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Finsleroid space with angle and scalar product

By G. S. ASANOV (Moscow)

Abstract. A systematic approach has been developed to encompass the
Minkowski-type extension of Euclidean geometry such that a one-vector anisotro-
py is permitted, retaining simultaneously the concept of angle. For the respective
geometry, the Euclidean unit ball is to be replaced by the body which is convex
and rotund and is found on assuming that its surface (the indicatrix extending
the unit sphere) is a space of constant positive curvature. We have called the
body the Finsleroid in view of its intrinsic relationship with the metric function
of Finsler type. The main point of the present paper is the angle coming from
geodesics through the cosine theorem, the underlying idea being to derive the
angular measure from the solutions to the geodesic equation which prove to be
obtainable in simple explicit forms. The substantive items concern geodesics,
angle, scalar product, and perpendicularity.

1. Introduction and synopsis of new conclusions

The Euclidean geometry is simple and totally spherically symmetric,
and corresponds well to our ordinary everyday experience and intuition,
while the Finsler or Banach–Minkowski geometries [1]–[9] are much more
extended and sophisticated constructions that may serve to reflect various
anisotropic scenarios. When a single vector is distinguished geometrically
to be the only isotropic direction in extending the Euclidean geometry, the
sphere may not be regarded as an exact carrier of the unit-vector image.
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So under respective conditions one may expect that some directionally-
anisotropic figure should be substituted with the sphere. To this end we
shall use the Finsleroid which, being convex and rotund, is not, however,
a second-order figure. The constant positive curvature is the fundamental
property of the Finsleroid.

The present paper develops and elaborates in much detail the related
Finsleroid-geometry (initiated by the author earlier in [10]–[12]) in the
direction of evidencing the concepts of angle and scalar product. No special
knowledge of Banach–Minkowski or Finsler geometries is assumed.

It will be recollected that, despite the fact that in geometry one cer-
tainly needs to use not only length but also angle and scalar product, var-
ious known attempts to introduce the concept of angle in the Minkowski
or Finsler spaces were steadily encountered with drawback positions:

“Therefore no particular angular measure can be entirely natural in
Minkowski geometry. This is evidenced by the innumerable attempts to
define such a measure, none of which found general acceptance”. (Buse-

mann [2], p. 279.)

“Unfortunately, there exists a number of distinct invariants in a Min-
kowskian space all of which reduce to the same classical euclidean invari-
ant if the Minkowskian space degenerates into a euclidean space. Con-
sequently, distinct definitions of the trigonometric functions and of an-
gles have appeared in the literature concerning Minkowskian and Finsler
spaces”. (Rund [3], p. 26)

A short but profound review of the respective attempts can be found
in Section 1.7 of the book [4]. The fact that the attempts have never
been unambiguous seems to be due to a lack of the proper tools. For
the opinion was taken for granted that the angle ought to be defined or
constructed in terms of the basic Finslerian metric tensor (and whence
ought to be explicated from the initial Finslerian metric function). Let us
doubt the opinion from the very beginning. Instead, we would like to raise
alternatively the principle that the angle is a concomitant of the geodesics
(and not of the metric function proper). The angle is determined by two
vectors (instead of one vector in case of the length) and actually implies
using a due extension of the Finslerian metric function to a two-vector
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metric function (to a scalar product). Below, the principle is applying to
the Finsleroid space in a systematic way.

In the sequel the abbreviations FMF, FMT, and FHF will be used for
the Finsleroid metric function, the associated Finslerian metric tensor, and
the associated Finslerian Hamiltonian function, respectively. The notation
EPD

g will be applied to the Finsleroid space, with the upperscripts “PD”
meaning “positive-definite”. The characteristic parameter g may take on
the values between −2 and 2; at g = 0 the space is reduced to become an
ordinary Euclidean one.

Below Section 2 gives an account of the notation and conventions for
the space EPD

g and introduces the initial concepts and definitions that
are required. The space is constructed by assuming an axial symmetry
and, therefore, incorporates a single preferred direction, which we shall
often refer as the Z-axis. After preliminary introducing a characteristic
quadratic form B, which is distinct from the Euclidean sum of squares by
entrance of a mixed term (see equation (2.22)), we define the FMF K for
the space EPD

g by the help of the formulae (2.30)–(2.33). A characteristic
feature of the formulae is the occurrence of the function “arctan”. Next, we
calculate basic tensor quantities of the space. There appears a remarkable
phenomenon, which essentially simplifies all the constructions, that the
associated Cartan tensor occurs being of a simple algebraic structure (see
equations (2.66)–(2.67)). In particular, the phenomenon gives rise to a
simple structure of the associated curvature tensor (equation (2.69)). As
well as in the Euclidean geometry the locus of the unit vectors issuing
from fixed point of origin is the unit sphere, in the EPD

g -geometry under
development the locus is the boundary (surface) of the Finsleroid. We
call the boundary the Finsleroid Indicatrix. It can rigorously be proved
that the Finsleroid Indicatrix is a closed, regular, and strongly convex
(hyper)surface. The value of the curvature depends on the parameter g

according to the simple law (2.73). The determinant of the associated
FMT is strongly positive in accordance with equations (2.64)–(2.65).

In Section 3 we shortly indicate how the consideration can conveniently
be converted into the co-approach. The explicit form of the associated
Finsleroid Hamiltonian metric function is entirely similar to the form of
the FMF K up to the substitution of −g with g.
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Section 4 gathers together the lucid facts concerning details of the form
of the Finsleroids and co-Finsleroids. The Finsleroid is a generalization of
the unit ball and may be visualized as comprising a deformed surface of
revolution. Its form essentially depends on the value of the characteristic
parameter, g. Under changing the sign of g, the Finsleroid turns up with
respect to its equatorial section. When |g| → 2, the Finsleroid is extending
ultimately tending in its form more and more to the cone. The form and
all the properties of the co-Finsleroid are essentially similar to that of
the Finsleroid of the opposite sign of the parameter g. Various Maple9-
designed figures have been presented to elucidate patterns and details,
and to make this Finsleroid-framework a plausible one in methodological
as well educational respects, – which also show all the basic features of the
Finsleroids.

The EPD
g -space has an auxiliary quasi-Euclidean structure, which is

deeply inherent in the development. Section 5 introduces for the EPD
g -

space the quasi-Euclidean map under which the Finsleroid goes into the
unit ball. The quasi-Euclidean space is simple in many aspects, so that
relevant transformations make reduce various calculations and may provide
one with constructive ideas. The induced quasi-Euclidean metric tensor
(which is not of a Finslerian type) is simply a linear combination of the
Euclidean metric tensor and the product of two unit vectors. The quasi-
Euclidean space is not flat, but proves to be conformally-flat.

