# Existence and uniqueness theorem for slant immersion in cosymplectic space forms 

By RAM SHANKAR GUPTA (New Delhi),
S. M. KHURSHEED HAIDER (New Delhi) and A. SHARFUDDIN (New Delhi)


#### Abstract

In this paper, we have established a general existence and uniqueness theorem for slant immersions in a non-flat cosymplectic space form $\bar{M}(c)$.


## 1. Introduction

B. Y. Chen [4] has defined slant immersions as a natural generalization of both holomorphic and totally real immersions and since then this topic has attracted the attention of Mathematicians. In 1996, A. Lotta [2] introduced the notion of slant immersion of a Riemannian manifold into an almost contact metric manifold and obtained some useful results. B. Y. Chen and Y. TAZAWA [7] have shown that there exist several examples of $n$-dimensional proper slant submanifolds in the complex Euclidean $n$-space $C^{n}$. On the other hand, Chen and Vrancken [5] have established the existence of $n$-dimensional proper slant submanifolds in a non-flat complex-space form $\bar{M}^{n}(4 c)$.

Let $\bar{M}$ be a $(2 m+1)$-dimensional almost contact metric manifold with structure tensors $(\varphi, \xi, \eta, g)$, where $\varphi$ is a $(1,1)$ tensor field, $\xi$ a vector field,

[^0]$\eta$ a 1-form and $g$ the Riemannian metric on $\bar{M}$. These tensors satisfy [8]
\[

$$
\begin{cases}\varphi^{2} X=-X+\eta(X) \xi, \varphi \xi=0, \eta(\xi)=1, & \eta(\varphi)=0  \tag{1.1}\\ g(\varphi X, \varphi Y)=g(X, Y)-\eta(X) \eta(Y), & \eta(X)=g(X, \xi)\end{cases}
$$
\]

for any $X, Y \in T \bar{M}$. A normal almost contact metric manifold is called a cosymplectic manifold [1] if

$$
\begin{equation*}
\left(\bar{\nabla}_{X} \varphi\right)(Y)=0, \quad \bar{\nabla}_{X} \xi=0 \tag{1.2}
\end{equation*}
$$

where $\bar{\nabla}$ denotes the Levi-Civita connection of $\bar{M}$. The curvature tensor $\bar{R}$ of a cosymplectic space form $\bar{M}(c)$ is given by [1]

$$
\begin{align*}
\bar{R}(X, Y) Z=\frac{c}{4}\{ & g(Y, Z) X-g(X, Z) Y+\eta(X) \eta(Z) Y-\eta(Y) \eta(Z) X \\
& +\eta(Y) g(X, Z) \xi-\eta(X) g(Y, Z) \xi-g(\varphi X, Z) \varphi Y \\
& +g(\varphi Y, Z) \varphi X+2 g(X, \varphi Y) \varphi Z\} \tag{1.3}
\end{align*}
$$

Let $M$ be an $m$-dimensional Riemannian manifold with induced metric $g$ isometrically immersed in $\bar{M}$. Let $T M$ be the tangent bundle of $M$ and $T^{\perp} M$ be the set of all vector fields normal to $M$.

For any $X \in T M$ and $N \in T^{\perp} M$, we write

$$
\begin{equation*}
\varphi X=P X+F X \quad \text { and } \quad \varphi N=t N+f N \tag{1.4}
\end{equation*}
$$

where $P X$ (resp. $F X$ ) denotes the tangential (resp. normal) component of $\varphi X$, and $t N$ (resp. $f N$ ) denotes the tangential (resp. normal) component of $\varphi N$.

In what follows, we suppose that the structure vector field $\xi$ is tangent to $M$. Hence, if we denote by $D$ the orthogonal distribution to $\xi$ in $T M$, we can consider the orthogonal direct decomposition $T M=D \oplus\{\xi\}$.

For each non zero $X$ tangent to $M$ at $x$ such that $X$ is not proportional to $\xi_{x}$, we denote by $\theta(X)$ the Wirtinger angle of $X$, that is, the angle between $\varphi X$ and $T_{x} M$.

The submanifold $M$ is called slant if the Wirtinger angle $\theta(X)$ is a constant, which is independent of the choice of $x \in M$ and $X \in T_{x} M-$ $\left\{\xi_{x}\right\}$ [2]. The Wirtinger angle $\theta$ of a slant immersion is called the slant angle of the immersion. Invariant and anti-invariant immersions are slant
immersions with slant angle $\theta$ equal to 0 and $\frac{\pi}{2}$, respectively. A slant immersion which is neither invariant nor anti-invariant is called a proper slant immersion.

Let $\nabla$ be the Riemannian connection on $M$. Then the Gauss and Weingarten formulae are

$$
\begin{equation*}
\bar{\nabla}_{X} Y=\nabla_{X} Y+h(X, Y) \tag{1.5}
\end{equation*}
$$

and

$$
\begin{equation*}
\bar{\nabla}_{X} N=-A_{N} X+\nabla \frac{1}{X} N \tag{1.6}
\end{equation*}
$$

where $h$ and $A_{N}$ are the second fundamental forms related by

$$
\begin{equation*}
g\left(A_{N} X, Y\right)=g(h(X, Y), N) \tag{1.7}
\end{equation*}
$$

and $\nabla^{\perp}$ is the connection in the normal bundle $T^{\perp} M$ of $M$, for $X, Y \in T M$ and $N \in T^{\perp} M$. Let the curvature tensor corresponding to $\bar{\nabla}, \nabla$ and $\nabla^{\perp}$ be denoted by $\bar{R}, R$, and $R^{\perp}$ respectively. The Gauss, Codazzi and Ricci equations are, respectively

$$
\begin{align*}
\bar{R}(X, Y, Z, W)= & R(X, Y, Z, W)-g(h(X, W), h(Y, Z)) \\
& +g(h(X, Z), h(Y, W))  \tag{1.8}\\
{[\bar{R}(X, Y) Z]^{\perp}=} & \left(\bar{\nabla}_{X} h\right)(Y, Z)-\left(\bar{\nabla}_{Y} h\right)(X, Z) \tag{1.9}
\end{align*}
$$

and

$$
\begin{equation*}
\bar{R}\left(X, Y, N_{1}, N_{2}\right)=R^{\perp}\left(X, Y, N_{1}, N_{2}\right)-g\left(\left[A_{N_{1}}, A_{N_{2}}\right] X, Y\right) \tag{1.10}
\end{equation*}
$$

where $[\bar{R}(X, Y) Z]^{\perp}$ denotes the normal component of $\bar{R}(X, Y) Z$ and $\left(\bar{\nabla}_{X} h\right)(Y, Z)$ is given by

$$
\left(\bar{\nabla}_{X} h\right)(Y, Z)=\nabla_{X}^{\frac{1}{X}}(h(Y, Z))-h\left(\nabla_{X} Y, Z\right)-h\left(Y, \nabla_{X} Z\right)
$$

If $P$ is the endomorphism defined by (1.4), then

$$
\begin{equation*}
g(P X, Y)+g(X, P Y)=0 \tag{1.11}
\end{equation*}
$$

Thus $P^{2}$ which is simply denoted by $Q$, is self adjoint.
We define

$$
\begin{equation*}
\left(\nabla_{X} P\right) Y=\nabla_{X}(P Y)-P\left(\nabla_{X} Y\right) \tag{1.12}
\end{equation*}
$$

and

$$
\begin{equation*}
\left(\nabla_{X} F\right) Y=\nabla_{X}^{\perp} F Y-F\left(\nabla_{X} Y\right) \tag{1.13}
\end{equation*}
$$

for any $X, Y \in T M$.
Using Gauss and Weingarten formulae and equations (1.2) and (1.10), we have

$$
\begin{gather*}
\left(\nabla_{X} P\right) Y=A_{F Y} X+\operatorname{th}(X, Y)  \tag{1.14}\\
\nabla_{X}^{\perp}(F Y)-F\left(\nabla_{X} Y\right)=f h(X, Y)-h(X, P Y) \tag{1.15}
\end{gather*}
$$

for any $X, Y \in T M$.
For each $X \in T M$, we put

$$
\begin{equation*}
X^{*}=\frac{F X}{\sin \theta} \tag{1.16}
\end{equation*}
$$

We define the symmetric bilinear $T M$-valued form $\rho$ on $M$ by

$$
\begin{equation*}
\rho(X, Y)=\operatorname{th}(X, Y) \tag{1.17}
\end{equation*}
$$

