). For k > 1 the quotient group G/StG(k) is isomorphic to the

wreath product Zτ � Zn, where τ = lcm(n+ 1, . . . , n+ k − 1),

(iv) for any v ∈ X∗ the vertex stabilizer StG(v) ∼= Z
n. For the orbit

OrbG(v) = {γ(v) : γ ∈ G} we have

|OrbG(v)| =

{
n if |v| = 1

n · lcm(n+ 1, . . . , n+ |v| − 1) if |v| > 1

The group G acts transitively on the set X(l) of words of length l if

and only if l ≤ 3 in case n is odd and l ≤ 4 in case n is even. Two

words εu, ε′u′ ∈ X∗ belong to the same orbit if and only if u′ = u⊕ r

for some integer r.
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Proof. (i) For an arbitrary (n + 1)-tuple (4) there is a word in α, β
which defines it. Indeed, an example of the required word is

wr0,r1,...,rn−1,s = αr0−sβαr1−sβ . . . αrn−2−sβαrn−1−sβs−n+1, (6)

where ri = s + r(i −n s). Hence any element of G is represented by some
word of the form (6). Furthermore, from the solution (5) any element of
G is represented by a unique such word with ri ∈ Z (i = 0, 1, . . . , n − 1)
and s ∈ {0, 1, . . . , n − 1}. From Lemma 1 the multiplication formula for
words (6) is described by the rules

wr0,r1,...,rn−1,s · wr′0, r′1,...,r′n−1,s′ = wr′′0 ,r′′1 ,...,r′′n−1,s′′ ,

where s′′ = s+n s
′, r′′i = ri + r′i−s for i = 0, 1, . . . , n − 1. Hence the map

wr0,r1,...,rn−1,s �→ ((r0, r1, . . . , rn−1), s) (7)

is an isomorphism of G and Z � Zn.

(ii) If γ is an element of G defined by the word (6) then from Lemma 1
γ ∈ StG(1) ⇔ s = 0. Similarly, for k > 1

γ ∈ StG(k) ⇔ s = 0 and τ | r(i) for i = 0, 1, . . . , n − 1.

Now, the map φ : StG(k) → Z
n defined by the rule

φ(wr0,r1,...,rn−1,0) =
(
r0/τ

′, r1/τ ′, . . . , rn−1/τ
′)

is the required isomorphism, where τ ′ =

{
1 if k = 1

τ if k > 1.

(iii) The map φ1 : G→ Zn defined by

φ1(wr0,r1,...,rn−1,s) = s

is an epimorphism with ker φ1 = StG(1). Similarly for k > 1, the map
φk : G→ Zτ � Zn defined by

φk(wr0,r1,...,rn−1,s) = ((r0, r1, . . . , rn−1), s)

is an epimorphism with ker φk = StG(k), where ri is the remainder of the
division of ri by τ .

(iv) It results from Lemma 1 and (iii). �
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Corollary. The growth function ζG(m) of G is of order mn.

Remark. A slight change of the alphabet X in the above automaton
gives a construction of the wreath product Z �Zn as a group acting spher-
ically transitively.

5. The universal embedding by a 2-state
automaton group

Let A = (Q,X,ϕ, ψ) be an automaton in which:

(1) Xt = {0, 1, . . . , t+ 1},
(2) Qt = {q0, q1},
(3) ϕt(q0, x) = q0,

ϕt(q1, x) = q1,

(4) ψt(q0, 0) = 1, ψt(q0, 1) = 0, ψt(q0, x) = x for x 
= 0, 1,
ψt(q1, x) = x+t+2 1.

The above automaton is presented in the picture (α is the cycle (0, 1) of
the symmetric group Si+2 for any i = 0, 1, . . . ).

q1

q0

0,1

0,1

0,1,2

0,1,2

0,1,2,3

0,1,2,3

�2
�5�4�3

� � � �

Let αn = (1, 2), βn = (1, 2, . . . , n+1) be cycles in the symmetric group
Sn+1 for n = 1, 2, . . . and let K = 〈α, β〉 be the group generated by two
sequences of permutations

α = (α1, α2, . . . ) , β = (β1, β2, . . . )

of the infinite Cartesian product
∏∞

i=2 Si.

Theorem 3. Let G = G(A) be the group generated by the automa-

ton A. Then
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(i) G ∼= K,

(ii) every finite group can be embedded into G,

(iii) the action of G on X∗ is spherically transitive,

(iv) the group G contains no free subgroups of rank > 1. The semigroup

generated by fq0, fq1 is free,

(v) the commutator subgroup G′ is a locally finite group and the abelian-

ization G/G′ is isomorphic to Z2 × Z.

Proof. (i) For any word x0x1 . . . xl ∈ X∗ if

fq0(x0x1 . . . xl) = y0y1 . . . yl,

fq1(x0x1 . . . xl) = z0z1 . . . zl

then
yi = αi+1(xi + 1) − 1, zi = βi+1(xi + 1) − 1 (8)

for i = 0, 1, . . . , l. Hence, the image of xi depends on xi only. As in
the proof of Theorem 1 the map α �→ fq0, β �→ fq1 induces the required
isomorphism.

(ii) It is enough to prove that the direct product
∐∞

i=2Ai of alternating
groups is a subgroup of K. To this end we show that Ni � K for i =
0, 1, . . . , where

Ni = {1} × {1} × . . . {1}︸ ︷︷ ︸
i

×Ai+2 × {1} × {1} × . . . .