Section 6 is devoted to reviewing the key and basic concepts deter-
mined by geodesics and angle. For the space under study, the geodesics
should be obtained as solutions to the equations (2.88)–(2.89) of Chap-
ter 2 through well-known arguments. Surprisingly, the equation admits a
simple and explicit general solution, which in turn admits explicating the
angle by stipulating that the Cosine Theorem of ordinary form be rigor-
ously valid. The respective scalar product ensues. The solution with fixed
points, as well as the initial-date solution, are explicitly presented. An es-
sential non-euclidean feature is that the EPD

g -geodesic curves are not flat
in general.

Paper ends with Section 7 in which we note that the angle α ob-
tained in the Finsleroid Geometry under study has the following remark-
able property: if the consideration is restricted to the (N = 2)-dimensional
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Finsleroid–Minkowski plane, then α is equal to the respective Landsberg an-
gle. We are able to prove that the two-dimensional criterion for the strong
convexity of indicatrix works fine. The Cartan scalar proves to be the
negative of the characteristic parameter g applied. The EPD

g -Generalized
Trigonometric Functions are appeared.

2. Bases

Suppose we are given an N -dimensional centered vector space VN with
some point “O” being the origin. Denote by R the vectors constituting
the space, so that R ∈ VN and it is assumed that R is issued from the
point “O”. Any given vector R assigns a particular direction in VN . Let
us fix a member R(N) ∈ VN , introduce the straight line eN oriented along
the vector R(N), and use this eN to serve as a RN -coordinate axis in VN .
In this way we get the topological product

VN = VN−1 × eN (2.1)
together with the separation

R = {R, RN}, RN ∈ eN and R ∈ VN−1. (2.2)

For convenience, we shall frequently use the notation

RN = Z (2.3)
and

R = {R, Z}. (2.4)

Also, we introduce a Euclidean metric

q = q(R) (2.5)

over the (N − 1)-dimensional vector space VN−1.
With respect to an admissible coordinate basis {ea} in VN−1, we obtain

the coordinate representations

R = {Ra} = {R1, . . . , RN−1} (2.6)
and

R = {Rp} = {Ra, RN} ≡ {Ra, Z}, (2.7)



214 G. S. Asanov

together with
q(R) =

√
rabRaRb; (2.8)

the matrix (rab) is assumed to be symmetric and positive-definite. The in-
dices (a, b, . . . ) and (p, q, . . . ) will be specified over the ranges (1, . . . ,N−1)
and (1, . . . , N), respectively; vector indices are up, co-vector indices are
down; repeated up-down indices are automatically summed; δ will stand
for the Kronecker symbol, such that (δab) = diag (1, 1, . . . ). The variables

wa = Ra/Z, wa = rabw
b, w = q/Z, (2.9)

where
w ∈ (−∞,∞), (2.10)

are convenient whenever Z �= 0. Sometimes we shall mention the associ-
ated metric tensor

rpq = {rNN = 1, rNa = 0, rab} (2.11)

meaningful over the whole vector space VN .
Given a parameter g subject to ranging

−2 < g < 2, (2.12)

we introduce the convenient notation

h =

√
1 − 1

4
g2, (2.13)

G = g/h, (2.14)

g+ =
1
2
g + h, g− =

1
2
g − h, (2.15)

g+ = −1
2
g + h, g− = −1

2
g − h, (2.16)

so that

g+ + g− = g, g+ − g− = 2h, (2.17)

g+ + g− = −g, g+ − g− = 2h, (2.18)



Finsleroid space with angle and scalar product 215

(g+)2 + (g−)2 = 2, (2.19)

(g+)2 + (g−)2 = 2. (2.20)

The symmetry
g+

g→−g⇐⇒ −g−, g+ g→−g⇐⇒ −g− (2.21)

holds.

The characteristic quadratic form

B(g;R) := Z2 + gqZ + q2

≡ 1
2
[
(Z + g+q)2 + (Z + g−q)2

]
> 0 (2.22)

is of the negative discriminant, namely

D{B} = −4h2 < 0, (2.23)

because of equations (2.12) and (2.13). Whenever Z �= 0, it is also conve-
nient to use the quadratic form

Q(g;w) := B/(Z)2, (2.24)

obtaining
Q(g;w) = 1 + gw + w2 > 0, (2.25)

together with the function

E(g;w) := 1 +
1
2
gw. (2.26)

The identity
E2 + h2w2 = Q (2.27)

can readily be verified. In the limit g → 0, the definition (2.22) degenerates
to the quadratic form of the input metric tensor (2.11):

B|g=0 = rpqR
pRq. (2.28)

Also
Q|g=0 = 1 + w2. (2.29)
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In terms of this notation, we propose

Definition. The function K(g;R) given by the formulae

K(g;R) =
√

B(g;R) J(g;R), (2.30)

where

J(g;R) = e
1
2
GΦ(g;R), (2.31)

Φ(g;R) =
π

2
+ arctan

G

2
− arctan

(
q

hZ
+

G

2

)
, if Z ≥ 0, (2.32)

Φ(g;R) = −π

2
+ arctan

G

2
− arctan

(
q

hZ
+

G

2

)
, if Z ≤ 0, (2.33)

is called the Finsleroid metric function (the FMF for short).

Other convenient forms for the function Φ are

Φ(g;R) =
π

2
+ arctan

G

2
− arctan

(
L(g;R)

hZ

)
, if Z ≥ 0, (2.34)

Φ(g;R) = −π

2
+ arctan

G

2
− arctan

(
L(g;R)

hZ

)
, if Z ≤ 0, (2.35)

where
L(g;R) = q +

g

2
Z, (2.36)

and also
Φ(g;R) = arctan

A(g;R)
hq

, (2.37)

where
A(g;R) = Z +

1
2
gq. (2.38)

This FMF has been normalized to show the properties

−π

2
≤ Φ ≤ π

2
(2.39)

and
Φ =

π

2
, if q = 0 and Z > 0;

Φ = −π

2
, if q = 0 and Z < 0.

(2.40)
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We also have

tan Φ =
A

hq
(2.41)

and

Φ|
Z=0

= arctan
G

2
. (2.42)

It is often convenient to use the sign indicator εZ for the argument Z:

εZ = 1, if Z > 0; εZ = −1, if Z < 0;

εZ = 0, if Z = 0.
(2.43)

Under these conditions, we introduce

Definition. The arisen space

EPD
g := {VN = VN−1 × eN ; R ∈ VN ; K(g;R); g} (2.44)

is called the EPD
g -space, or alternatively the Finsleroid space.

