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Semihomogeneous topological spaces

By SAMER AL GHOUR (Irbid), KHALID ZOUBI (Irbid) and
ALI FORA (Irbid)

Abstract. We introduce semihomogeneity as a generalization of homogene-
ity. Several results are included discussing some relations between the semiho-
mogeneity of a space and some generated topologies. Various counter examples
relevant to the relations are given. We study semihomogeneous components which
form a partition of any space and we study some of their properties. Finally, we
introduced a product theorem concerning semihomogeneous spaces.

1. Introduction

Throughout this paper by a space we mean a topological space. As
defined by Sierpiński in 1920, a space (X, τ) is homogeneous [20] if for any
two points x, y ∈ X there exists a homeomorphism f : (X, τ) → (X, τ) such
that f(x) = y. Afterwards, various types of homogeneity were studied by
[2]–[5], [9]–[11], [16], [18] and others. In [1], [14], we fuzzified some types of
homogeneity. In this paper we study semihomogeneity as a generalization
of homogeneity. Let � (see [13]) be a relation defined on X by x � y if
there is a homeomorphism f : (X, τ) → (X, τ) such that f(x) = y. This
relation turns out to be an equivalence relation on X whose equivalence
classes Cx will be called homogeneous components determined by x ∈ X.
Homogeneous components preserved under homeomorphisms and indeed

Mathematics Subject Classification: 54A05, 54B05, 54B10, 54C08.
Key words and phrases: homogeneity, semiopen sets, semihomeomorphisms, extremally
disconnected, product topology.



132 S. Al Ghour, Kh. Zoubi and A. Fora

homogeneous subspaces of X. It is clear that (X, τ) is homogeneous iff it
has only one homogeneous component.

Let (X, τ) be a space and A ⊆ X. We will denote the complement
of A in X, the closure of A, the interior of A and the relative topology on
A by X − A = Ac, Cl(A), Int(A) and τA respectively. A is called regular
open if Int(Cl(A)) = A. A is semiopen [15] if there exists an open set O

such that O ⊆ A ⊆ Cl(O), this is equivalent to say that A ⊆ Cl(Int(A)).
SO(X, τ) will denote the family of all semiopen sets in X. The topology on
X with the subbase SO(X, τ) is called the semi open set generated topology
of (X, τ) [19] and is denoted by τψ. The complement of a semiopen set
is called semiclosed [6]. The semiclosure of A [6], denoted by s Cl(A),
is the smallest semiclosed set that contains A. The semiinterior of A

[6], denoted by sInt(A), is the largest semiopen set contained in A. A

is called an α-set [17] if A ⊆ Int(Cl(Int(A))). The family of all α-sets
in a space (X, τ), is denoted by τα is again a topology on X which is
finer than τ . A space (X, τ) is extremally disconnected [22] if for each
O ∈ τ , Cl(O) ∈ τ . A space (X, τ) is semiregular [23] if for each O ∈ τ

and x ∈ O, there exists a regular open set R such that x ∈ R ⊆ O,
i.e., the class of all regular open sets form a base for the topology τ . As a
generalization of semiregularity Sivaraj [21] defined s-semiregular spaces
as follows. A space (X, τ) is s-semiregular if (X, τ) is semiregular at all
points which are semiclosed in X. A function f : (X, τ1) → (Y, τ2) is
semicontinuous [15] if f−1(V ) ∈ SO(X, τ1) for all V ∈ τ2. f is irresolute
[7] if f−1(A) ∈ SO(X, τ1) for all A ∈ SO(Y, τ2). f is presemiopen [7] if
f(A) ∈ SO(Y, τ2) for all A ∈ SO(X, τ1). f is semihomeomorphism [7] if f

is bijective, irresolute and presemiopen.

Throughout this paper, R, N will denote the set of real numbers and
the set of natural numbers respectively. Let X be any set. By τdisc, τind,
τl.r, and τr.r (in the case X = R), we mean the discrete, the indiscrete, the
left ray, and the right ray topologies, respectively. By P (X) we mean the
power set of X.

The following sequence of propositions will be useful in the sequel.