Moreover, from (1.2), we have

$$
\begin{equation*}
\rho(X, \xi)=0 . \tag{1.18}
\end{equation*}
$$

Also, from (1.4), (1.16) and (1.17), we get

$$
\begin{equation*}
\varphi \rho(X, Y)=P \rho(X, Y)+\sin \theta \rho^{*}(X, Y) \tag{1.19}
\end{equation*}
$$

Using (1.4) and (1.17), we can write

$$
\begin{equation*}
\varphi h(X, Y)=\rho(X, Y)+\sigma^{*}(X, Y) \tag{1.20}
\end{equation*}
$$

where $\sigma$ is a symmetric bilinear $D$-valued form on $M$. Operating $\varphi$ on (1.20) and using (1.19) together with (1.4), we find

$$
\begin{equation*}
-h(X, Y)=P \rho(X, Y)+\sin \theta \rho^{*}(X, Y)+t \sigma^{*}(X, Y)+f \sigma^{*}(X, Y) \tag{1.21}
\end{equation*}
$$

On comparing the tangential and normal parts, we get

$$
\begin{equation*}
P \rho(X, Y)+t \sigma^{*}(X, Y)=0 \tag{i}
\end{equation*}
$$

and
(ii)

$$
-h(X, Y)=\sin \theta \rho^{*}(X, Y)+\frac{f F \sigma(X, Y)}{\sin \theta}
$$

Also,

$$
\begin{aligned}
\varphi^{2} \sigma(X, Y)= & -\sigma(X, Y)=P^{2} \sigma(X, Y)+F P \sigma(X, Y) \\
& +t F \sigma(X, Y)+f F \sigma(X, Y)
\end{aligned}
$$

Comparing the tangential and normal parts, we get
(iii)

$$
-\sigma(X, Y)=P^{2} \sigma(X, Y)+t F \sigma(X, Y)
$$

and
(iv)

$$
F P \sigma(X, Y)+f F \sigma(X, Y)=0
$$

Now, from (i), we have

$$
P \rho(X, Y)=-t \sigma^{*}(X, Y)=-\frac{t F \sigma(X, Y)}{\sin \theta}
$$

Using (iii) in the above equation, we get

$$
\begin{aligned}
-\sigma(X, Y) & =P^{2} \sigma(X, Y)-P \rho(X, Y) \sin \theta \\
& =-\sigma(X, Y) \cos ^{2} \theta-P \rho(X, Y) \sin \theta
\end{aligned}
$$

which gives that

$$
\begin{equation*}
\sigma(X, Y)=\csc \theta P \rho(X, Y) \tag{1.22}
\end{equation*}
$$

Now, from (ii) and (iv), we have

$$
-h(X, Y)=\sin \theta \rho^{*}(X, Y)-\frac{F P \sigma(X, Y)}{\sin \theta}
$$

and using (1.22), we get
$-h(X, Y)=\sin \theta \rho^{*}(X, Y)-\frac{F P^{2} \rho(X, Y)}{\sin ^{2} \theta}=\sin \theta \rho^{*}(X, Y)+\frac{\rho^{*}(X, Y) \cos ^{2} \theta}{\sin \theta}$
which gives that

$$
\begin{equation*}
h(X, Y)=-\csc \theta \rho^{*}(X, Y) \tag{1.23}
\end{equation*}
$$

From (1.19) and (1.23), we have

$$
\begin{equation*}
h(X, Y)=\csc ^{2} \theta(P \rho(X, Y)-\varphi \rho(X, Y)) \tag{1.24}
\end{equation*}
$$

On the other hand, from (1.14), we have

$$
\begin{equation*}
g\left(\left(\nabla_{X} P\right) Y, Z\right)=g(\rho(X, Y), Z)-g(\rho(X, Z), Y) \tag{1.25}
\end{equation*}
$$

Next, from (1.3), we get

$$
\begin{align*}
& \bar{R}(X, Y, Z, W)=\frac{c}{4}(g(\varphi Y, \varphi Z) g(X, W)-g(\varphi X, \varphi Z) g(Y, W) \\
& \quad+g(X, Z) \eta(Y) \eta(W)-g(Y, Z) \eta(X) \eta(W)+g(\varphi Y, Z) g(\varphi X, W) \\
& \quad-g(\varphi X, Z) g(\varphi Y, W)+2 g(X, \varphi Y) g(\varphi Z, W)) \tag{1.26}
\end{align*}
$$

for all $X, Y, Z, W \in T M$. Using (1.1), (1.4) and (1.8) in (1.26), we find

$$
\begin{align*}
& R(X, Y, Z, W)-g(h(X, W), h(Y, Z))+g((X, Z), h(Y, W)) \\
&= \frac{c}{4}(g(Y, Z) g(X, W)-g(X, W) \eta(Y) \eta(Z)-g(X, Z) g(Y, W) \\
& \quad+g(Y, W) \eta(X) \eta(Z)+g(X, Z) \eta(Y) \eta(W)-g(Y, Z) \eta(X) \eta(W) \\
& \quad+g(P Y, Z) g(P X, W)-g(P X, Z) g(P Y, W) \\
&+2 g(X, P Y) g(P Z, W)) \tag{1.27}
\end{align*}
$$

which, in view of (1.23), gives

$$
\begin{align*}
& R(X, Y, Z, W)=\csc ^{2} \theta(g(\rho(X, W), \rho(Y, Z))-g(\rho(X, Z), \rho(Y, W))) \\
& \quad+\frac{c}{4}(g(, Y, Z) g(X, W)-g(X, W) \eta(Y) \eta(Z)-g(X, Z) g(Y, W) \\
& \quad+g(Y, W) \eta(X) \eta(Z)+g(X, Z) \eta(Y) \eta(W)-g(Y, Z) \eta(X) \eta(W) \\
& \quad+g(P Y, Z) g(P X, W)-g(P X, Z) g(P Y, W) \\
& \quad+2 g(X, P Y) g(P Z, W)) \tag{1.28}
\end{align*}
$$

Taking normal part of equation (1.3), we get

$$
\begin{equation*}
(\bar{R}(X, Y) Z)^{\perp}=\frac{c}{4}(g(P Y, Z) F X-g(P X, Z) F Y+2 g(X, P Y) F Z) \tag{1.29}
\end{equation*}
$$

Moreover,

$$
\begin{align*}
\left(\bar{\nabla}_{X} h\right)(Y, Z)= & -\csc ^{2} \theta\left(\csc ^{2} \theta F P \rho(X, \rho(Y, Z))\right.  \tag{1.30}\\
& +\csc ^{2} \theta F \rho(X, P \rho(Y, Z))+F\left(\left(\nabla_{X} \rho\right)(Y, Z)\right)
\end{align*}
$$

Using (1.29) and (1.30) in Codazzi equation, we get

$$
\begin{align*}
&\left(\nabla_{X} \rho\right)(Y, Z)+\csc ^{2} \theta\{P \rho(X, \rho(Y, Z)+\rho(X, P \rho(Y, Z))\} \\
&+\frac{c}{4} \sin ^{2} \theta\{g(X, P Z)(Y-\eta(Y) \xi)+g(X, P Y)(Z-\eta(Z) \xi\}  \tag{1.31}\\
&=\left(\nabla_{Y} \rho\right)(X, Z)+\csc ^{2} \theta\{P \rho(Y, \rho(X, Z))+\rho(Y, P \rho(X, Z))\} \\
&+\frac{c}{4} \sin ^{2} \theta\{g(Y, P Z)(X-\eta(X) \xi)+g(Y, P X)(Z-\eta(Z) \xi)\}
\end{align*}
$$

