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Translations in hyperbolic geometry
of finite or infinite dimension

By WALTER BENZ (Hamburg)

Abstract. Based on separable translation groups T , Euclidean and Hyper-
bolic Geometry of (finite or infinite) dimension ≥ 2 can be characterized ([2]).
The separability assumption of T expresses the existence of a special factorization
of its kernel. In a first result of the present note the possibility of this factor-
ization will be characterized geometrically. Another result answers the question
when exactly two arbitrary surjective hyperbolic isometries, written in the form
α1τ1β1 and α2τ2β2, coincide, where αi, βi are surjective orthogonal mappings and
τi translations with the same axis, i = 1, 2. Also a characterization of hyperbolic
translations will be given.

1. Separability

Let X be a real inner product space of (finite or infinite) dimension
≥ 2, O(X) be its orthogonal group, and e be a fixed element of X satisfying
e2 = 1. Suppose that

T : R → PermX

is a mapping of R into the group of all permutations of X. The mapping
T is called a translation group of X ([2]) with axis e provided the following
properties hold true.

(a) Tt+s = Tt · Ts for all t, s ∈ R,
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(b) For x, y ∈ X satisfying y − x ∈ Re there exists exactly one t ∈ R with
Tt(x) = y,

(c) Tt(x) − x ∈ Re for all x ∈ X and all t ∈ R.

Here Tt designates the image of t ∈ R under T , and Tt(x) the image of
x ∈ X under the permutation Tt of X. Property (a) is the socalled trans-
lation equation (J. Aczél [1, pp. 245–253], Z. Moszner and J. Tabor

[5]). If e⊥ := {h ∈ X | he = 0} =: H,

�(h, ξ) := [Tξ(h) − h] · e (1)

with h∈ e⊥ and ξ ∈R is called the kernel of T . It determines the structure
of T ([2]).

The translation group T is called separable ([2]) provided the following
property holds true.

(d) �(h, ξ) = ϕ(ξ)ψ(h) for all ξ ∈ R and h ∈ H with functions ϕ : R → R

and ψ : H → R>0 satisfying ϕ(0) = 0 and ϕ(t1) ≤ ϕ(t2) for all reals
t1 ≤ t2.

R>0 designates the set of all positive, and R≥0 the set of all non-
negative reals. ‖x‖ stands for

√
x2 for all x ∈ X.

Theorem 1. Suppose that T : R → PermX satisfies (a) and (b).
Then T is a separable translation group if and only if

(c’) Tt(x) − x ∈ R≥0 · e for all x ∈ X and all t ∈ R≥0,

(d’)
‖Tα(h) − h‖
‖Tβ(h) − h‖ =

‖Tα(0)‖
‖Tβ(0)‖ for all h ∈ H and all α, β ∈ R\{0},

hold true.

Proof. A) (a), (b) and (c’) imply (c).
We show more:

Tt(x) − x ∈ R≥0 · (−e) for x ∈ X and t ≤ 0. (2)

Since −t ≥ 0, (c’) implies

T−t

(
Tt(x)

) − Tt(x) = µ · e

for a suitable µ ≥ 0. Hence x− Tt(x) ∈ R≥0 · e. Observe here T0(x) = x.
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B) (a), (b), (c’) and (d’) imply (d).
Mainly from (b) we obtain that Tt(x) = x holds true if and only if

t = 0. Hence (d’) is well-defined, because Tβ(h) − h and Tβ(0) are both
unequal to 0. By (c) and (1) we get

Tξ(h) − h = �(h, ξ) · e (3)

for all h ∈ H and ξ ∈ R. Hence, by (c’), (2),

�(h, t)
t

≥ 0 for all h ∈ H and t �= 0. (4)

From (c’), Tt2−t1

(
Tt1(h)

) − Tt1(h) ∈ R≥0 · e, and (a) we obtain

�(h, t1) ≤ �(h, t2) for h ∈ H and t1 ≤ t2. (5)

Given h ∈ H and ξ ∈ R there exists exactly one t ∈ R with �(h, t) = ξ;
this follows from (b) by defining x = h and y = h+ ξe. Hence the function

t→ �(h, t) (6)

must be for fixed h ∈ H a monotonically increasing bijection of R with
�(h, 0) = 0.