The right-hand part of the definition (2.30) can be considered to be a
function K̆ of the arguments {g; q, Z}, such that

K̆(g; q, Z) = K(g;R). (2.45)

We observe that

K̆(g; q,−Z) �= K̆(g; q, Z), unless g = 0. (2.46)

Instead, the function K̆ shows the property of gZ-parity

K̆(−g; q,−Z) = K̆(g; q, Z). (2.47)

The (N − 1)-space reflection invariance holds true

K(g;R) Ra↔−Ra⇐⇒ K(g;R) (2.48)

(such an operation does not influence the quantity q).
It is frequently convenient to rewrite the representation (2.30) in the

form
K(g;R) = |Z|V (g;w), (2.49)
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whenever Z �= 0, with the generating metric function

V (g;w) =
√

Q(g;w) j(g;w). (2.50)

We have
j(g;w) = J(g; 1, w).

Using (2.25) and (2.31)–(2.35), we obtain

V ′ = wV/Q, V ′′ = V/Q2, (2.51)

(V 2/Q)′ = −gV 2/Q2, (V 2/Q2)′ = −2(g + w)V 2/Q3, (2.52)

j′ = −1
2
gj/Q, (2.53)

and also
1
2
(V 2)′ = wV 2/Q,

1
2
(V 2)′′ = (Q − gw)V 2/Q2, (2.54)

1
4
(V 2)′′′ = −gV 2/Q3, (2.55)

together with
Φ′ = −h/Q, (2.56)

where the prime (′) denotes the differentiation with respect to w.

Also,
(A(g;R))2 + h2q2 = B(g;R) (2.57)

and
(L(g;R))2 + h2Z2 = B(g;R). (2.58)

The simple results for these derivatives reduce the task of computing
the components of the associated FMT to an easy exercise, indeed:

Rp :=
1
2

∂K2(g;R)
∂Rp

:

Ra = rabR
b K2

B
, RN = (Z + gq)

K2

B
; (2.59)

gpq(g;R) :=
1
2

∂2K2(g;R)
∂Rp∂Rq

=
∂Rp(g;R)

∂Rq
:
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gNN (g;R) = [(Z + gq)2 + q2]
K2

B2
, gNa(g;R) = gqrabR

b K2

B2
, (2.60)

gab(g;R) =
K2

B
rab − g

radR
drbeR

eZ

q

K2

B2
. (2.61)

The reciprocal tensor components are

gNN (g;R) = (Z2 + q2)
1

K2
, gNa(g;R) = −gqRa 1

K2
, (2.62)

gab(g;R) =
B

K2
rab + g(Z + gq)

RaRb

q

1
K2

. (2.63)

The determinant of the FMT given by equations (2.60)–(2.61) can readily
be found in the form

det(gpq(g;R)) = [J(g;R)]2N det(rab) (2.64)

which shows, on noting (2.31)–(2.33), that

det(gpq) > 0 over all the space VN . (2.65)

The associated angular metric tensor

hpq := gpq − RpRq
1

K2

proves to be given by the components

hNN (g;R) = q2 K2

B2
, hNa(g;R) = −ZrabR

b K2

B2
,

hab(g;R) =
K2

B
rab − (gZ + q)

radR
drbeR

e

q

K2

B2
,

which entails
det(hab) = det(gpq)

1
V 2

.

The use of the components of the Cartan tensor (given explicitly in
the end of the present section) leads, after rather tedious straightforward
calculations, to the following simple and remarkable result.
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Theorem 2.1. The Cartan tensor associated with the FMF (2.30) is

of the following special algebraic form:

Cpqr =
1
N

(
hpqCr + hprCq + hqrCp − 1

CsCs
CpCqCr

)
(2.66)

with

CtC
t =

N2

4K2
g2. (2.67)

Elucidating the structure of the respective curvature tensor

Spqrs := (CtqrCp
t
s − CtqsCp

t
r) (2.68)

results in the simple representation

Spqrs = −CtC
t

N2
(hprhqs − hpshqr). (2.69)

Inserting here (2.67), we are led to

Theorem 2.2. The curvature tensor of the space EPD
g is of the special

type

Spqrs = S∗(hprhqs − hpshqr)/K2 (2.70)
with

S∗ = −1
4
g2. (2.71)

Definition. FMF (2.30) generates the Finsleroid

FPD
g := {R ∈ VN : K(g;R) ≤ 1}. (2.72)

Definition. The Finsleroid Indicatrix IPD
g is the boundary of the Finsl-

eroid:
IPD
g := {R ∈ VN : K(g;R) = 1}. (2.73)

Note. Since at g = 0 the space EPD
g is Euclidean, then the body FPD

g=0

is a unit ball and IPD
g=0 is a unit sphere.

Recalling the known formula R = 1 + S∗ for the indicatrix curvature
(see Section 1.2 in [4]), from (2.71) we conclude that

RFinsleroid Indicatrix = h2 = 1 − 1
4
g2, (2.74)



Finsleroid space with angle and scalar product 221

so that
0 < RFinsleroid Indicatrix ≤ 1

and
RFinsleroid Indicatrix

g→0
=⇒ REuclidean Sphere = 1.

Geometrically, the fact that the quantity (2.74) is independent of vectors R

means that the indicatrix curvature is constant. Therefore, we have arrived
at

Theorem 2.3. The Finsleroid Indicatrix IPD
g is a space of constant

positive curvature

Also, on comparing between the result (2.74) and equation (2.22)–
(2.23), we obtain

Theorem 2.4. The Finsleroid curvature relates to the discriminant

of the input characteristic quadratic form (2.22) simply as

RFinsleroid Indicatrix = −1
4
D{B}. (2.75)

Points of the indicatrix can be represented by means of the unit vectors
l = {lp}:

lp =
Rp

K(g;R)
, (2.76)

so that
K(g; l) ≡ 1. (2.77)

The vectors can conveniently be parameterized as follows:

la = na sin f

h
exp

(
1
2
G

(
f − π

2

))
,

lN =
(

cos f − 1
2
G sin f

)
exp

(
1
2
G

(
f − π

2

))
,

(2.78)

where
f ∈ [0, π] (2.79)

and na are the components that are taken to fulfill

rabn
anb = 1; (2.80)
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also,

J(g; l) = exp
(
−1

2
G

(
f − π

2

))
(2.81)

(cf. (2.31)). The reader is advised to verify that

A(g; l) =
1

J(g; l)
cos f

and
hq

A(g; l)
= tan f.

Therefore, it is appropriate to take

f = arctan
hq

A
, (2.82)

in which case from (2.37) it follows that

Φ(g; l) =
π

2
− f.

At the same time, for the function (2.22) we find

B(g; l) =
(

1
J(g; l)

)2

= exp
(
G

(
f − π

2

))
.