## 2. Existence theorem for slant immersions into cosymplectic space form

In this section we establish the existence theorem for slant immersions into cosymplectic space form. We need the following:

Theorem A ([5]). Consider a manifold $S$ with complete connection $\bar{D}$ having parallel torsion and curvature tensors. Let $M$ be a simply connected manifold and $E$ be a vector bundle with connection $\bar{D}$ over $M$ having the algebraic structure $(\bar{R}, \bar{T})$ of $S$. Let $F: T M \rightarrow E$ be a vector bundle homomorphism satisfying the equations

$$
\begin{array}{r}
\bar{D}_{V}(F(W))-\bar{D}_{W}(F(V))-F([V, W])=\bar{T}(F(V), F(W)) \\
\bar{D}_{V} \bar{D}_{W} U-\bar{D}_{W} \bar{D}_{V} U-\bar{D}_{[V, W]} U=\bar{R}(F(V), F(W)) U
\end{array}
$$

for any sections $V, W$ of $T M$ and $U$ of $E$. Then there exists a smooth map $f: M \rightarrow S$ and a parallel bundle isomorphism $\bar{\Phi}: E \rightarrow f^{*} T S$ preserving $T$ and $R$ such that $d f=\bar{\Phi} o F$. If $S$ is simply connected, then $f$ is unique up to affine diffeomorphisms of $S$.

Now, we prove:
Theorem 2.1 (Existence). Let $c$ and $\theta$ be two constants with $0<\theta \leq$ $\frac{\pi}{2}$ and $M$ be a simply connected $(m+1)$-dimensional Riemannian manifold with metric tensor $g$. Suppose that there exist a unit global vector field $\xi$ on $M$, an endomorphism $P$ of the tangent bundle $T M$ and a symmetric bilinear $T M$-valued form $\rho$ on $M$ such that

$$
\begin{equation*}
P(\xi)=0, \quad g(\rho(X, Y), \xi))=0, \quad \nabla_{X} \xi=0 \tag{2.1}
\end{equation*}
$$

$$
\begin{align*}
& P^{2}=-\cos ^{2} \theta(X-\eta(X) \xi)  \tag{2.2}\\
& g(P X, Y)+g(X, P Y)=0  \tag{2.3}\\
& \rho(X, \xi)=0  \tag{2.4}\\
& g\left(\left(\nabla_{X} P\right) Y, Z\right)=g(\rho(X, Y), Z)-g(\rho(X, Z), Y)  \tag{2.5}\\
& R(X, Y, Z, W)=\cos ^{2} \theta(g(\rho(X, W), \rho(Y, Z))-g(\rho(X, Z), \rho(Y, W))) \\
& \quad+\frac{c}{4}\{g(Y, Z) g(X, W)-g(X, W) \eta(Y) \eta(Z)-g(X, Z) g(Y, W) \\
& \quad+g(Y, W) \eta(X) \eta(Z)+g(X, Z) \eta(Y) \eta(W)-g(Y, Z) \eta(X) \eta(W) \\
& \quad+g(P Y, Z) g(P X, W)-g(P X, Z) g(P Y, W) \\
& \quad+2 g(X, P Y) g(P Z, W)\} \tag{2.6}
\end{align*}
$$

and

$$
\begin{align*}
& \left(\nabla_{X} \rho\right)(Y, Z)+\csc ^{2} \theta\{P \rho(X, \rho(Y, Z))+\rho(X, P \rho(Y, Z))\} \\
& \quad+\frac{c}{4} \sin ^{2} \theta\{g(X, P Z)(Y-\eta(Y) \xi)+g(X, P Y)(Z-\eta(Z) \xi)\} \\
& =\left(\nabla_{Y} \rho\right)(X, Z)+\csc ^{2} \theta\{P \rho(Y, \rho(X, Z))+\rho(Y, P \rho(X, Z))\}  \tag{2.7}\\
& \quad+\frac{c}{4} \sin ^{2} \theta\{g(Y, P Z)(X-\eta(X) \xi)+g(Y, P X)(Z-\eta(Z) \xi)\}
\end{align*}
$$

for all $X, Y, Z \in T M$, where $\eta$ is a dual 1-form of $\xi$. Then, there exists a $\theta$-slant immersion from $M$ into $\bar{M}^{2 m+1}(c)$ whose second fundamental form $h$ is given by

$$
\begin{equation*}
h(X, Y)=\csc ^{2} \theta(P \rho(X, Y)-\varphi \rho(X, Y)) \tag{2.8}
\end{equation*}
$$

Proof. Let all the conditions hold. Consider the Whitney sum $T M \oplus$ $D$ and identify $(X, 0)$ with X for each $X \in T M$. We also identify $(0, Z)$ by $Z^{*}$ for each $Z$ in $D$ and let us denote $\hat{\xi}=(\xi, 0)$. Let $\hat{g}$ be the product metric on $T M \oplus D$. Hence, if we denote by $\hat{\eta}$ the dual 1-form of $\hat{\xi}$, then we can write $\hat{\eta}(X, Z)=\eta(X)$, for all $X \in T M$ and $Z \in D$.

We denote the endomorphism on $T M \oplus D$ by $\hat{\varphi}$, which is defined as

$$
\begin{equation*}
\hat{\varphi}(X, 0)=(P X, \sin \theta(X-\eta(X) \xi)), \quad \hat{\varphi}(0, Z)=(-\sin \theta Z,-P Z) \tag{2.9}
\end{equation*}
$$

Then, $\hat{\varphi}^{2}(X, 0)=-(X, 0)+\hat{\eta}(X, 0) \hat{\xi}, \hat{\varphi}^{2}(0, Z)=-(0, Z)$ and $\hat{\varphi}^{2}(X, Z)=$ $-(X, Z)+\hat{\eta}(X, Z) \hat{\xi}$, for all $X \in T M$ and $Z \in D$. Clearly, $(\hat{\varphi}, \hat{g}, \hat{\xi}, \hat{\eta})$ is an almost contact structure on $T M \oplus D$.

Now, for $X \in T M$ and $Z \in D$, we define $A, h, \nabla^{\perp}$ as

$$
\begin{align*}
A_{Z^{*}} X= & \csc \theta\left(\left(\nabla_{X} P\right) Z-\rho(X, Z)\right)  \tag{2.10}\\
h(X, Y)= & -\csc \theta \rho^{*}(X, Y)  \tag{2.11}\\
\nabla_{X}^{\perp} Z^{*}= & \left(\nabla_{X} Z-\eta\left(\nabla_{X} Z\right) \xi\right)^{*} \\
& +\csc ^{2} \theta\left(\left(P \rho(X, Z)^{*}+\rho^{*}(X, P Z)\right)\right. \tag{2.12}
\end{align*}
$$

We can check that each $A$ is an endomorphism on $T M ; h$ is a $(D)^{*}$-valued symmetric bilinear form on $T M$ and $\nabla^{\perp}$ is a metric connection of the vector bundle $(D)^{*}$ over $M$.

Let $\hat{\nabla}$ denote the connection on $T M \oplus D$ induced from equations $(2.10)-(2.12)$. Then, from $(2.1),(2.2)$ and $(2.9)$, we have $\left(\hat{\nabla}_{(X, 0)} \varphi\right)(Y, 0)=0$, $\left(\hat{\nabla}_{(X, 0)} \varphi\right)(0, Y)=0$ and $\hat{\nabla}_{(X, 0)}(\xi, 0)=0$, for all $X, Y$ tangent to $M$.

Let $R^{\perp}$ denote the curvature tensor associated with the connection $\nabla^{\perp}$ on $(D)^{*}$, i.e, $R^{\perp}(X, Y) Z^{*}=\nabla \stackrel{\perp}{X} \nabla \frac{\perp}{Y} Z^{*}-\nabla_{Y}^{\perp} \nabla \frac{\perp}{X} Z^{*}-\nabla_{[X, Y]}^{\perp} Z^{*}$ for $X, Y \in T M$ and $Z \in D$.