Proposition 1.1 ([21]). Every homeomorphism is a semihomeomor-

phism but not conversely.
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Proposition 1.2 ([21]). If (X, τ1) and (Y, τ2) are s-semiregular spaces,

then every semihomeomorphism f : (X, τ1) → (Y, τ2) is a homeomorphism.

Proposition 1.3 ([21]). A function f : (X, τ) → (X, τ) is a semi-

homeomorphism iff f : (X, τα) → (X, τα) is a homeomorphism.

Proposition 1.4 ([17]). For any space (X, τ), (τα)α = τα.

Proposition 1.5 ([8]). Let (X, τ) be a space. Then (X, (τψ)ψ) is

extremally disconnected and all finite repetitions of the semi open set

generated topology process starting with (X, (τψ)ψ) gives (X, (τψ)ψ).

Proposition 1.6 ([17]). A space (X, τ) is an extremally disconnected

iff SO(X, τ) is a topology on X.

Proposition 1.7. If (X, τ) is an extremally disconnected space and

A ∈ SO(X, τψ), then there exists U ∈ τψ such that U ⊆ A ⊆ s Cl(U).

(Follows from Proposition 1.6.)

2. Semihomogeneous spaces

Definition 2.1. A space (X, τ) is said to be semihomogeneous if for any
two points x, y ∈ X there exists a semihomeomorphism f : (X, τ) → (X, τ)
such that f(x) = y.

Theorem 2.2. Every homogeneous space is a semihomogeneous.

Proof. Proposition 1.1. �

The following example shows that the converse of Theorem 2.2 is not
true. It also shows that extremally disconnected semihomogeneous space
need not to be a homogeneous space.

Example 2.3. The subspace (N, τr.r) of the right ray topology is a
semihomogeneous space that is not homogeneous.

Proof. It is easy to see that V ∈ SO(N, τr.r) − {∅} iff V contains
a non empty open set. Let n,m ∈ N then it is not difficult to see that
the function f : (N, τr.r) → (N, τr.r) where f(n) = m, f(m) = n and
f(x) = x for all x /∈ {n,m} is a semihomeomorphism. Therefore, N
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is semihomogeneous. On the other hand, if f : N → N is a bijection for
which f(1) = 2, then f(N−{1}) = N−{2}, so f is not a homeomorphism.
Hence (N, τr.r) is not homogeneous. �

Theorem 2.4. If (X, τ) is s-semiregular space, then (X, τ) is homo-

geneous iff (X, τ) is a semihomogeneous space.

Proof. Proposition 1.2. �

Theorem 2.5. Let (X, τ) be a space. Then the following are equiva-

lent.

(i) (X, τ) is semihomogeneous.

(ii) (X, τα) is homogeneous.

(iii) (X, τα) is semihomogeneous.

Proof. Propositions 1.3 and 1.4. �

Lemma 2.6. If f : (X, τ1) → (Y, τ2) is a semihomeomorphism, then

f : (X, (τ1)ψ) → (Y, (τ2)ψ) is a homeomorphism.

Proof. Let B be a basic open set in (Y, (τ2)ψ), then B =
⋂n
i=1 Ai

where Ai ∈SO(Y, τ2), then f−1(B)=
⋂n
i=1 f−1(Ai)∈ (τ1)ψ since f−1(Ai)∈

SO(X, τ1) for all i = 1, 2, . . . , n. Therefore, f : (X, (τ1)ψ) → (Y, (τ2)ψ)
is a continuous function. Similarly, we can show that f : (X, (τ1)ψ) →
(Y, (τ2)ψ) is an open function. �

Theorem 2.7. Given a space (X, τ) and consider the following state-

ments.

(a) (X, τ) is semihomogeneous.

(b) (X, τψ) is homogeneous.

(c) (X, τψ) is semihomogeneous.

Then (a) ⇒ (b) ⇒ (c).

Proof. (a) ⇒ (b) Lemma 2.6.

(b) ⇒ (c) Theorem 2.2. �

The following example shows in Theorem 2.7 that (b) � (a).
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Example 2.8. Let X = R with the topology τ = {U ⊆ R : 0 /∈U}∪
{U ⊆R : 0∈U and R − U is finite}. Then τψ = τdisc and so (X, τψ) is semi-
homogeneous. On the other hand, (X, τ) is not semihomogeneous since
there is no semihomeomorphism f : (X, τ)→ (X, τ) such that f(1)= 0.