This method can farther be extended for the whole space by taking
the parameterizations

Ra =
K

hJ
na sin f, RN =

K

J

(
cos f − 1

2
G sin f

)
, (2.83)

which entails

∂Rp

∂K
=

1
K

Rp, (2.84)

∂Ra

∂f
=

K

hJ
na

(
cos f +

1
2
G sin f

)
,

∂RN

∂f
= − K

h2J
sin f, (2.85)

∂2Ra

∂f2
=

K

hJ
na

(
G cos f −

(
1 − 1

4
G2

)
sin f

)
, (2.86)
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and
∂2RN

∂f2
= − K

h2J

(
cos f +

1
2
G sin f

)
. (2.87)

Last, we write down the explicit components of the relevant Finsleroid
Cartan tensor

Cpqr :=
1
2

∂gpq

∂Rr
:

RNCNNN = gw3V 2Q−3, RNCaNN = −gwwaV
2Q−3,

RNCabN =
1
2
gwV 2Q−2rab +

1
2
g(1 − gw − w2)wawbw

−1V 2Q−3,

RNCabc = −1
2
gV 2Q−2w−1(rabwc + racwb + rbcwa)

+ gwawbwcw
−3

(
1
2
Q + gw + w2

)
V 2Q−3;

and

RNCN
N

N = gw3/Q2, RNCa
N

N = −gwwa/Q
2,

RNCN
a
N = −gw(1 + gw)wa/Q2,

RNCa
N

b =
1
2
gwrab/Q +

1
2
g(1 − gw − w2)wawb/wQ2,

RNCN
a
b =

1
2
gwδa

b /Q +
1
2
g(1 + gw − w2)wawb/wQ2,

RNCa
b
c = −1

2
g

(
δb
awc + δb

cwa + (1 + gw)racw
b
)

/wQ

+
1
2
g(gwQ + Q + 2w2)waw

bwc/w
3Q2.

The components have been calculated by the help of the formulae (2.51)–
(2.54).

The use of the contractions

RNCa
b
cr

ac = −g
wb

w

1 + gw

Q

(
N − 2

2
+

1
Q

)
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and
RNCa

b
cw

awc = −g
w

Q2
(1 + gw)wb

is convenient in many calculations.
Also

RNCN =
N

2
gwQ−1, RNCa = −N

2
g(wa/w)Q−1,

RNCN =
N

2
gw/V 2, RNCa = −N

2
gwa(1 + gw)/wV 2,

CN =
N

2
gwRNK−2, Ca = −N

2
gwa(1 + gw)w−1RNK−2,

CpC
p =

N2

4K2
g2.

The respective EPD
g -geodesic equation reads

d2Rp

ds2
+ Cq

p
r(g;R)

dRq

ds

dRr

ds
= 0, (2.88)

where s is the arc-length parameter defined by

ds =
√

gpq(g;R)dRpdRq. (2.89)

3. Associated Finsleroid Hamiltonian function

Considering the co-vector space V̂N dual to the vector space VN used
in the preceding Section 2, and denoting by R̂ the respective co-vectors,
so that R̂ ∈ V̂N , we may introduce the co-counterparts of the formulas
(2.1)–(2.11), obtaining the topological product

V̂N = V̂N−1 × êN (3.1)

and the separation R̂ = {R̂, RN}, RN ∈ êN and R̂ ∈ V̂N−1. Then we
put RN = Ẑ, R̂ = {R̂, Ẑ}, and introduce a metric q̂ = q̂(R̂) over the
(N − 1)-dimensional co-vector space V̂N−1.
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With respect to a coordinate basis {êa} dual to {ea}, we obtain in
V̂N−1 the coordinate representations

R̂ = {Ra} = {R1, . . . , RN−1} (3.2)

and
R̂ = {Rp} = {Ra, RN} ≡ {Ra, Ẑ} (3.3)

together with

q̂(R̂) =
√

rabRaRb, (3.4)

where rab are the contravariant components of a symmetric positive-definte
tensor defined over V̂N−1; the tensor is determined by the reciprocity
rabr

bc = δc
a. The co-version

rpq = {rNN = 1, rNa = 0, rab} (3.5)

of the input metric tensor (2.11) is meaningful over the space V̂N . The
parameter g introduced in equations (2.12)–(2.13), as well as the explicated
formulae (2.14)–(2.21), are applicable in the co-approach, too.

Under these conditions, the fundamental definition

H(g; R̂) = K(g;R) (3.6)

for the FHF is used, and the ÊPD
g -space

ÊPD
g := {V̂N = V̂N−1 × êN ; R̂ ∈ V̂N ; H(g; R̂); g} (3.7)

is set forth.
A careful consideration on the basis of the formulae (3.6) and (2.59)–

(2.63) leads to

Theorem 3.1. The symmetry

K(g;R)


 g←→−g,

R←→R̂




⇐⇒ H(g; R̂) (3.8)

holds fine.



226 G. S. Asanov

Treating the FHF (3.6) as a function H̆ of the arguments {g; q̂, Ẑ},
such that

H̆(g; q̂, Ẑ) = H(g; R̂), (3.9)

the co-counterparts of equations (2.46)–(2.48) is appeared:

H̆(g; q̂,−Ẑ) �= H̆(g; q̂, Ẑ), unless g = 0; (3.10)

the gẐ-parity :
H̆(−g; q̂,−Ẑ) = H̆(g; q̂, Ẑ); (3.11)

and
H(g;R) Ra↔−Ra⇐⇒ H(g;R). (3.12)

Definition. The body

F̂PD
g := {R̂ ∈ V̂N : H(g; R̂) ≤ 1} (3.13)

is called the co-Finsleroid.

Definition. The respective figuratrix defined by the equation

ÎPD
g := {R̂ ∈ V̂N : H(g; R̂) = 1} (3.14)

is called the co-Finsleroid Indicatrix.

We remain it to the reader to verify that Theorems 2.3–2.4 proven in
the preceding Section 2 can well be re-formulated in the co-approach:

Theorem 3.2. The co-Finsleroid Indicatrix ÎPD
g is a constant-curva-

ture space with the positive curvature value (2.74):

Rco-Finsleroid Indicatrix = RFinsleroid Indicatrix (3.15)

and

Rco-Finsleroid Indicatrix = h2 = 1 − 1
4
g2,

0 < Rco-Finsleroid Indicatrix ≤ 1.
(3.16)

The formula

Rco-Finsleroid Indicatrix = −1
4
D{B̂} (3.17)

is valid.
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4. Shape of Finsleroid and co-Finsleroid

The Finsleroid is not “uniform” in all directions and, therefore, does
not permit general rotations. In terms of the function (2.45), the Finsleroid
equation (see the definition (2.72)) reads

K̆(g; q, Z) = 1. (4.1)

From (2.30)–(2.35) it follows directly that the value

q∗ := q∣∣
Z=0

(4.2)

of the quantity q over the Finsleroid is given by

q∗(g) = exp
(
−G

2
arctan

G

2

)
; (4.3)

with the definitions

Z1(g) = Z|q=0 , when Z < 0, (4.4)

and
Z2(g) = Z|q=0 , when Z > 0, (4.5)

we obtain
Z1(g) = −eGπ/4 and Z2(g) = e−Gπ/4. (4.6)

Thus at any given value g we obtain the simple and explicit value for the
altitude of the Finsleroid:

Theorem 4.1. We have

The Altitude of Finsleroid = Z2(g) − Z1(g) = 2 cosh
Gπ

4
.