Then, using (1.28), (2.1), (2.5) and (2.12), we get

$$
\begin{align*}
& R^{\perp}(X, Y) Z^{*}=(R(X, Y) Z-\eta(R(X, Y) Z) \xi)^{*} \\
& \quad+\left[\frac{c}{4} P\{g(Y, P Z) X+2 g(Y, P X) Z-g(X, P Z) Y\}\right. \\
& \quad+\frac{c}{4}\left\{g\left(Y, P^{2} Z\right)(X-\eta(X) \xi)+2 g(Y, P X) P Z-g\left(X, P^{2} Z\right)(Y-\eta(Y) \xi)\right\} \\
& \quad+\csc ^{2} \theta\left\{\left(\nabla_{X} P\right) \rho(Y, Z)-\left(\nabla_{Y} P\right) \rho(X, Z)-\eta\left(\nabla_{X}(P \rho(Y, Z))\right) \xi\right. \\
& \quad+\eta\left(\nabla_{Y}(P \rho(X, Z))\right) \xi+\rho\left(Y,\left(\nabla_{X} P\right) Z\right)-\rho\left(X,\left(\nabla_{Y} P\right) Z\right) \\
& \left.\left.\quad-\eta\left(\left(\nabla_{X} \rho\right)(Y, P Z)\right) \xi+\eta\left(\left(\nabla_{Y} \rho\right)(X, P Z)\right) \xi\right\}\right]^{*} \tag{2.13}
\end{align*}
$$

On the other hand

$$
\begin{align*}
& \sin ^{2} \theta g\left(\left[A_{Z^{*}}, A_{W^{*}}\right] X, Y\right)=g\left(\left(\nabla_{Y} P\right) Z,\left(\nabla_{X} P\right) W\right)-g\left(\rho(Y, Z),\left(\nabla_{X} P\right) W\right) \\
& \quad-g\left(\left(\nabla_{Y} P\right) Z, \rho(X, W)\right)+g(\rho(Y, Z), \rho(X, W)) \\
& \quad-g\left(\left(\nabla_{Y} P\right) W,\left(\nabla_{X} P\right) Z\right)+g\left(\rho(Y, W),\left(\nabla_{X} P\right) Z\right) \\
& \quad+g\left(\left(\nabla_{Y} P\right) W, \rho(X, Z)\right)-g(\rho(Y, W), \rho(X, Z)) \tag{2.14}
\end{align*}
$$

From (1.11), we have

$$
\begin{equation*}
g(\rho(Y, Z), P W)+g(P \rho(Y, Z), W)=0 \tag{2.15}
\end{equation*}
$$

The covariant derivative of the above equation with respect to $X$ gives

$$
\begin{equation*}
g\left(\rho(Y, Z),\left(\nabla_{X} P\right) W\right)+g\left(\left(\nabla_{X} P\right) \rho(Y, Z), W\right)=0 \tag{2.16}
\end{equation*}
$$

Moreover, by virtue of (1.25), we have

$$
\begin{align*}
g\left(\left(\nabla_{Y} P\right) W,\left(\nabla_{X} P\right) Z\right)= & g\left(\rho(Y, W),\left(\nabla_{X} P\right) Z\right) \\
& -g\left(\rho\left(Y,\left(\nabla_{X} P\right) Z\right), W\right) \tag{2.17}
\end{align*}
$$

Using (2.17), (2.16), (2.14) and (2.13), we get

$$
\begin{align*}
& g\left(R^{\perp}(X, Y) Z^{*}, W^{*}\right)-g\left(\left[A_{Z^{*}}, A_{W^{*}}\right] X, Y\right)=\frac{c}{4}\left\{\sin ^{2} \theta g(Y, Z), g(X, W)\right. \\
& \left.\quad-\sin ^{2} \theta g(X, Z) g(Y, W)+2 g(Y, P X) g(P Z, W)\right\} \tag{2.18}
\end{align*}
$$

Equations (1.3), (2.2), (2.3) and (2.18) imply that $\left(M, A, \nabla^{\perp}\right)$ satisfies the equation of Ricci for an $(m+1)$-dimensional $\theta$-slant submanifold in $\bar{M}^{2 m+1}(c)$. Also, (1.28) and (1.31) imply that ( $M, h$ ) satisfies the equations of Gauss and Codazzi for a $\theta$-slant submanifold. Hence, the vector bundle $T M \oplus D$ over $M$ equipped with the product metric $\hat{g}$, the shape operator $A$, the second fundamental form $h$ and the connections $\nabla^{\perp}$ and $\hat{\nabla}$ satisfy the structure equations of $(m+1)$-dimensional $\theta$-slant submanifold in $\bar{M}^{2 m+1}(c)$. Therefore, from Theorem A, we know that there exists a $\theta$-slant isometric immersion of $M$ in $\bar{M}^{2 m+1}(c)$ with $h$ as its second fundamental form, $A$ as its shape operator and $\nabla^{\perp}$ as its normal connection.

## 3. Uniqueness theorem for slant immersions into cosymplectic space form

In this section we establish uniqueness theorem for slant immersions into cosymplectic space form. We prove:

Theorem 3.1 (Uniqueness). Let $x^{1}, x^{2}: M \rightarrow \bar{M}(c)$ be two slant immersions with slant angle $\theta\left(0<\theta \leq \frac{\pi}{2}\right)$, of a connected Riemannian manifold $M$ of dimension $(m+1)$ into the cosymplectic space-form $\bar{M}^{2 m+1}(c)$. Let $h^{1}, h^{2}$ denote the second fundamental forms of $x^{1}$ and $x^{2}$
respectively. Let there be a vector field $\bar{\xi}$ on $M$ such that $x_{* p}^{1}\left(\overline{\xi_{p}}\right)=\xi_{x^{i}(p)}$, for $i=1,2$ and $p \in M$, and

$$
\begin{equation*}
g\left(h^{1}(X, Y), \varphi x_{*}^{1} Z\right)=g\left(h^{2}(X, Y), \varphi x_{*}^{2} Z\right) \tag{3.1}
\end{equation*}
$$

for all vector fields $X, Y, Z$ tangent to $M$. Suppose also that we have one of the following conditions:
(i) $\theta=\frac{\pi}{2}$
(ii) there exists a point $p$ of $M$ such that $P_{1}=P_{2}$
(iii) $c \neq 0$

Then there exists an isometry $\Psi$ of $\bar{M}^{2 m+1}(c)$ such that $x^{1}=\Psi o x^{2}$.
Proof. Let $p$ be any point of $M$. Assume that $x^{1}(p)=x^{2}(p)$ and $x_{*}^{1}(p)=x_{*}^{2}(p)$. We can take a geodesic $\gamma$ through the point $p=\gamma(0)$ and let us define $\gamma_{1}=x^{1}(\gamma)$ and $\gamma_{2}=x^{2}(\gamma)$. To prove the theorem it is sufficient to show that $\gamma_{1}$ and $\gamma_{2}$ coincide. We already know that $\gamma_{1}(0)=\gamma_{2}(0)$ and $\gamma_{1}^{\prime}(0)=\gamma_{2}^{\prime}(0)$. Let $E_{1}, E_{2}, \ldots, E_{m}, \bar{\xi}$ be any orthonormal frame along $\gamma$. We can define frames along $\gamma_{1}$ and $\gamma_{2}$ as follows:

Take $A_{i}=x_{*}^{1}\left(E_{i}\right), B_{i}=x_{*}^{2}\left(E_{i}\right), A_{n+i}=\left(x_{*}^{1}\left(E_{i}\right)\right)^{*}, B_{n+i}=\left(x_{*}^{2}\left(E_{i}\right)\right)^{*}$, where $X^{*}=\frac{F X}{\sin \theta}$ for $X \in D$.

From (2.11), we have $h^{i}=-\csc \theta\left(\rho^{i}\right)^{*}$, for $i=1,2$ and from (3.1), we have $g\left(\rho^{1}(X, Y), x_{*}^{1} Z\right)=g\left(\rho^{2}(X, Y), x_{*}^{2} Z\right)$. Since $x_{*}^{1}(p)=x_{*}^{2}(p)$ and $Z$ is arbitrary, we have $\rho^{1}=\rho^{2}$. Now, we show that $P_{1}=P_{2}$.