By (3), (4), we obtain

‖Tξ(h) − h‖ = sgn ξ · �(h, ξ)

for all ξ �= 0 and h ∈ H. Hence, by (d’),

�(h, ξ) = �(0, ξ) · �(h, 1)
�(0, 1)

(7)

for all ξ �= 0 and h ∈ H. Because of �(h, 0) = 0, formula (7) holds true for
ξ = 0 as well. Define

ϕ(ξ) := �(0, ξ) and ψ(h) :=
�(h, 1)
�(0, 1)

.

Because of sgn 1 = 1, we get ψ(h) > 0 for all h ∈ H, and also ψ(0) = 1.
What we proved about function (6), implies that ϕ is a monotonically
increasing bijection of R with ϕ(0) = 0.
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C) (a), (b), (c) and (d) imply (c’).
Observe, by (3), (a),

Tt

(
h+ �(h, τ)e

)
= Tt

(
Tτ (h)

)
= Tτ+t(h) = h+ �(h, τ + t)e. (8)

Since X = H ⊕ Re, we get the uniquely determined decomposition

x = h+ x0e,

h ∈ H,x0 ∈ R, for a given x ∈ X. Writing x0 =: �(h, τ), we obtain, by (8),

Tt(x) = Tt

(
h+ �(h, τ)e

)
= x+

(
�(h, τ + t) − �(h, τ)

)
e. (9)

(d) implies �(h, t1) ≤ �(h, t2) for all h ∈ H and t1 ≤ t2. If t ≥ 0, then
τ + t ≥ τ . Hence, by (9), property (c’) holds true.

D) (a), (b), (c) and (d) imply (d’). (d) and (3) imply

‖Tξ(h) − h‖ = |ϕ(ξ)| · ψ(h)

for all ξ ∈ R and h ∈ H. Hence (d’) holds true. �

Remark. Theorem 1 remains true, if we replace there property (d’) by
the following

(d∗) �(h, ξ) = ϕ(ξ)ψ(h) for all ξ ∈ R and h ∈ H with functions
ϕ : R → R and ψ : H → R, which, of course, is weaker than (d).

Proof. 1. (a), (b), (c), (d) imply (a), (b), (c’), (d∗).
This is obvious as far as (a), (b), (d∗) are concerned, and, with respect to
(c’), it follows from step C of the previous proof.

2. (a), (b), (c’), (d∗) imply (a), (b), (c), (d).
Clear for (c), in view of step A. In order to prove (d), let ϕ0 : R → R and
ψ0 : H → R be functions according to (d∗), satisfying

�(h, ξ) = ϕ0(ξ)ψ0(h)

for all ξ ∈ R and h ∈ H. We now will apply results of step B as far as
they were derived without assumption (d’). If there existed h0 ∈ H with
ψ0(h0) = 0, we would obtain �(h0, ξ) = 0 for all ξ ∈ R, contradicting the
structure of function (6). Define

ϕ(ξ) = ψ0(0)ϕ0(ξ), ψ(h) =
ψ0(h)
ψ0(0)

,
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and observe �(h, ξ) = ϕ(ξ)ψ(h). By (5), t1 ≤ t2 implies

ϕ(t1) = �(0, t1) ≤ �(0, t2) = ϕ(t2).

Because of T0(x) = x for all x ∈ X (see step A), we get, by (1),

ϕ(0) = ψ0(0)ϕ0(0) = �(0, 0) = [T0(0) − 0]e = 0.

Hence, by (5),

0 = ϕ(0)ψ(h) = �(h, 0) ≤ �(h, 1) = ϕ(1)ψ(h).

Observe 0 = ϕ(0) ≤ ϕ(1). If ϕ(1) were 0, �(h, ξ) = 0 would have distinct
solutions ξ = 0, ξ = 1. In view of ψ0(h) �= 0, the inequality

0 ≤ ϕ(1)ψ(h)

implies ψ(h) > 0. Hence ψ is a function from H into R>0. Hence (d) holds
true. �

2. Examples

Important examples of separable translation groups are the following.
Let again X be a real inner product space of (finite or infinite) dimension
≥ 2, and let e ∈ X satisfy e2 = 1. Define T by (9) on the basis of

(E) �(h, t) := t (Euclidean Geometry),

(H) �(h, t) := sinh t ·
√

1 + h2 (Hyperbolic Geometry).