The equation (4.1) cannot be resolved to find the function

Z = Z(g; q) (4.7)

in an explicit form, because of a rather high complexity of the right-hand
parts of equations (2.30)–(2.35). Nevertheless, differentiating the identity

K̆(g; q, Z(g; q)) = 1 (4.8)
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(see (4.1)) yields, on using (2.51), the simple results for the first derivatives:

∂Z(g; q)
∂q

= − q

Z + gq
(4.9)

and
∂2Z(g; q)

∂q2
= − B(g;R)

(Z + gq)3
. (4.10)

We also get

dZ(g; q)
dq

∣∣∣∣
q=0

= 0 and
dZ(g; q)

dq
=⇒

Z→+0
−1

g
. (4.11)

Inversely, for the function

q = q(g;Z) (4.12)

obeying (4.1) we obtain
∂q

∂Z
= −g − Z

q
(4.13)

and
∂2q

∂Z2
= −B(g;R)

q3
< 0. (4.14)

We have

∂q(g;Z)
∂Z

> 0, if Z < −gq;
∂q(g;Z)

∂Z
< 0, if Z > −gq. (4.15)

Also,
∂q

∂Z
= 0, if Z = Z∗∗ with Z∗∗ = −gq∗∗. (4.16)

Inserting this Z∗∗ in (2.30)–(2.35) yields

Φ∗∗ =
π

2
+ arctan

G

2
− arctan

g2 − 2
2gh

, if Z∗∗ ≥ 0 ∼ g < 0, (4.17)

Φ∗∗= − π

2
+ arctan

G

2
− arctan

g2 − 2
2gh

, if Z∗∗≤ 0 ∼ g > 0, (4.18)

and
q∗∗(g) = e−

1
2
GΦ∗∗

(4.19)
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together with
Z∗∗(g) = −g e−

1
2
GΦ∗∗

. (4.20)

Therefore, the following assertion can be set up for the width of the
Finsleroid.

Theorem 4.2. With any given g,

The Width of Finsleroid = 2q∗∗(g) = 2 e−
1
2
GΦ∗∗

.

The formulas (4.19) and (4.20) may also be interpreted by saying that
The Equatorial Section of the Finsleroid is of the radius

rEquatorial = q∗∗ (4.21)

and cuts the Z-axis at
ZEquatorial = Z∗∗. (4.22)

With the parameter value |g| being increasing, the Finsleroid is stretching
in wide and altitude:

q∗∗ =⇒
|g|→2

∞ (4.23)

and
|Z∗∗| =⇒

|g|→2
∞, (4.24)

tending in its shape to a cone:

q∗∗

|Z∗∗| =⇒
|g|→2

1
2
, (4.25)

such that the vertex of the Finsleroid tends to approach the origin point
“O”. From (4.23) one can infer

Theorem 4.3. We have:

The Limiting Vertex Angle = 2arctan
1
2
.

The above formulae, particularly the negative sign of the second de-
rivative (4.10), can be used directly to verify the following

Theorem 4.4. The Finsleroid Indicatrix IPD
g is closed, regular, and

strongly convex.
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The co-Finsleroid equation

H̆(g; q̂, Ẑ) = 1 (4.26)

(cf. equations (3.9) and (3.14)) can be studied in a similar way, leading to
the relations obtainable from equations (4.3)–(4.20) by means of the formal
replacement {g → −g,R → R̂}, owing to the fundamental symmetry (3.8).

Therefore, we can state the following:

Theorem 4.5. The co-Finsleroid Indicatrix ÎPD
g is closed, regular,

and also strongly convex.

Theorem 4.6. At any given parameter g, the Finsleroid and the co-

Finsleroid mirror one another under the g-reflection:

FPD
g

g←→−g⇐⇒ F̂PD
−g . (4.27)

All figures shown below have been prepared by means of a precise use
of Maple9.

In Figures 2–7 bold lines serve to draw the Finsleroids, while unit
circles simulate the ordinary Euclidean spheres. Figure 2 may be used
as a convenient demonstration example (the trainer) for the Finsleroid by
showing various structure details, including the equatorial section and the
characteristic tangents, in a distinct way. We remain it to the reader to
evaluate the angles that are depicted in the example and find among them
equal cases.

Figures 2–7 clearly support the validity of Theorem 4.4 about regular-
ity and convexity and make an idea of existence a diffeomorphic spherical
map (see equation (5.1) below) a quite trustworthy one.

If one compares between Figure 2 and Figure 3 between Figure 4 and
Figure 5 or between Figure 6 and Figure 7, one observes immediately that
the change of sign of the characteristic Finslerian parameter g does turn
up the figures and, therefore, verifies the fundamental Finslerian Z-parity
property (as given by equation (2.47)) in a due visual way. In a narrow
sense, Figures 2–7 show the geometry of the generatrix for the Finsleroids,
the latter being (hyper)surfaces of revolution over the Z-axis.

It can be traced also how the parameter g effects the shape of Finslero-
id. A positive value g (deforms and) shifts the unit sphere in the down-wise
manner, respectively a negative value in the up-wise manner.
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Figure 8 and Figure 9 model the important functions (4.3) and (4.20),
respectively.

Figure 10 visualizes the {|g| → 2}-limiting case.
There is no need to picture co-Finsleroids, for they mirror Finsleroids

with respect to the (RN = 0)-plane (according to our Theorems 4.5 and 4.6
and corresponding equations (3.8) and (4.27)). In particular, at g = −0.4,
the co-Finsleroid looks like the demonstration example given by Figure 1
at g = 0.4 (with interchanging respectively the coordinate axes: RN with
PN and R with P).