If (i) is satisfied, it is obvious that $P_{1}=0, P_{2}=0$ and hence $P_{1}=P_{2}$.
If (ii) is satisfied, it follows from (2.5) that $\left(\nabla_{X}\left(P_{1}-P_{2}\right)\right) Y=0$. Since we have $P_{1}=P_{2}$ at a point $p$, therefore we have $P_{1}=P_{2}$ everywhere.

Now, suppose that (iii) is satisfied and assume that $P_{1} \neq P_{2}$ and (i) and (ii) are not satisfied. Then in this case we show that $P_{1}=-P_{2}$. From (2.6), we find

$$
\begin{align*}
& g\left(P_{1} X, W\right) g\left(P_{1} Y, Z\right)-g\left(P_{1} X, Z\right) g\left(P_{1} Y, W\right)+2 g\left(P_{1} Z, W\right) g\left(P_{1} Y, X\right) \\
& \quad=g\left(P_{2} X, W\right) g\left(P_{2} Y, Z\right)-g\left(P_{2} X, Z\right) g\left(P_{2} Y, W\right) \\
& \quad+2 g\left(P_{2} Z, W\right) g\left(P_{2} Y, X\right) \tag{3.2}
\end{align*}
$$

Putting $X=W, Y=Z$ and using the skew symmetric property of $P_{1}$ and $P_{2}$, equation (3.2) reduces to

$$
\begin{equation*}
g\left(P_{1} Y, X\right)^{2}=g\left(P_{2} Y, X\right)^{2} . \tag{3.3}
\end{equation*}
$$

Next, put $e_{1}=X$ and $e_{2}=P_{1} X$ and suppose that $P_{2} e_{1}$ has a component in the direction of a vector $e_{3}$ which is orthogonal to both $e_{1}$ and $e_{2}$. Then a contradiction follows from (3.3) which states that $g\left(P_{2} e_{1}, e_{3}\right)^{2}=$ $g\left(P_{1} e_{1}, e_{3}\right)^{2}=g\left(e_{2}, e_{3}\right)^{2}=0$. Thus, by applying (2.2) and (2.3), we get $P_{1} \nu= \pm P_{2} \nu$ for every tangent vector $\nu$.

Now choose a basis $\left\{e_{1}, \ldots, e_{m}, e_{m+1}\right\}$ of the tangent space $T_{p} M$ at a point $p$. Then there exists a number $\varepsilon_{i} \in\{-1,1\}$ such that $P_{1} e_{i}=\varepsilon_{i} P_{2} e_{i}$. So, we also have $\pm P_{1}\left(e_{i}+e_{j}\right)=P_{2}\left(e_{i}+e_{j}\right)=\varepsilon_{i} P_{1} e_{i}+\varepsilon_{j} P_{1} e_{j}$. Hence, the above formula shows that all $\varepsilon_{i}$ have to be equal. Thus, either $P_{1} \nu=P_{2} \nu$ or $P_{1} \nu=-P_{2} \nu$, for all $\nu \in T_{p} M$. Since $M$ is connected, this implies that we have either $P_{1}=P_{2}$ or $P_{1}=-P_{2}$ in case (iii).

Let us now assume that we have two immersions with $P_{1}=-P_{2}$. From (2.5), it follows that

$$
g\left(\left(\nabla_{X} P_{1}\right) Y, Z\right)=g\left(\rho^{1}(X, Y), Z\right)-g\left(\rho^{1}(X, Z), Y\right)
$$

and

$$
g\left(\left(\nabla_{X} P_{2}\right) Y, Z\right)=-g\left(\left(\nabla_{X} P_{1}\right) Y, Z\right)=g\left(\rho^{2}(X, Y), Z\right)-g\left(\rho^{2}(X, Z), Y\right) .
$$

Since $\rho^{1}=\rho^{2}=\rho$, we get

$$
\begin{equation*}
g(\rho(X, Y), Z)=g(\rho(X, Z), Y) . \tag{3.4}
\end{equation*}
$$

Writing the equation (2.7) for both the immersions and using the fact that $P_{1}=-P_{2}=P$, we find

$$
\begin{align*}
& P \rho(X, \rho(Y, Z))+\rho(X, P \rho(Y, Z))-P \rho(Y, \rho(X, Z))-\rho(Y, P \rho(X, Z)) \\
& \quad+\frac{c}{4} \sin ^{4} \theta\{g(X, P Z)(Y-\eta(Y) \xi)-g(Y, P Z)(X-\eta(X) \xi) \\
& \quad+2 g(X, P Y)(Z-\eta(Z) \xi)\}=0 . \tag{3.5}
\end{align*}
$$

Taking inner product with a vector $W$ in (3.5) and using (3.4), we get

$$
-g(\rho(X, P W), \rho(Y, Z))+g(\rho(Y, P W), \rho(X, Z))+g(\rho(X, W), P \rho(Y, Z))
$$

$$
\begin{align*}
& -g(\rho(Y, W), P \rho(X, Z))+\frac{c}{4} \sin ^{4} \theta\{g(X, P Z) g(Y, W) \\
& -g(X, P Z) \eta(Y) \eta(W)-g(Y, P Z) g(X, W)+g(Y, P Z) \eta(X) \eta(W) \\
& +2 g(X, P Y) g(Z, W)-2 g(X, P Y) \eta(Z) \eta(W)\}=0 \tag{3.6}
\end{align*}
$$

If $\rho$ vanishes identically at a point, then a contradiction follows from (3.6) since $c \neq 0$.

Now, we take a fixed point $p$ of $M$ and look at the function $f$ defined on the set of all unit tangent vectors $U M_{p}$ at the point $p$ by $f(\nu)=$ $g(\rho(\nu, \nu), \nu)$. Since $U M_{p}$ is compact there exists a vector $u$ such that $f$ attains an absolute maximum at the vector $u$. Let $w$ be a unit vector orthogonal to $u$. Then the function $f(t)=f(g(t))$, where $g(t)=(\cos t) u+$ $(\sin t) w$, satisfies $f^{\prime}(0)=0$ and $f^{\prime \prime}(0) \leq 0$. The first condition implies that $g(\rho(u, u), w)=0$ whereas the second condition implies $g(\rho(u, w), w) \leq$ $\frac{1}{2} g(\rho(u, u), u)$.

Now, using the total symmetry of $\rho$, it follows that we can choose an orthonormal basis $e_{1}=u, \ldots, e_{m}, e_{m+1}$ such that

$$
\begin{equation*}
\rho\left(e_{1}, e_{1}\right)=\lambda_{1} e_{1}, \quad \rho\left(e_{1}, e_{i}\right)=\lambda_{i} e_{i} \tag{3.7}
\end{equation*}
$$

with $i>1$ and $\lambda_{i} \leq \frac{1}{2} \lambda_{1}$.
Since $\rho$ is not identically zero, it follows from total symmetry of (3.4) that $\lambda_{l}>0$. Using (3.4) and (3.7) in (3.6) with $X=Z=W=e_{1}$ and $Y=e_{i}$, we find

$$
\begin{equation*}
\left(\lambda_{i}^{2}+\lambda_{i} \lambda_{1}+3 \frac{c}{4} \sin ^{4} \theta\right) g\left(P e_{1}, e_{i}\right)=0 \tag{3.8}
\end{equation*}
$$

Now, we show that $P e_{1}$ is an eigen vector of $\rho\left(e_{1},.\right)$. For this we put $X=Z=e_{1}, W=e_{j}$ and $Y=e_{i}$ in (3.6) for $i, j>1$. Then, we get

$$
\begin{equation*}
\left(\lambda_{i}^{2}-\lambda_{i} \lambda_{1}+\lambda_{i} \lambda_{j}\right) g\left(P e_{j}, e_{i}\right)+\lambda_{1} g\left(\rho\left(e_{i}, e_{j}\right), P e_{1}\right)=0 \tag{3.9}
\end{equation*}
$$