We proved in [2], based heavily on the theory of Functional Equations
(J. Aczél [1], Z. Daróczy [4]), the

Theorem. Let T be a separable translation group with axis e, and

suppose that d : X ×X → R≥0 is not identically 0, and satisfies

(i) d(x, y) = d(y, x),

(ii) d(x, y) = d
(
ω(x), ω(y)

)
,

(iii) d(x, y) = d
(
Tt(x), Tt(y)

)
,
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(iv) d(0, βe) = d(0, αe) + d(αe, βe)

for all x, y ∈ X, ω ∈ O(X), t, α, β ∈ R with 0 ≤ α ≤ β. Then, up to

isomorphism, we obtain

(E) with d(x, y) =
√

(x− y)2

or

(H) with cosh d(x, y) =
√

1 + x2
√

1 + y2 − xy

for all x, y ∈ X, h ∈ e⊥, and t ∈ R. Hence, (X, d) is the Euclidean

Metric Space with classical translations (E), or (X, d) is the Hyperbolic

Metric Space in the form of the Weierstrass model with hyperbolic trans-

lations (H).

Another separable translation group T is given by (9) with

�
(
x− (xe)e, t

)
= t3 · (1 + x2 − (xe)2

)

for all x ∈ X and t ∈ R.

The translation group with �(h, t) = sinh(t · 2h2
) is not separable.

3. A characterization of hyperbolic translations

Based on (9) and �(h, t) = sinh t · √1 + h2 we get the hyperbolic
translations

Tt(x) = x+
[
(xe)(cosh t− 1) +

√
1 + x2 sinh t

]
e (10)

of X with axis e, where the fixed element e ∈ X satisfies e2 = 1. The group
{Tt | t ∈ R} will be denoted by T . As already mentioned in Section 2,
the notion of distance in the Hyperbolic Metric Space (X, d) is given by
d(x, y) ≥ 0 and

cosh d(x, y) =
√

1 + x2
√

1 + y2 − xy

for x, y ∈ X. If � > 0 is a fixed real number, N > 1 a fixed integer, and
f : X → X a mapping satisfying

d(x, y) = � implies d
(
f(x), f(y)

) ≤ �,
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d(x, y) = N� implies d
(
f(x), f(y)

) ≥ N�,

for all x, y ∈ X, then

d(x, y) = d
(
f(x), f(y)

)
(11)

holds true for all x, y ∈ X, and, moreover,

f(x) = αTtβ(x) for all x ∈ X (12)

for suitable Tt of the form (10), α ∈ O(X), and β linear, orthogonal ([3]).

The mapping (12) is surjective (and hence bijective) if and only if β
is in O(X) as well.

Lemma 1. Given α ∈ O(X) with α(e) = εe, ε ∈ R. Then

αTtα
−1(x) = Tεt(x)

for all x ∈ X and t ∈ R.

Proof. Because of α(e)α(e)= ee, we obtain ε2= 1. With α−1(e)= εe

and
x = h+ x0e, h ∈ e⊥, x0 ∈ R,

we get α−1(h)α−1(e) = he = 0, i.e. α−1(h) ∈ e⊥, and hence, by
α−1(h)α−1(h) = h2 and (10),

αTtα
−1(x) = αTt

(
α−1(h) + x0εe

)

= α
(
α−1(h) +

[
x0ε cosh t+

√
1 + h2 + x2

0 sinh t
]
e
)

= x+
[
(xe)

(
cosh(εt) − 1

)
+

√
1 + x2 sinh(εt)

]
e = Tεt(x). �

Corollary. Define for x = h+ x0e, h ∈ e⊥, x0 ∈ R,

χ(x) = h− x0e.

Then χTt = T−tχ for all t ∈ R.

Proof. Observe χ ∈ O(X), χ(e) = −e and Lemma 1. �
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Theorem 2. Let f : X → X satisfy (11) for all x, y ∈ X. If f is

surjective, then

f(x) − x ∈ Re for all x ∈ X (13)

holds true if and only if f ∈ T ∪ T · χ.

Proof. 1. Obviously, f ∈ T ∪ T · χ satisfies (13).