The case i = 0 is obvious. Next, N1 = 〈γ〉 � K, where

γ =
(
αβ2αβ−2

)2 = (1, (1, 2, 3), 1, 1, . . . ) ∈ K.

For a given n > 1 suppose that Ni � K for all i < n. For the element

δ =
(
αβn+1αβ−n−1

)2

we have δ = (δ1, δ2, . . . , δn, (1, 2, n + 2), 1, 1, . . . ), where all δi are even. It
follows from the above assumption that elements κi = (1, . . . , 1︸ ︷︷ ︸

i−1

, δ−1
i , 1, 1, . . .)
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for i = 1, . . . , n and consequently the product

κ = δ · κ1 · · · · · κn = (1, . . . , 1︸ ︷︷ ︸
n

, (1, 2, n + 2), 1, 1, . . . )

belong to K. Hence Nn = 〈κK〉 � K.

(iii) Since the isomorphismK ∼= G is induced by the mapping α �→ fq0,
β �→ fq1, the spherical transitiveness results from (8) as well as from the
inclusion

∐∞
i=2Ai < K.

(iv) It is enough to show that K does not contain a free group F2.
Since α has order 2, any element of K is defined by some word in α, β of
the form

αεβs1αβs2 . . . αβsk , ε ∈ {0, 1}. (9)

Let s =
∑k

i=1 si be the sum of all exponents of β. First we prove the
following

Lemma 2. The element γ from K represented by (9) has finite order

if and only if s = 0.

Proof of Lemma. Let m =
∑k

i=1 |si|. For any n, if s = 0 and

m+ 2 < i < n−m− 2,

the permutation of γ at the n-th position maps i into βs
n(i) = i. Hence γ

has order less or equal to exp(S2m+4). From the other hand for any j, if

jm+ 2 < i < n− jm− 2,

then the j-th power of permutation at the n-th position in γ maps i in
βjs

n (i). If s 
= 0 and n > 2jm+ 5 then βjs
n (i) 
= i. Thus the j-th power of

γ is not the neutral element. �

Now, let γ, γ′ ∈ K and s, s′ be sums of exponents of β in some words in
α, β representing γ and γ′ respectively. From Lemma 2, if s = 0 or s′ = 0
then γ or γ′ has finite order. Similarly, if s, s′ 
= 0, the element γs′γ′−s has
finite order. Hence, the group generated by γ, γ′ is not isomorphic to F2.

Let γ and γ′ be represented by two different words in α, β with non-
negative exponents and with the above defined sums s, s′. We may assume
that the word representing γ ends with α, while the word representing γ′
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ends with β. If s 
= s′ then γ 
= γ′, since γγ′−1 has infinite order by
Lemma 2. If s′ = s then for a suitably large n, the permutations of γ and
γ′ at the n-th position map the number 2 to l and s+2 respectively, where
l ≤ s+ 1. Thus γ 
= γ′.

(v) Let Kα = 〈αK〉 and Kβ = 〈βK〉 be groups generated by conjugacy
classes of generators of K. The group Kα consists of all words (9) with
s = 0 well, torsion elements of K. Indeed, any such word can be expressed
as

αεβs1αβ−s1 · βs1+s2αβ−s1−s2 · · · · · βs1+···+sk−1αβ−s1−···−sk−1.

Since αβKα = βKα, the quotient group K/Kα is represented by βi, i ∈ Z.
Thus the isomorphism K/Kα

∼= Z holds.
If γ ∈ Kβ then there is a word in α, β representing γ in which α

occurs an even number of times. We show as above that any such word
represents an element from Kβ. All permutations of γ at even positions
are even. Consequently α /∈ Kβ and Kβ consist exactly of those words in
which α occurs an even number of times. Hence K/Kβ

∼= Z2.
From the isomorphisms K/Kα

∼= Z, K/Kβ
∼= Z2 we obtain the inclu-

sion K ′ ⊆ Kα ∩Kβ. On the other hand, if γ ∈ Kα ∩Kβ then γK ′ = K ′.
Thus K ′ = Kα ∩Kβ . In other words, K ′ consists of all torsion elements
of K such that permutations at all its positions are even. In particular∐∞

i=2Ai � K ′. From above, K/K ′ is represented by αεβi, ε ∈ {0, 1}, i ∈ Z

and G/G′ ∼= K/K ′ ∼= Z2 × Z.
The group Kα is locally finite. Indeed, let F = 〈γ1, . . . , γn〉 be a

finitely generated subgroup of Kα. The element

γi =
(
γ

(i)
1 , γ

(i)
2 , . . .

)
is a Cartesian product of a finite number ri of infinite sequences of trans-
positions. Any permutation γ

(i)
j of the above sequence changes at most

2ri elements. Thus, if r = 2
∑n

i=1 ri then there are sets Z1, Z2, . . . with
at most r elements each and such that for any γ from F , the permutation
at the i-th position changes only elements from Zi. Hence, F is isomor-
phic to some subgroup of the infinite Cartesian product of the symmetric
groups Sr. Since the last group is locally finite, the group F must be finite.
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Now, using the sequence

∞∐
i=2

Ai � K ′ � Kα

we obtain locally finiteness of K ′ ∼= G′. �
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