Interchanging the indices $i$ and $j$ in (4.9), we obtain

$$
\begin{equation*}
\left(\lambda_{j}^{2}-\lambda_{j} \lambda_{1}+\lambda_{i} \lambda_{j}\right) g\left(P e_{i}, e_{j}\right)+\lambda_{1} g\left(\rho\left(e_{i}, e_{j}\right), P e_{1}\right)=0 \tag{3.10}
\end{equation*}
$$

Combining (3.9) and (3.10), we find

$$
\begin{equation*}
\left(\lambda_{i}+\lambda_{j}\right)\left(\lambda_{1}-\lambda_{i}-\lambda_{j}\right) g\left(P e_{j}, e_{i}\right)=0 \tag{3.11}
\end{equation*}
$$

Since $\lambda_{1} \geq 2 \lambda_{i}$, therefore $\lambda_{1}-\lambda_{i}-\lambda_{j}=0$ only if $\lambda_{i}=\lambda_{j}=\frac{1}{2} \lambda_{1}$. Now, if we put $X=W=e_{1}, Z=e_{j}$ and $Y=e_{i}$ for $i, j>1$ in (3.6), we find that

$$
\begin{gather*}
g\left(\rho\left(e_{1}, P e_{1}\right), \rho\left(e_{i}, e_{j}\right)\right)-\lambda_{j} g\left(\rho\left(e_{i}, e_{j}\right), P e_{1}\right)+\lambda_{i} \lambda_{j} g\left(e_{i}, P e_{j}\right) \\
+\lambda_{1} g\left(\rho\left(e_{i}, e_{j}\right), P e_{1}\right)+\frac{c}{4} \sin ^{4} \theta g\left(e_{i}, P e_{j}\right)=0 \tag{3.12}
\end{gather*}
$$

Interchanging the indices $i$ and $j$ in (3.12), we get

$$
\begin{gather*}
g\left(\rho\left(e_{1}, P e_{1}\right), \rho\left(e_{i}, e_{j}\right)\right)-\lambda_{i} g\left(\rho\left(e_{i}, e_{j}\right), P e_{1}\right)+\lambda_{i} \lambda_{j} g\left(e_{j}, P e_{i}\right) \\
+\lambda_{1} g\left(\rho\left(e_{i}, e_{j}\right), P e_{1}\right)+\frac{c}{4} \sin ^{4} \theta g\left(e_{j}, P e_{i}\right)=0 \tag{3.13}
\end{gather*}
$$

Combining (3.12) and (3.13), we find

$$
\begin{equation*}
\left(\lambda_{i}-\lambda_{j}\right) g\left(\rho\left(e_{i}, e_{j}\right), P e_{1}\right)+2 \lambda_{i} \lambda_{j} g\left(e_{i}, P e_{j}\right)+\frac{c}{2} \sin ^{4} \theta g\left(e_{i}, P e_{j}\right)=0 \tag{3.14}
\end{equation*}
$$

Now, we summarise the previous equations in the following way. First, taking $i=j$ in (4.9), we get

$$
\begin{equation*}
g\left(\rho\left(e_{i}, e_{i}\right), P e_{1}\right)=0 \tag{3.15}
\end{equation*}
$$

Hence, we have $g\left(\rho(\nu, \nu), P e_{1}\right)=0$ if $\nu$ is an eigenvector of $\rho\left(e_{1},.\right)$. Moreover, the symmetry of $\rho$ implies that $g\left(\rho\left(e_{i}, e_{j}\right), P e_{1}\right)=0$, whenever $\lambda_{i}=\lambda_{j}$.

We consider four different cases:
(1) $\lambda_{i}+\lambda_{j} \neq 0$, but not $\lambda_{i}=\lambda_{j}=\frac{1}{2} \lambda_{1}$. In this case (3.11) implies $g\left(P e_{i}, e_{j}\right)=0$.
(2) $\lambda_{i}+\lambda_{j}=0$, and $\lambda_{i} \neq 0$. In this case, (3.9) implies $g\left(\rho\left(e_{i}, e_{i}\right), P e_{1}\right)=$ $\lambda_{i} g\left(P e_{j}, e_{i}\right)$. Substituting this into (3.14), we obtain $\frac{c}{2} \sin ^{4} \theta g\left(e_{i}, P e_{j}\right)=0$ which yields $g\left(P e_{j}, e_{i}\right)=0$.
(3) $\lambda_{i}+\lambda_{j}=0$, and $\lambda_{i}=0$ or equivalently $\lambda_{i}=\lambda_{j}=0$. In this case it follows from (3.14) that $g\left(e_{i}, P e_{j}\right)=0$.
(4) $\lambda_{i}=\lambda_{j}=\frac{1}{2} \lambda_{1}$.

Therefore, if $e_{i_{1}}, \ldots, e_{i_{k}}$ are eigenvectors belonging to an eigenvalue different from $\frac{1}{2} \lambda_{1}$, then each $P e_{i_{l}}, l=1, \ldots, k$, can only have a component in the direction of $e_{1}$, say $P e_{i_{l}}=\mu_{l} e_{1}$. Thus, $\mu_{l} P e_{1}=-\cos ^{2} \theta e_{i_{l}}$. Consequently, either $k=1$ or there does not exist an eigenvector with eigenvalue different from $\frac{1}{2} \lambda_{1}$. If $k=1$, then clearly $P e_{1}$ is an eigenvector.

In the latter case $\rho\left(e_{1},.\right)$ restricted to the space $e_{1}^{\perp}$ only has one eigenvalue, namely $\frac{1}{2} \lambda_{1}$. Since $P e_{1}$ is always orthogonal to $e_{1}, P e_{1}$ is also an eigenvector in this case. Hence $P e_{1}$ is always an eigenvector of $\rho\left(e_{1},.\right)$.

We may assume that $e_{2}$ is in the direction of $P e_{1}$. Then it follows that $\rho\left(e_{1}, P e_{1}\right)=\lambda_{2} P e_{1}$, where $\lambda_{2}$ satisfies the equation

$$
\begin{equation*}
\lambda_{2}^{2}+\lambda_{2} \lambda_{1}+\frac{3 c}{4} \sin ^{4} \theta=0 \tag{3.16}
\end{equation*}
$$

by virtue of (3.8).
If we choose $X=Z=e_{1}, W=P e_{1}$ and $Y=e_{i}$ for $i>2$ in (3.6), then

$$
\lambda_{1} g\left(\rho\left(e_{i}, P e_{1}\right), P e_{1}\right)=\lambda_{1} g\left(\rho\left(P e_{1}, P e_{1}\right), e_{i}\right)=0
$$

Thus, $\rho\left(P e_{1}, P e_{1}\right)=\lambda_{2} \cos ^{2} \theta e_{1}$. Putting $X=Z=P e_{1}$ and $Y=e_{1}$ in (3.6), we find

$$
\begin{equation*}
-\lambda_{2}^{2}-\lambda_{2} \lambda_{1}+\frac{3 c}{4} \sin ^{4} \theta=0 \tag{3.17}
\end{equation*}
$$

From (3.16) and (3.17), we get $\frac{3 c}{4} \sin ^{4} \theta=0$, which is a contradiction since $c \neq 0$. Therefore $P_{1}=P_{2}$. Now it is easy to check from (2.10)-(2.12) that $g\left(\gamma_{1}^{\prime}, A_{k}\right)=g\left(\gamma_{2}^{\prime}, B_{k}\right)$ and $g\left(\hat{\nabla}_{\gamma} A_{k}, A_{l}\right)=g\left(\hat{\nabla}_{\gamma} B_{k}, B_{l}\right)$ for $k, l=1, \ldots 2 m$, such that by [9, Proposition 3], $\gamma_{1}=\gamma_{2}$.