2. If f ∈ O(X) has property (13), then f = id or f = χ. In order
to prove this statement, notice first f(e) − e ∈ Re, i.e. f(e) = λe with a
suitable λ ∈ R. Hence, by f ∈ O(X), e2 =

(
f(e)

)2, i.e. 1 = λ2. Because of

0 = he = f(h)f(e) = f(h) · λe
for h ∈ e⊥, we obtain f(h) ∈ e⊥, and thus

f(h+ x0e) = f(h) + x0λe, f(h) ∈ e⊥, (14)

for x = h+ x0e, h ∈ e⊥, x0 ∈ R. By (13),

f(h+ x0e) = h+ x0e+ µe (15)

with a suitable µ ∈ R. Hence, by (14), (15), f(h) = h, i.e., by (14),

f(h+ x0e) = h+ x0λe.

Thus f = id for λ = 1, and f = χ for λ = −1.

3. Assume now that f : X → X is surjective, and that it satisfies (13).
Hence f is of form (12) with β ∈ O(X), i.e.

f = αTtβ with α, β ∈ O(X), t ∈ R.

If t = 0, then f ∈ O(X), i.e., by step 2, f ∈ T ∪ Tχ. Assume t �= 0. Hence
Tt(0) �= 0. By (13), αTtβ(0) = λe, with a suitable λ ∈ R. Hence

0 �= Tt(0) = λα−1(e),

and thus α−1(e) = εe, ε ∈ R, because of Tt(0) ∈ Re. So we obtain
α(e) = εe with ε2 = 1, i.e., by Lemma 1,

f = αTtα
−1 · αβ = Tεt · γ

with γ := αβ ∈ O(X). Since T−εt and Tεt · γ have property (13), hence
also T−εt · Tεtγ = γ. This implies γ = id or γ = χ, by step 2. Thus
f ∈ T ∪ Tχ. �
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Tt ∈ T has a fixpoint if and only if t = 0. On the other hand, every Tt·χ
has a fixpoint. This leads to the following characterization of hyperbolic
translations, which is a corollary of Theorem 2.

A surjective and distance preserving mapping f : X → X is a hyper-
bolic translation �= id (with axis e) if and only if

0 �= f(x) − x ∈ Re

holds true for all x ∈ X.

Given two surjective hyperbolic isometries, i.e. mappings

f = αTtβ and g = γTsδ

with α, β, γ, δ ∈ O(X), t, s ∈ R, where Tt, Ts are translations with axis e.
The question we now would like to answer is the following

when and only when is f = g?

Lemma 2. Let ξ, η be elements of O(X), and t, s be reals. Then

ξTt = Tsη (16)

holds true if and only if

Case ts = 0 : t = s = 0 and ξ = η,

Case ts �= 0 : t = εs, ε2 = 1 and ξ = η, ξ(e) = εe.

Proof. ξTt(0) = Tsη(0) implies

ξ(e) · sinh t = e · sinh s. (17)

Since ξ(e)ξ(e) = e · e = 1, we obtain t = s = 0, and hence ξ = η from (16),
in the case ts = 0. On the other hand, t = s = 0 and ξ = η imply (16). In
the case ts �= 0, we get ξ(e) = εe, ε2 = 1, and t = εs from (17). Hence, by
(16) and Lemma 1,

Tsη = ξTtξ
−1 · ξ = Ts · ξ,

i.e. ξ = η. On the other hand, ts �= 0, t = εs, ε2 = 1, ξ = η, ξ(e) = εe

imply ξTt = Tsη. �
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Theorem 3. Let α, β, γ, δ be elements of O(X), and t, s be reals.

Then

αTtβ = γTsδ (18)
holds true if and only if

Case ts = 0 : t = s = 0 and αβ = γδ,

Case ts �= 0 : t = εs, ε2 = 1 and αβ = γδ, α(e) = εγ(e).

Proof. Since (18) is equivalent with (16) by defining ξ = γ−1α, η =
δβ−1, we may apply Lemma 2. Hence (16) is the same as t = s = 0 and
αβ = γδ in the case ts = 0, and the same as

t = εs, ε2 = 1, γ−1α = δβ−1, γ−1α(e) = εe,

i.e. the same as t = εs, ε2 = 1, αβ = γδ and α(e) = εγ(e), in the case
ts �= 0. �
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