5. Quasi-Euclidean map of Finsleroid

Theorem 4.4 can be continued farther by indicating the diffeomor-
phism

FPD
g

ig=⇒ BPD (5.1)

of the Finsleroid FPD
g ⊂ VN to the unit ball BPD ⊂ VN :

BPD := {R ∈ BPD : S(R) ≤ 1}, (5.2)

where
S(R) =

√
rpqRpRq ≡

√
(RN )2 + rabRaRb (5.3)

is the input Euclidean metric function (see (2.11)). Indeed, the diffeomor-
phism (5.1) can always be extended to get the diffeomorphic map

VN
σg=⇒ VN (5.4)

of the whole vector space VN by means of the homogeneity:

σg · (bR) = bσg · R, b > 0. (5.5)

To this end it is sufficient to take merely

σg · R = ‖R‖ig ·
(

R

‖R‖
)

, (5.6)

where
‖R‖ = K(g;R). (5.7)
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Fig 2. [g = −0.4]
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Fig 3. [g = 0.2]

R

Z

–1.5

–1

–0.5

0

0.5

1

1.5

–1.5 –1 –0.5 0.5 1 1.5

Fig 4. [g = −0.2]
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Fig 5. [g = 0.6]
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Fig 6. [g = −0.6]
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Fig 7. [Equation (4.3)]
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Fig 8. [Equation (4.20)]
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Fig 9. [g = 1.96]

Equations (5.1)–(5.7) entail

K(g;R) = S(σg · R). (5.8)

At the same time, the identity (2.57) suggests taking the map

R̄ = σg · R (5.9)

by means of the components

R̄p = σp(g;R) (5.10)

with
σa = RahJ(g;R), σN = A(g;R)J(g;R), (5.11)

where J(g;R) and A(g;R) are the functions (2.31) and (2.38). Indeed, in-
serting (5.11) in (5.3) and taking into account equations (2.30) and (2.57),
we get the identity

S(R̄) = K(g;R) (5.12)

which is tantamount to the implied relation (5.8).
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Thus we have arrived at

Theorem 5.1. The map given explicitly by equations (5.9)–(5.11)
assigns the diffeomorphism between the Finsleroid and the unit ball ac-

cording to equations (5.1)–(5.8).

The inverse

R = µg · R̄, µg = (σg)−1 (5.13)

of the transformation (5.9)–(5.11) can be presented by the components

Rp = µp(g; R̄) (5.14)

with

µa = R̄a/hk(g; R̄), µN = I(g; R̄)/k(g; R̄), (5.15)

where

k(g; R̄) := J(g;µ(g; R̄)) (5.16)

and

I(g; R̄) = R̄N − 1
2
G

√
rabR̄aR̄b. (5.17)

The identity

µp(g;σ(g;R)) ≡ Rp (5.18)

can readily be verified. Notice that

R̄a

S(R̄)
=

hRa√
B(g;R)

,
R̄N

S(R̄)
=

A(g;R)√
B(g;R)

,

√
rabR̄aR̄b

R̄N
=

hq

A(g;R)
, wa =

Ra

RN
=

R̄a

hI(g; R̄)
, (5.19)

and √
B/RN = S/I,

√
Q = S/I. (5.20)

The σg-image

φ(g; R̄) := Φ(g;R)|
R=µ(g;R̄)

(5.21)
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of the function Φ described by equations (2.32)–(2.42) is of a clear meaning
of angle:

φ(g; R̄) = arctan
R̄N√

rabR̄aR̄b
(5.22)

(equation (5.19) has been used) which ranges over

−π

2
≤ φ ≤ π

2
. (5.23)

We have
φ =

π

2
, if R̄a = 0 and R̄N > 0;

φ = −π

2
, if R̄a = 0 and R̄N < 0,

(5.24)

and also
φ|

R̄N =0
= 0. (5.25)

Comparing equations (5.16) and (2.31) shows that

k = e
1
2
Gφ . (5.26)

The right-hand parts in (5.11) are homogeneous functions of degree 1:

σp(g; bR) = bσp(g;R), b > 0. (5.27)

Therefore, the identity
σp

s(g;R)Rs = R̄p (5.28)

should be valid for the derivatives

σq
p(g;R) :=

∂σq(g;R)
∂Rp

. (5.29)

The simple representations

σN
N (g;R) =

(
B +

1
2
gqA

)
J

B
,

σN
a (g;R) = −g(ZA − B)

2q
JrabR

b

B
,

(5.30)
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σa
N (g;R) =

1
2
gq

JRah

B
,

σa
b (g;R) =

(
Bδa

b − grbcR
cRaZ

2q

)
Jh

B
,

(5.31)

and also the determinant

det(σq
p) = hN−1JN (5.32)

are obtained.
Henceforth, to simplify notation, we shall use the substitution

tp = R̄p. (5.33)

Again, we can note the homogeneity

µp(g; bt) = bµp(g; t), b > 0, (5.34)

for the functions (5.15), which entails the identity

µp
s(g; t)ts = Rp (5.35)

for the derivatives

µp
q(g; t) :=

∂µp(g; t)
∂tq

. (5.36)
We find

µN
N = 1/k(g; t) − 1

2
g

m(t)I(g; t)
hk(g; t)(S(t))2

,

µN
a = −1

2
g

ract
cI∗(g; t)

h2k(g; t)(S(t))2
,

(5.37)

µa
N = −1

2
g

m(t) ta

h2k(g; t)(S(t))2
,

µa
b =

1
hk(g; t)

δa
b +

1
2
g

tN tarbct
c

m(t)h2k(g; t)(S(t))2
,

(5.38)

where

m(t) =
√

rabtatb, (5.39)
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I∗(g; t) = hm(t) +
1
2
gtN , (5.40)

and
S(t) =

√
rrstrts ≡

√
(tN )2 + rabtatb. (5.41)

The relations

∂(1/k(g; t))
∂tN

= −1
2
g

m(t)
hk(g; t)(S(t))2

,

∂(1/k(g; t))
∂ta

=
1
2
g

tNrabt
b

m(t)hk(g; t)(S(t))2

are obtained.
Also,

Rpµ
p
q = tq, tpσ

p
q = Rq. (5.42)

The unit vectors

Lp :=
tp

S(t)
, Lp := rpqL

q (5.43)

fulfill the relations

Lq = lpσq
p, lp = µp

qL
q, lp = σq

pLq, Lp = µq
plq, (5.44)

where lp = Rp/K(g;R) and lp = Rp/H(g;R) are the initial Finslerian unit
vectors.

Now we use the explicit formulae (2.62)–(2.63) and (5.30)–(5.31) to
find the transform

nrs(g; t) := σr
pσ

s
qg

pq (5.45)

of the FMT under the FPD
g -induced map (5.9)–(5.11), which, after rather

lengthy direct calculations, results in

Theorem 5.2. One obtains the simple representation

nrs = h2rrs +
1
4
g2LrLs. (5.46)

The covariant version reads

nrs =
1
h2

rrs − 1
4
G2LrLs. (5.47)
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The determinant of this tensor is a constant:

det(nrs) = h2(1−N) det(rab). (5.48)

Notice that

LpLp = 1, npqL
q = Lp, npqLq = Lp, npqL

pLq = 1,

npqt
ptq = (S(t))2.

Equation (5.47) obviously entails

gpq = nrs(g; t)σr
pσ

s
q . (5.49)

Let us introduce

Definition. The metric tensor {npq(g; t)} of the form (5.47) is called
quasi-Euclidean.

Definition. The quasi-Euclidean space

QN := {VN ;npq(g; t); g} (5.50)

is an extension of the Euclidean space {VN ; rpq} to the case g �= 0.