## 4. Applications and examples

Let $\phi=\phi(x)$ and $\phi_{i}=\phi_{i}(x), i=1,2,3$, be four functions defined on an open interval containing 0 . Let $c$ and $\theta$ be two constants with $0<\theta \leq \frac{\pi}{2}$ and $M$ be a simply connected open neighbourhood of the origin $(0,0,0) \in \Re^{3}$. Suppose

$$
\begin{align*}
f(x) & =\exp \int \phi_{3}(x) d x  \tag{4.1}\\
\eta & =d z  \tag{4.2}\\
g & =\eta \otimes \eta+d x \otimes d x+f^{2}(x) d y \otimes d y \tag{4.3}
\end{align*}
$$

and

$$
\begin{equation*}
e_{1}=\frac{\partial}{\partial x}, \quad e_{2}=\frac{1}{f(x)} \frac{\partial}{\partial y}, \quad e_{3}=\xi=\frac{\partial}{\partial z} . \tag{4.4}
\end{equation*}
$$

Then, we can verify that $\left\{e_{1}, e_{2}, \xi\right\}$ is a local orthonormal frame field of $T M$ and $\eta$ is the dual 1-form of structure vector field $\xi$. Also, we can obtain

$$
\begin{array}{lll}
\nabla_{e_{1}} e_{1}=0, & \nabla_{e_{1}} e_{2}=0, & \nabla_{e_{1}} e_{3}=0 \\
\nabla_{e_{2}} e_{1}=\phi_{3} e_{2}, & \nabla_{e_{2}} e_{2}=-\phi_{3} e_{1}, & \nabla_{e_{2}} e_{3}=0 \\
\nabla_{e_{3}} e_{1}=0, & \nabla_{e_{3}} e_{2}=0, & \nabla_{e_{3}} e_{3}=0
\end{array}
$$

We define the tensor $\varphi$ as

$$
\varphi e_{1}=e_{2}, \quad \varphi e_{2}=-e_{1} \quad \text { and } \quad \varphi e_{3}=\varphi \xi=0
$$

and a symmetric bilinear $T M$-valued form $\rho$ on $M$ as follows:

$$
\begin{gather*}
\rho\left(e_{1}, e_{1}\right)=\phi e_{1}+\phi_{1} e_{2}, \quad \rho\left(e_{1}, e_{2}\right)=\phi_{1} e_{1}+\phi_{2} e_{2} \\
\rho\left(e_{2}, e_{2}\right)=\phi_{2} e_{1}-\phi_{1} e_{2}  \tag{4.6}\\
\rho\left(e_{1}, \xi\right)=0, \quad \rho\left(e_{2}, \xi\right)=0, \quad \rho(\xi, \xi)=0 \tag{4.7}
\end{gather*}
$$

It is easy to check that $(M, \varphi, \xi, \eta, g)$ is an almost contact metric manifold. Now, to calculate the value of $\left(\nabla_{X} \varphi\right) Y$, we choose vector fields $X=$ $a_{1} e_{1}+a_{2} e_{2}+a_{3} e_{3}$ and $Y=b_{1} e_{1}+b_{2} e_{2}+b_{3} e_{3}$, where $a_{1}, a_{2}, a_{3}, b_{1}, b_{2}, b_{3}$, are real valued functions. Then, $\left(\nabla_{X} \varphi\right) Y=0$, for any $X, Y \in T M$.

If we take $P=\cos \theta \varphi$, then it will satisfy equation (2.3). Similarly, we can show that $(M, \varphi, \xi, \eta, g, \rho)$ satisfy the equations (2.1)-(2.4) and (2.5).

On the other hand, it can be proved that $M$ satisfy the conditions (2.6) and (2.7) if we have the following equations:

$$
\begin{align*}
\phi_{3}^{\prime}+\phi_{3}^{2} & =-\csc ^{2} \theta\left(\phi \phi_{2}-2 \phi_{1}^{2}-\phi_{2}^{2}\right)-\frac{c}{4}\left(1+3 \cos ^{2} \theta\right)  \tag{4.8}\\
\phi_{1}^{\prime} & =-3 \phi_{1} \phi_{3}+\cot \theta \csc \theta\left(\phi_{2}^{2}+\phi_{2} \phi\right)+3 \frac{c}{4} \sin ^{2} \theta \cos \theta  \tag{4.9}\\
\phi_{1}^{\prime} & =-3 \phi_{1} \phi_{3}+\cot \theta \csc \theta\left(\phi_{2}^{2}+\phi_{2} \phi\right)-3 \frac{c}{4} \sin ^{2} \theta \cos \theta \tag{4.10}
\end{align*}
$$

and

$$
\begin{equation*}
\phi_{2}^{\prime}=\phi \phi_{3}-2 \phi_{3} \phi_{2}-\cot \theta \csc \theta\left(\phi_{1} \phi+\phi_{2} \phi_{1}\right) \tag{4.11}
\end{equation*}
$$

Equations (4.9) and (4.10) are satisfied together if and only if $3 \frac{c}{4} \sin ^{2} \theta$. $\cos \theta=0$. Since $0<\theta \leq \frac{\pi}{2}$ implies $\sin ^{2} \theta \neq 0$, therefore either $c=0$ or $\theta=\frac{\pi}{2}$.

Using Theorem 2.1, we obtain:
Theorem 4.1. Let $\phi=\phi(x)$ be a function defined on an open interval containing 0 and $d_{1}, d_{2}, d_{3}, c, \theta$ be the five constants with $0<\theta \leq \frac{\pi}{2}$. Consider the system of first order ordinary differential equations

$$
\begin{aligned}
& y_{1}^{\prime}=-3 y_{1} y_{3}+\cot \theta \csc \theta\left(y_{2}^{2}+y_{2} \phi\right) \\
& y_{2}^{\prime}=\phi y_{3}-2 y_{3} y_{2}-\cot \theta \csc \theta\left(y_{1} \phi+y_{2} y_{1}\right) \\
& y_{3}^{\prime}=-\csc ^{2} \theta\left(\phi y_{2}-2 y_{1}^{2}-y_{2}^{2}\right)-\frac{c}{4}\left(1+3 \cos ^{2} \theta\right)-y_{3}^{2}
\end{aligned}
$$

with the initial conditions $y_{1}(0)=d_{1}, y_{2}(0)=d_{2}, y_{3}(0)=d_{3}$. Let $\phi_{1}$, $\phi_{2}$ and $\phi_{3}$ be the components of the unique solution of this differentiable system on some open interval containing 0 . Let $M$ be a simply connected open neighbourhood of the origin $(0,0,0) \in \Re^{3}$ endowed with the metric given by (4.1)-(4.4) and let $\rho$ be the $T M$-valued form defined by (4.6)(4.7). Then,
(i) if $c=0$, there exists a $\theta$-slant isometric immersion of $M$ in $\bar{M}^{5}(c)$ whose second fundamental form is given by

$$
h(X, Y)=\cos ^{2} \theta(P \rho(X, Y)-\varphi \rho(X, Y))
$$

(ii) if $\theta=\frac{\pi}{2}$, then there exists an anti-invariant immersion whose second fundamental form is given by

$$
h(X, Y)=-\varphi \rho(X, Y)
$$

We can obtain from Theorem 4.1 the following existence result for three dimensional slant submanifolds with prescribed scalar curvature or mean curvature.

Corollary 4.2. For a given constant $\theta$ with $0<\theta<\frac{\pi}{2}$ and a given function $F_{1}=F_{1}(x)$ (resp. $\left.F_{2}=F_{2}(x)\right)$, there exist infinitely many threedimensional $\theta$ slant submanifolds in $\bar{M}^{5}(c)$ with $F_{1}$ (resp. $F_{2}$ ) as the prescribed scalar curvature (resp. mean curvature) function for $c=0$.

Corollary 4.2 follows from Theorem 4.1 by putting $d_{2} \neq 0$ and choosing $\phi$ to be a function satisfying $F_{1} \sin ^{2} \theta=2\left(2 \phi_{1}^{2}+\phi_{2}^{2}-\phi \phi_{2}\right)$. On the other hand, it is enough to put $\phi=3 F_{2} \sin \theta-\phi_{2}$ in order to obtain $F_{2}$ as the prescribed mean curvature function.