About validity of the implication (c) ⇒ (b) in Theorem 2.7, we raise
the following question.

Question 2.9. Let (X, τ) be a space for which (X, τψ) is semihomoge-
neous. Is it true that (X, τψ) homogeneous?

Concerning Question 2.9, if τ is a semi open set generated topology,
then we have the following result.

Theorem 2.10. Let (X, τ) be a space where τ is a semi open set

generated topology. If (X, τψ) is semihomogeneous then (X, τψ) homoge-

neous?

Proof. Theorem 2.7 and Proposition 1.5. �

If (X, τ) is extremally disconnected, then the three statements in The-
orem 2.7 are equivalent as the following result says.

Theorem 2.11. If (X, τ) is an extremally disconnected space, then

the following are equivalent.

(a) (X, τ) is semihomogeneous.

(b) (X, τψ) is homogeneous.

(c) (X, τψ) is semihomogeneous.

Proof. According to Theorem 2.7, it is sufficient to show (c) ⇒ (a).
Suppose that (X, τ) is an extremally disconnected space with (X, τψ) is
semihomogeneous and let x, y ∈ X. Since (X, τψ) is semihomogeneous,
there exists a semihomeomorphism f : (X, τψ)→ (X, τψ) such that f(x)= y.
Let A ∈ SO(X, τ), then A ∈ τψ. Thus A ∈ SO(X, τψ) and hence
f−1(A) ∈ SO(X, τψ). So, by Proposition 1.7, there exists U ∈ τψ such
that U ⊆ f−1(A) ⊆ s Cl(U) ⊆ Cl(U). Now by Proposition 1.6, there
exists W ∈ τ such that W ⊆ U ⊆ Cl(W ). Therefore, W ⊆ U ⊆
f−1(A) ⊆ Cl(U) ⊆ Cl(W ) which means that f−1(A) ∈ SO(X, τ) and
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hence f is irresolute. Similarly we can show that f is presemiopen. There-
fore, f : (X, τ) → (X, τ) is a semihomeomorphism which takes x to y and
hence (X, τ) is semihomogeneous. �

Definition 2.12. Let (X, τ) be a space. A non empty open subset
A ⊆ X is called a minimal open set in X if the relative topology on A,
τA = τind, i.e., A has no proper non empty open subset.

Definition 2.13. Let (X, τ) be a space. A non empty semiopen set
A ⊆ X is called a minimal semiopen set in X if whenever B ∈ SO(X, τ)
and ∅ ⊆ B ⊆ A, B = ∅ or B = A, i.e., A has no proper non empty
semiopen subset.

The following lemmas will be needed in proving our next main result.

Lemma 2.14. Let f : (X, τ1) → (Y, τ2) be an injection, irresolute

function. If A is a minimal semiopen set in X such that f(A) is semiopen

in Y , then f(A) is a minimal semiopen subset of Y .

Proof. Since A is a minimal semiopen set, A �= ∅, so f(A) �= ∅.
Suppose that for some B ∈ SO(Y, τ2) − {∅}, B ⊆ f(A), then f−1(B) ⊆
f−1(f(A)). Since f is injective, f−1(f(A)) = A. Also, since f is irresolute,
f−1(B) ∈ SO(X, τ1). Since A is minimal semiopen, f−1(B) = A. Thus,
f(A) = f(f−1(B)) ⊆ B and hence f(A) = B. Therefore, f(A) is a minimal
semiopen subset of Y . �

Lemma 2.15. Let (X, τ) be a space and A ⊆ X. Then A is a minimal

semiopen set iff A is a minimal open set.

Proof. ⇒) Since Int(A) ⊆ A and Int(A) is semiopen, Int(A) = ∅ or
Int(A) = A. If Int(A) = ∅, then A ⊆ Cl(Int(A)) = Cl(∅) = ∅ and so
A = ∅, but A �= ∅. Thus, Int(A) = A and hence A is open.

To show that A is minimal open, suppose that ∅ �= B ⊆ A. Since B

is semiopen and A is minimal semiopen we must have A = B. Hence A is
a minimal open set.