This motivates the following

Definition. Under these conditions, the maps (5.1) and (5.4) are called
quasi-Euclidean.

Now we state that the following theorem is valid.

Theorem 5.3. The quasi-Euclidean metric tensor is conformal to the

Euclidean metric tensor.

Indeed, if we consider the map

R̄p → R̃ : R̃p = ξ(g; R̄)R̄p/h (5.51)

with

ξ(g; R̄) = a

(
g;

1
2
S2(R̄)

)
(5.52)
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and use the coefficients

kp
q :=

∂R̃p

∂R̄q
= (ξδp

q + a′R̄pR̄q)/h (5.53)

to define the tensor

cpq(g; R̃) := kp
rk

q
sn

rs(g; R̄), (5.54)

we find that
cpq = ξ2rpq (5.55)

whenever

ξ =
[
1
2
S2(R̄)

](h−1)/2

. (5.56)

The proof of Theorem 5.3 is complete.

6. Scalar product, angle and geodesics

Given two vectors R1 ∈ VN and R2 ∈ VN . Let us define the EPD
g -

scalar product

〈R1, R2〉 := K(g;R1)K(g;R2)

× cos

[
1
h

arccos
A(g;R1)A(g;R2) + h2rbeR

b
1R

e
2√

B(g;R1)
√

B(g;R2)

]
(6.1)

so that the EPD
g -angle

α(R1, R2) :=
1
h

arccos
A(g;R1)A(g;R2) + h2rbeR

b
1R

e
2√

B(g;R1)
√

B(g;R2)
(6.2)

is appeared between the vectors R1 and R2; the functions B,K, as well as
A can be found in Section 2.

The general solution
Rp = Rp(s) (6.3)

to the EPD
g -space geodesic equations (presented by equations (2.88)–(2.89))

proves to be given explicitly by means of the components

RN (s) =
(

tN (s) − 1
2
Gm(s)

)
/k(s), Ra(s) =

1
h

ta(s)/k(s) (6.4)
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with

tN (s) =
Ks

sin(hα)

[
A(g;R1)√
B(g;R1)

sin(h(α − ν))

+
A(g;R2)√
B(g;R2)

sin(hν)

]
,

(6.5)

ta(s) = h
Ks

sin(hα)

[
Ra

1√
B(g;R1)

sin(h(α − ν))

+
Ra

2√
B(g;R2)

sin(hν)

]
,

(6.6)

where

Ks =
√

(K(g;R1))2 + 2bs + s2, (6.7)

b = K(g;R1)

√
1 −

(
K(g;R2) sin α

∆s

)2

, (6.8)

and

k(s) = exp
(

1
2
G arctan

tN (s)
m(s)

)
, m(s) =

√
rabta(s)tb(s). (6.9)

The intermediate angle ν is equal to

ν = arctan
sK(g;R2) sin α

K(g;R1)∆s + [K(g;R2) cos α − K(g;R1)]s
(6.10)

and is showing the property

ν|s=0
= α.

Along the geodesics,
K(g;R(s)) = Ks (6.11)

so that the behaviour law for the squared FMF K2 is quadratic with
respect to the parameter s.

The picture symbolizes the role which the angles (6.2) and (6.10) are
playing in featuring the geodesic line C which joins two points P1 and P2.
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Fig 10. The geodesic C and the angles α = ∠P1OP2 and ν = ∠P1OP

On this way the following substantive items can be arrived at.

The EPD
g -Case Two-Point Distance ∆s:

(∆s)2 = (K(g;R1))2 + (K(g;R2))2 − 2K(g;R1)K(g;R2) cos α. (6.12)

The EPD
g -Case Scalar Product

〈R1, R2〉 = K(g;R1)K(g;R2) cos α. (6.13)

At equal vectors, the reduction

〈R,R〉 = (K(g;R))2 (6.14)

takes place, that is, the two-vector scalar product (6.1) reduces exactly to
the squared FMF.

The EPD
g -Case Perpendicularity

〈R,R⊥〉 = 0, (6.15)

in which case α = π/2.

Under the identification

|R1 � R2| = ∆s (6.16)

the formula (6.12) can be read as
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The EPD
g -Case Cosine Theorem

|R1 � R2|2 = (K(g;R1))2 + (K(g;R2))2 − 2〈R1, R2〉. (6.17)

From this we can also conclude that

The EPD
g -Case Pythagoras Theorem

|R � R⊥|2 = (K(g;R))2 + (K(g;R⊥))2 (6.18)

holds fine.
The symmetry

|R1 � R2| = |R2 � R1| (6.19)
is obvious.

Note. One can easily execute the formula (6.12) from the represen-
tation (6.7) if one inserts (6.8) in (6.7), takes the case s = ∆s, uses the
equality K(g;R2) = K∆s (see (6.11)), and resolves the resultant equation
to find (∆s)2.

Particularly, from (6.2) it directly ensues that the value of the angle
α formed by a vector R with the Finsleroid RN -axis is given by

α =
1
h

arccos
A(g;R)√
B(g;R)

, (6.20)

where A is the function (2.38), and with (N − 1)-dimensional equatorial
{R}-plane of Finsleroid is prescribed as

α =
1
h

arccos
L(g;R)√
B(g;R)

, (6.21)

where L is the function (2.36).

Comparing (6.2) with (2.82) leads to the equality

α =
1
h

f. (6.22)

Therefore, the Finsleroid angle α between two vectors ranges over

0 ≤ α ≤ αmax
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Z Z

Fig 11. The angle cases (6.20) and (6.21), respectively

(notice (2.79)), where

αmax =
1
h

π ≥ π with equality if and only if g = 0,

so that
αmax =⇒

|g|→2
∞.

Note. In the Euclidean limit proper, the angle (6.2) is reduced to read
merely

α(R1, R2)∣∣
g=0

= arccos
RN

1 RN
2 + rbeR

b
1R

e
2√

(RN
1 )2 + rbeR

b
1R

e
1

√
(RN

2 )2 + rbeR
b
2R

e
2

.

Using (6.5) and (6.6) in (6.4) yields

Rp(s) =
Ks

k(s)
√

B(g;R1)
sin(h(α − ν))

sin(hα)
Rp

1

+
Ks

k(s)
√

B(g;R2)
sin(hν)
sin(hα)

Rp
2 + X(s)δp

N

(6.23)

with

X(s) =
1
2
g

Ks

k(s)

[
sin(h(α − ν))

sin(hα)
q1√

B(g;R1)
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+
sin(hν)
sin(hα)

q2√
B(g;R2)

− m(s)
hKs

]
. (6.24)

Since the additional term X(s)δp
N has appeared in the right-hand part of

(6.23), and the right-hand part in (6.24) does not vanish identically, we
are to conclude that in general the vector Rp(s) is not spanned by two
end vectors Rp

1 and Rp
2. Therefore, in general the EPD

g -geodesic curves
obtained are not plane curves.