Clearly, we can obtain a similar result for anti-invariant submanifolds in $\bar{M}^{5}(c)$ for a given constant $c$.

We prove:
Proposition 4.3. For each given constant $\theta$ with $0<\theta<\frac{\pi}{2}$, there exist three-dimensional $\theta$ slant submanifolds in $\bar{M}^{5}(-4)$ with non zero constant mean curvature and constant negative scalar curvature.

Proof. For a given constant $\theta$ with $0<\theta<\frac{\pi}{2}$, we can choose two nonzero constants $\beta$ and $\gamma$ such that

$$
\begin{equation*}
\beta^{2}+\gamma^{2}=4 \cos ^{2} \theta \tag{4.12}
\end{equation*}
$$

Let $a, b, c$ be constants defined by

$$
\begin{align*}
& a=-\sin ^{2} \theta \sec ^{3} \theta\left(\frac{\beta^{3}}{4}-\frac{3}{2} \beta \cos ^{2} \theta+\frac{6}{\beta} \cos ^{4} \theta\right)  \tag{4.13}\\
& b=\gamma \sin ^{2} \theta \sec ^{3} \theta\left(\frac{\beta^{2}}{4}-\cos ^{2} \theta\right)  \tag{4.14}\\
& c=-\beta \sin ^{2} \theta \sec ^{3} \theta\left(\frac{\beta^{2}}{4}-\frac{1}{2} \cos ^{2} \theta+\frac{1}{2} \gamma^{2}\right) \tag{4.15}
\end{align*}
$$

Let $M$ be $\Re^{3}$ and define the 1 -form $\eta=d z$. We consider on $M$ the metric $g$ given by

$$
\begin{align*}
g= & \eta \otimes \eta+\left(d x \otimes d x-\beta e^{-\gamma x}(d x \otimes d y+d y \otimes d x)\right) \\
& +\left(\beta^{2}+\gamma^{2}\right) e^{-2 \gamma x} d y \otimes d y \tag{4.16}
\end{align*}
$$

If we take

$$
\begin{equation*}
e_{1}=\frac{\partial}{\partial x}, \quad e_{2}=\frac{1}{\gamma}\left(\beta \frac{\partial}{\partial x}+e^{\gamma x} \frac{\partial}{\partial y}\right) \quad \text { and } \quad \xi=\frac{\partial}{\partial z} \tag{4.17}
\end{equation*}
$$

then $\left\{e_{1}, e_{2}, \xi\right\}$ form an orthonormal frame field for $(M, g)$ and $\eta$ is the dual 1 -form of $\xi$. It is easy to see that

$$
\begin{array}{lll}
\nabla_{e_{1}} e_{1}=\beta e_{2}, & \nabla_{e_{1}} e_{2}=-\beta e_{1}, & \nabla_{e_{1}} \xi=0, \\
\nabla_{e_{2}} e_{1}=-\gamma e_{2}, & \nabla_{e_{2}} e_{2}=-\gamma e_{1}, & \nabla_{e_{2}} \xi=0,  \tag{4.18}\\
\nabla_{\xi} e_{1}=0, & \nabla_{\xi} e_{2}=0, & \nabla_{\xi} \xi=0 .
\end{array}
$$

Equations (4.12) and (4.18) imply that the scalar curvature of $M$ is given by

$$
\tau=-2\left(\beta^{2}+\gamma^{2}\right)<0
$$

We define a $T M$-valued symmetric bilinear form $\rho$ on $M$ by:

$$
\begin{gather*}
\rho\left(e_{1}, e_{1}\right)=a e_{1}+b e_{2}, \quad \rho\left(e_{1}, e_{2}\right)=b e_{1}+c e_{2} \\
\rho\left(e_{2}, e_{2}\right)=c e_{1}-b e_{2}  \tag{4.19}\\
\rho\left(e_{1}, \xi\right)=0, \quad \rho\left(e_{2}, \xi\right)=0, \quad \rho(\xi, \xi)=0 \tag{4.20}
\end{gather*}
$$

Let $P$ be the endomorphism on $T M$ defined by $P e_{1}=\cos \theta e_{2}, P e_{2}=$ $-\cos \theta e_{1}$ and $P \xi=0$. Then using (4.12)-(4.20) and after a long computation, we find that $(M, \xi, \eta, g, P, \rho)$ satisfies the equations (2.1)-(2.7) stated in Theorem 2.1 for $c=-4$. Therefore, Theorem 2.1 implies that there exists a $\theta$-slant immersion of $(M, g)$ into $\bar{M}^{5}(-4)$ whose second fundamental form is given by $h(X, Y)=\csc ^{2} \theta(P \rho(X, Y)-\varphi \rho(X, Y))$. Since $\theta, a, b$ and $c$ are constants such that $0<\theta<\frac{\pi}{2}$, and $\beta \neq 0$ the proper slant submanifolds have nonzero constant mean curvature and constant negative scalar curvature.

## References

[1] A. Cabra, A. Ianus and Gh. Pitis, Extrinsic spheres and parallel submanifolds in cosymplectic manifolds, Math. J. Toyama Univ. 17 (1994), 31-53.
[2] A. Lotta, Slant submanifolds in contact geometry, Bull. Math. Soc. Roumanie (1996), 183-198.
[3] A. Lotta, Three dimensional slant submanifolds of $K$-contact manifolds, Balkan J. Geom. Appl. 3(1) (1998), 37-51.
[4] B. Y. Chen, Geometry of slant submanifolds, Katholieke Universiteit Leuven, 1990.
[5] B. Y. Chen and L. Vrancken, Existence and uniqueness theorem for slant immersions and its applications, Result. Math. 31 (1997), 28-39.
[6] B. Y. Chen and L. Vrancken, Addendum to: Existence and uniqueness theorem for slant immersions and its applications, Result. Math. 39 (2001), 18-22.
[7] B. Y. Chen and Y. Tazawa, Slant submanifolds in complex Euclidean spaces, Tokyo J. Math. 14 (1991), 101-120.
[8] D. E. Blair, Contact Manifolds in Riemannian Geometry, Lect. Notes in Math., Vol. 509, Springer Verlag, Berlin - New York, 1976.
[9] H. Reckziege, On the problem whether the image of a given differentiable map into a Riemannian manifold is contained in a submanifold with parallel second fundamental form, J. Reine. Angew. Math. 325 (1981), 87-104.
[10] J. H. Eschenburg and R. Tribuzy, Existence and uniqueness of maps into affine homogeneous spaces, Rend. Sem. Mat. Univ. Padova 89 (1993), 11-18.
[11] J. L. Cabrerizo, A. Carriazo, L. M. Fernandez and M. Fernandez, Existence and uniqueness theorem for slant immersion in Sasakian manifolds, Publicationes Mathematicae Debrecen 58 (2001), 559-574.
[12] J. L. Cabrerizo, A. Carriazo, L. M. Fernandez and M. Fernandez, Slant submanifolds in Sasakian manifolds, Glasgow Math. J. 42 (2000), 125-138.
[13] J. L. Cabrerizo, A. Carriazo, L. M. Fernandez and M. Fernandez, Structure on a slant submanifold of a contact manifold, Indian J. Pure and Appl. Math. 31(7) (2000), 857-864.

RAM SHANKAR GUPTA
DEPARTMENT OF MATHEMATICS
FACULTY OF NATURAL SCIENCES
JAMIA MILLIA ISLAMIA
NEW DELHI-110025
INDIA
S. M. KHURSHEED HAIDER

DEPARTMENT OF BIOSCIENCE
FACULTY OF NATURAL SCIENCES
JAMIA MILLIA ISLAMIA
NEW DELHI-110025
INDIA
E-mail: smkhaider@yahoo.co.in
A. SHARUDDIN

DEPARTMENT OF MATHEMATICS
FACULTY OF NATURAL SCIENCES
JAMIA MILLIA ISLAMIA
NEW DELHI-110025
INDIA


[^0]:    Mathematics Subject Classification: 53C25, 53C42.
    Key words and phrases: cosymplectic manifold, slant submanifold, mean curvature, scalar curvature.