⇐) Suppose that A is a minimal open set, then A is semiopen. To show
that A is minimal semiopen, let B be a semiopen set for which ∅ �= B ⊆ A.
Since Int(B) ⊆ A, Int(B) = ∅ or Int(B) = A. If Int(B) = ∅, then
B ⊆ Cl(Int(B)) = Cl(∅) = ∅. So B = ∅, but B �= ∅. Thus, Int(B) = A,
but B ⊆ A. Therefore, B = A. Hence A is a minimal semiopen set. �
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Lemma 2.16. The semihomeomorphic image of a minimal open set

is a minimal open set.

Proof. Lemmas 2.14 and 2.15. �

Definition 2.17. Let (X, τ) be a space. A base for τ is called a partition
base for τ if their elements form a partition on X.

Lemma 2.18. Let (X, τ) be a space and let ß be a base for τ . Then ß

is a partition base for τ iff their elements are minimal open subsets of X.

Proof. Straightforward. �

Lemma 2.19. Let (X, τ) be a semihomogeneous space and let G be

the group of semihomeomorphisms from (X, τ) to itself. If A is a minimal

open set in X, then ß = {h(A) : h ∈ G} is a base for τ which consists of

elements all of which is homeomorphic to one another.

Proof. Let h ∈ G, then by Lemma 2.16, it follows that h(A) is
minimal open, also since τA = τind, τh(A) = τind, and the restriction h|A :
A → h(A) is a bijection, A ∼= h(A). Therefore, each element of ß is
homeomorphic to any one another. To show that ß is a base for τ, let
x ∈ U ∈ τ and choose a ∈ A. Since (X, τ) semihomogeneous, there exists
h ∈ G such that h(a) = x and hence x ∈ h(A). Therefore, since h(A) is
minimal open h(A) ⊆ U . Thus, ß is a base for τ . �

Proposition 2.20 ([12]). Let (X, τ) be a space which contains a min-

imal open set. Then the following are equivalent.

(a) (X, τ) is a homogeneous space.

(b) (X, τ) has a partition base consisting of minimal open sets all of

which is homeomorphic to one another.

Now we are ready to state one of our main results.

Theorem 2.21. Let (X, τ) be a space which contains a minimal open

set. Then the following are equivalent.

(a) (X, τ) is a homogeneous space.

(b) (X, τ) is a semihomogeneous space.

(c) (X, τ) has a partition base consisting of minimal open sets all of

which is homeomorphic to one another.
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Proof. (a) ⇒ (b) Follows by Theorem 2.2.
(b) ⇒ (c) Let A be a minimal open set and let ß = {h(A) : h ∈ G}

where G is the group of semihomeomorphisms from (X, τ) to itself. Then
by Lemmas 2.18 and 2.19, it follows that ß is the required base.

(c) ⇒ (a) Follows by Proposition 2.20. �

Corollary 2.22. If (X, τ) is a homogeneous space which contains a

minimal open set, then every semihomeomorphism f : (X, τ) → (Y, τ) is a

homeomorphism.

Proof. By Theorem 2.21, it is not difficult to show that (X, τ) is a
semiregular space. Therefore, by Proposition 1.2, we conclude that f :
(X, τ) → (X, τ) is a homeomorphism. �

The following example shows that the condition ‘contains a minimal
open set’ on the space (X, τ) in Corollary 2.22 cannot be dropped. More-
over, it also shows that in a homogeneous space semihomeomorphisms need
not to be homeomorphisms.

Example 2.23. Let X = R with the topology τ = τl.r. For p, q ∈ R,

define f : (X, τ) → (X, τ) by f(x) = (x− p)+ q, then it is easy to see that
f is a homeomorphism with f(p) = q. Therefore, (X, τ) is a homogeneous
space. Let g : (X, τ) → (X, τ) be given by g(0) = 1, g(1) = 0 and g(x) = x

elsewhere. Then g is a semihomeomorphism but not a homeomorphism.

The following example shows that the condition ‘homogeneous’ on the
space (X, τ) in Corollary 2.22 cannot be dropped.