The velocity components

Up(s) :=
dRp

ds
(6.25)

can conveniently be deduced from the equalities

Up(s) = µp
q(g; t(s))

dtq

ds
, (6.26)

where µp
q are the functions that are given by the list (5.37)–(5.38). Calcu-

lations show that

Up(s) =
b + s

(Ks)2
Rp(s) +

hK(g;R1)K(g;R2) sin α

ksKs sin(hα)∆s
T p(s) (6.27)

with

TN (s) =
A(g;R2)

h2
√

B(g;R2)
cos(hν) − A(g;R1)

h2
√

B(g;R1)
cos(h(α − ν)) (6.28)

and

T a(s) =
1√

B(g;R2)

[
Ra

2 −
1
2
g
A(g;R2)

h2q
Ra(s)

]
cos(hν)

− 1√
B(g;R1)

[
Ra

1 −
1
2
g
A(g;R1)

h2q
Ra(s)

]
cos(h(α − ν)).

(6.29)

It follows that

Up(s)∣∣
g=0

=
Rp

2 − Rp
1

∆s
, (6.30)

and the contraction
Rp(s)Up(s) = b + s (6.31)
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is valid (where Rp are the covariant vector components (2.59)). Also,

gpq(g;R(s))Up(s)U q(s) = 1. (6.32)

The initial-data solution

Rp
2 = Rp

2(g;R1, U1,∆s) (6.33)

can also be explicitly found, namely we get

Rp
2 = µp(g; t2) (6.34)

with the functions

tp2 = z(∆s)σp(g;R1) + n(∆s)σp
q(g;R1)U

q
1 , (6.35)

z(∆s) =
1
h

sin(hα)
sin α

+
K(g;R2)
K(g;R1)

[
cos(hα) − 1

h

sin(hα)
sin α

cos α

]
, (6.36)

n(∆s) =
1
h

sin(hα)
sinα

∆s, (6.37)

K(g;R2) =
√

(K(g;R1))2 + 2b∆s + (∆s)2, (6.38)

b = R1qU
q
1 , (6.39)

and the angle value α can be taken as

α = arccos
(K(g;R1))2 + b∆s

K(g;R1)K(g;R2)
. (6.40)

The functions σp and σp
q entering equation (6.34) can be found in the lists

(5.11) and (5.29)–(5.30).

7. Two-dimensional case

When turning to the dimension N = 2, the consideration is restricted
to the Finsleroid–Minkowski plane

P = P− ∪ P+, (7.1)
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where

P− := {R ∈ P− : R1 ≤ 0}, P+ := {R ∈ P− : R1 ≥ 0} (7.2)

are respectively the left semi-plane and the right semi-plane. Let us intro-
duce the indicator

ε := {ε = −1, if R1 < 0; ε = 0, if R1 = 0; ε = 1, if R1 > 0} (7.3)

and take also the orthogonalized form for the input Euclidean metric tensor
{rpq}, so that rpq = δpq. Then the Finsleroid-adapted vector components
(cf. the representation (2.83)) take on the form

R1 = ε
K

hJ
sin f, R2 =

K

J

(
cos f − 1

2
G sin f

)
, (7.4)

from which it follows that

R2 ∂R1

∂f
− R1 ∂R2

∂f
=

1
hJ2

K2ε. (7.5)

Since also
√

det(gpq) = J2 (cf. equation (2.64)), from (7.5) we conclude

dαLandsberg =
1
h

df

(see, e.g., p. 85 of [8] for the definition of the Landsberg angle), where h

is the constant (2.13).
Thus, restricting the Finsleroid geometry to the Minkowski plane, the

quantity f in the representation (7.4) is the factor h of the Landsberg
angle. Noting also (6.22), we arrive at the following theorem.

Theorem 7.1. The equality

αFinsleroid = αLandsberg

holds.
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Fig 12. The angle f

It is also possible to draw

Theorem 7.2. The Finsleroid Indicatrix on the Minkowski plane is

strongly convex.

Proof. Let us verify the relevant criterion formulated on p. 88 of [8].
In terms of our notation, we calculate accordingly:

∂2R2

∂f2
∂R1

∂f − ∂R2

∂f
∂2R1

∂f2

∂R2

∂f R1 − R2 ∂R1

∂f

=
− 1

h3

− 1
h

=
1
h2

.

Since the right-hand side here is always positive, the criterion works fine
and, therefore, Theorem 7.2 is valid. �

Since that ds :=
√

gpq(g;R)dRpdRq = 1
hdf , we can also conclude that

ds =
1
h

df. (7.6)

In particular, the latter equality entails

Theorem 7.3. The length LI :=
∫

ds of the Finsleroid Indicatrix is

LI =
2π
h

≥ 2π, (7.7)
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showing the properties

LI = 2π if and only if g = 0 (the Euclidean case) (7.8)

and

LI → ∞ when |g| → 2. (7.9)

From (7.4) and (7.5) it can readily be explicated that the Rund equa-
tion

d2Rp

ds2
+ I

dRp

ds
+ Rp = 0 (7.10)

holds fine with
I = −g. (7.11)

If the meaning of the Cartan scalar is acquired to the quantity I thus
appeared in (7.10) (cf. [8]), one may state the following:

Theorem 7.4. The Cartan scalar for the Finsleroid–Minkowski plane

is the constant which equals the negative of the characteristic Finsleroid

parameter g.

Equations (7.4) suggest naturally to propose the following EPD
g -Gen-

eralized Trigonometric Functions:

Cos f :=
1
J

(
cos f − G

2
sin f

)
, Sin f :=

1
hJ

sin f, (7.12)

and

Cos∗ f :=
1
J

(
cos f +

G

2
sin f

)
. (7.13)

They reveal the properties

R1 = K Sin f, R2 = K Cos f, (7.14)

and
(Cos f)′ = −1

h
Sin f, (Sin f)′ =

1
h

Cos∗ f, (7.15)

together with

(Cos∗ f)′ = −1
h

Sin f + GCos∗ f, (7.16)

where the prime stands for the derivative with respect to f .



252 G. S. Asanov : Finsleroid space with angle and scalar product

References

[1] E. Cartan, Les espaces de Finsler, Actualites 79, Hermann, Paris, 1934.

[2] H. Busemann, Angular Measure and Integral Curvature, Canad. J. Math. 1 (1949),
279.

[3] H. Rund, The Differential Geometry of Finsler spaces, Springer-Verlag, Berlin,
1959.

[4] G. S. Asanov, Finsler Geometry, Relativity and Gauge Theories, D. Reidel Publ.
Comp., Dordrecht, 1985.

[5] R. S. Ingarden, Differential Geometry and Physics, Tensor 30 (1976), 201.
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