Example 2.24. Let X = {a, b, c} with the topology τ = {∅,X, {a},
{a, b}}, then the space (X, τ) contains a minimal open set. Define f :
(X, τ) → (X, τ) by f(a) = a, f(b) = c and f(c) = b. Then f is a
semihomeomorphism while f is not a homeomorphism.

3. Components and products

Definition 3.1. Let (X, τ) be a space. We define the relation s̃ on X

as follows: For x, y ∈ X, xs̃y iff there exists a semihomeomorphism f :
(X, τ) → (X, τ) such that f(x) = y.
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Theorem 3.2. The above relation is an equivalence relation.

Proof. Straightforward. �

According to Theorem 3.2, the above relation induces a partition on
X into equivalence classes, and it leads us to the following definition.

Definition 3.3. A subset of a space (X, τ) which has the form sCx =
{y ∈ X : xs̃y} is called a semihomogeneous component determined by
x ∈ X.

Remark 3.4. A space (X, τ) semihomogeneous iff it has exactly one
component.

It is known that homogeneous components are preserved under home-
omorphisms. The following result says that semihomogeneous components
are preserved under semihomeomorphisms.

Theorem 3.5. If f : (X, τ) → (X, τ) is a semihomeomorphism, then

f(sCx) = sCx for any semihomogeneous component sCx.

Proof. Let y ∈ f(sCx), then there exists t ∈ sCx such that y = f(t)
and so ts̃y. Since t ∈ sCx, ts̃x. Therefore, ys̃x and hence y ∈ sCx.

Conversely, let y ∈ sCx, then ys̃x. Choose t such that f(t) = y. Since
f is a semihomeomorphism, ys̃t. Therefore, t ∈ sCx and f(t) = y. �

Theorem 3.6. Let (X, τ) be a space and let sCx be any semihomoge-

nous component of (X, τ). Then either sCx is semiopen or s Int(sCx) = ∅.

Proof. Suppose that s Int(sCx) �= ∅ and let y ∈ sCx. Choose t ∈
s Int(sCx). Since y, t ∈ sCx, then there exists a semihomeomorphism
f : (X, τ) → (X, τ) such that f(t) = y. Therefore, y ∈ f(s Int(sCx)) ⊆
f(sCx) = sCx by Theorem 3.5 and hence sCx is semiopen. �

Theorem 3.7. If A is a clopen semihomogeneous subspace of X such

that A ∩ sCx �= ∅, then A ⊆ sCx.

Proof. Let a ∈ A. Choose y ∈ A∩sCx. Since A is semihomogeneous,
then there exists a semihomeomorphism f : (A, τA) → (A, τA) such that
f(a) = y. Define g : (X, τ) → (X, τ) by

g(x) =

{
f(x) if x ∈ A

x if x ∈ X − A.
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Then g is a semihomeomorphism and so as̃y. Since y ∈ sCx, we
conclude that a ∈ sCx. �

Theorem 3.8. If (X, τ) is a space and sCx is a semihomogeneous

component, then the subspace topology (sCx, τsCx) is semihomogeneous.

Proof. Let x1, x2 ∈ sCx, then there exist two semihomeomorphisms
f1, f2 : (X, τ) → (X, τ) such that f1(x) = x1 and f2(x) = x2. Let f be
the restriction of f2 ◦ f−1

1 to sCx. Then by Theorem 3.5, f : (sCx, τsCx) →
(sCx, τsCx) is a semihomeomorphism with f(x1) = x2. �

Theorem 3.9. Let (X, τ) be a space and x ∈ X, then Cx ⊆ sCx.

Proof. Proposition 1.1. �

In Example 2.3, we showed that sC1 = N . In fact, it is not difficult
to show that Cx = {x} for each x ∈ N . Therefore, the equality in The-
orem 3.5 does not hold in general. Example 2.3 is also an example of a
space which has one semihomogeneous component but infinitely many ho-
mogeneous components. However, every semihomogeneous component has
a partition consisting of homogeneous components as the following result
says.

Theorem 3.10. Let (X, τ) be a space and x ∈ X, then sCx =⋃
a∈sCx

Ca.

Proof. Straightforward. �

The following result concerning the product of two homogeneous spaces
is known and follows easily.

Lemma 3.11. The product of two homogeneous spaces is again ho-

mogeneous.

For semihomogeneous spaces we propose the following question.

From now on τ will denote the product topology of τ1 and τ2.

Question 3.12. If (X, τ1) and (Y, τ2) are semihomogeneous spaces, is
it true that (X × Y, τ) semihomogeneous?

We are going to solve Question 3.12 partially. For this reason we need
the following two lemmas.
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Lemma 3.13. Let f : (X, τ1) → (X, τ1) and g : (Y, τ2) → (Y, τ2) be

two semi continuous functions and Let h : (X × Y, τ) → (X × Y, τ) where

h(x, y) = (f(x), g(y)). If (X, τ1) and (Y, τ2) are extremallly disconnected,

then h(Cl(O)) ⊆ Cl(h(O)) whenever O ∈ τ .

Proof. Let O ∈ τ and (x, y) ∈ h(Cl(O)). Let U × V be any basic
open set in the product topology X × Y for which (x, y) ∈ U × V . Let
(x◦, y◦) ∈ Cl(O) such that f(x◦) = x and g(y◦) = y. Since f and g are semi
continuous, f−1(U) ∈ SO(X, τ1) and g−1(V ) ∈ SO(Y, τ2) and so there are
U◦ ∈ τ1 and V◦ ∈ τ2 such that U◦ ⊆ f−1(U) ⊆ Cl(U◦) and V◦ ⊆ g−1(V ) ⊆
Cl(V◦). Thus, (x◦, y◦) ∈ Cl(U◦) × Cl(V◦). Since (X, τ1) and (Y, τ2) are
extremally disconnected spaces, Cl(U◦ × V◦) = Cl(U◦)×Cl(V◦) ∈ τ . Since
(x◦, y◦) ∈ Cl(O), O ∩ Cl(U◦ × V◦) �= ∅ and hence O ∩ (U◦ × V◦) �= ∅.
Therefore, O ∩ h−1(U × V ) = O ∩ (f−1(U) × g−1(V )) �= ∅ and hence
h(O) ∩ (U × V ) �= ∅. This completes the proof. �

Lemma 3.14. Let f : (X, τ1) → (X, τ1) and g : (Y, τ2) → (Y, τ2)
be two semihomeomorphisms and Let h : (X × Y, τ) → (X × Y, τ) where

h(x, y) = (f(x), g(y)). If (X, τ1) and (Y, τ2) are extremally disconnected,

then h is a semihomeomorphism.

Proof. Let G ∈ SO(X × Y, τ). Then there exists O ∈ τ such that
O ⊆ G ⊆ Cl(O) and so h−1(O) ⊆ h−1(G) ⊆ h−1(Cl(O)). It is not difficult
to see that h is a semi continuous function and so h−1(O) ∈ SO(X ×Y, τ).
Thus, there exists W ∈ τ such that W ⊆ h−1(O) ⊆ Cl(W ). But by Lem-
ma 3.13, h−1(Cl(O)) ⊆ Cl(h−1(O)). Therefore, W ⊆ h−1(O) ⊆ h−1(G) ⊆
Cl(h−1(O)) = Cl(W ). This completes the proof that h is an irresolute.
Similarly we can show that the function is h−1 irresolute. �

Theorem 3.15. The product of two semihomogeneous extremally

disconnected spaces is again semihomogeneous.

Proof. Let (X, τ1) and (Y, τ2) be two semihomogeneous spaces and
let (x1, y1), (x2, y2) ∈ X × Y . Since (X, τ1) and (Y, τ2) are semihomo-
geneous, there are two semihomeomorphisms f : (X, τ1) → (X, τ1) and
g : (Y, τ2) → (Y, τ2) such that f(x1) = x2 and g(y1) = y2. Define
h : (X × Y, τ) → (X × Y, τ) by h(x, y) = (f(x), g(y)). Then h(x1, y1) =
(x2, y2) and by Lemma 3.14, h is a semihomeomorphism. This proves that
(X × Y, τ) is semihomogeneous. �
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Note that Example 2.3 shows that Theorem 3.15, does not follow from
Lemma 3.11 directly.
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