
Publ. Math. Debrecen
67/3-4 (2005), 423–436

On co-hopfian groups

By GÉRARD ENDIMIONI (Marseille) and DEREK J. S. ROBINSON (Urbana)

Abstract. A group is called co-hopfian if it is not isomorphic with a proper
subgroup. The aim of this paper is to obtain sufficient conditions for a group
to be co-hopfian or non-co-hopfian. For example, it is shown that a reduced
soluble minimax group which is abelian-by-nilpotent-by-finite, but not nilpotent-
by-finite, cannot be co-hopfian. This leads to the construction of many finitely
generated soluble coherent groups which are not polycyclic. On the other hand,
examples of co-hopfian polycyclic groups which are not nilpotent-by-finite are
given. In addition it is shown that a soluble-by-finite group satisfying the minimal
condition on normal subgroups is co-hopfian.

1. Introduction

A group G is said to be co-hopfian if it is not isomorphic with a
proper subgroup, i.e., if every injective endomorphism ϕ : G → G is an
automorphism. This is the dual of the well known hopfian property: a
group is hopfian if it is not isomorphic with a proper quotient group.

One reason to be interested in co-hopfian groups is the connection
with coherent groups, i.e., groups in which every finitely generated sub-
group is finitely presented. For by a result of Bieri and Strebel [6] and
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Groves [9], a finitely generated soluble group is coherent if and only if
it is either polycyclic or an ascending HNN-extension 〈H, t | t−1ht = hϕ,
h ∈ H〉, where H is a polycyclic group and ϕ is an injective endomor-
phism of H which is not an automorphism. So H is not co-hopfian. There-
fore, from each non-co-hopfian polycyclic group we can construct a non-
polycyclic, finitely generated soluble group which is coherent, and all such
groups arise in this way.

The determination of the polycyclic groups which are not co-hopfian
seems to be a difficult problem. Even in the case of a finitely generated
infinite nilpotent group G, the situation is not simple. If the nilpotency
class of G is at most 2, it is not hard to see that such groups are not co-
hopfian – see Smith [14]. However, Smith in the paper just cited, and more
recently Belegradek [3], have constructed examples of co-hopfian finitely
generated nilpotent groups of class > 2. In his paper Belegradek also gives
a characterization of finitely generated torsion-free nilpotent groups which
are co-hopfian in terms of their Lie algebra automorphisms.

Here our first goal is to produce a large class of polycyclic groups which
are not co-hopfian. This is achieved by showing that a polycyclic abelian-
by-nilpotent group which is co-hopfian is necessarily nilpotent-by–finite –
see Corollary 2.1. Our proof is cohomological. On the other hand, we also
show, on the basis of a construction due to Belegradek [3] and Bryant

and Groves [7], how to construct co-hopfian polycyclic groups which are
not nilpotent-by-finite (Theorem 3.2).

It is very easy to see that a group satisfying the minimal condition on
subgroups is co-hopfian. Our second main goal is to extend this result to
larger classes of groups, for example to certain locally finite groups satis-
fying min-p, the minimal condition on p-subgroups, for all primes p. We
also prove that soluble-by-finite groups satisfying the minimal condition
on normal subgroups are co-hopfian (Theorem 4.2).

In the last part of this paper we find classes of groups satisfying a
weak form of co-hopficity, namely groups G in which every endomorphism
ϕ : G→ G with finite kernel has its image Gϕ of finite index in G.
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2. Co-hopficity and soluble minimax groups

Recall that a minimax group is a group which has a series of finite
length whose factors satisfy max or min, (i.e., the maximal or minimal
condition on subgroups). A minimax group is said to be reduced if it has
no quasicyclic subgroups. It is known that a soluble minimax group G is
reduced if and only if it is residually finite. (For this and other properties
of soluble minimax groups see [12, Chapter 5] or [13, Part 2, 10.3].)

Our first result provides a necessary condition for a soluble minimax
group to be co-hopfian.

Theorem 2.1. Let G be a reduced minimax group which has a normal

abelian-by-nilpotent subgroup with finite index m. If G is co-hopfian, then

it has a finite-by-nilpotent normal subgroup of index dividing a power ofm.

It is convenient to deduce this from the following more technical result.

Proposition 2.1. Let A and N be characteristic subgroups of a group

G with A abelian and N/A nilpotent. Assume that A is a reduced minimax

group and that [A, iN ] is infinite for all i > 0. Then G is not co-hopfian.

Proof. Since A is a minimax group, there is an integer d > 0 such
that

[A, dN ]/[A, d+1N ]

is finite. Put B = [A, dN ]. Then B/[B,N ] is finite, while N/B is nilpo-
tent. Now apply Theorem H in [11] to show that Hn(N/B,B) has finite
exponent for all n ≥ 0. It follows, on applying the Lyndon–Hochschild–
Serre spectral sequence, that each Hn(G,B) has finite exponent, where
G = G/B. Let e denote the exponent of H2(G,B).

Since B has no quasicyclic subgroups, its torsion-subgroup has finite
order, say t. Put k = 1 + etq > 1, where q is the product of all the primes
in the spectrum of B, with q = 1 should this spectrum be empty. Then
b �→ bk determines an injective endomorphism ϕ of B. We show that ϕ
extends to an endomorphism of G.

Form the push-out diagram

B � G � G

ϕ ↓ ↓ ‖
B � G1 � G
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If ∆ is the cohomology class of the upper extension in the diagram, the
lower extension has cohomology class ∆ϕ∗ = k∆ = ∆, since eH2(G,B)= 0.
It follows that the lower extension is equivalent to the upper one and so
we obtain an exact diagram

B � G � G

ϕ ↓ ψ ↓ ‖
B � G � G

Clearly ψ is an injective endomorphism of G: suppose that it is an
automorphism. Then it follows that B = Bk since B is characteristic in
G. By [13, Lemma 10.31], B contains a finitely generated subgroupX such
that B/X is a direct product of finitely many quasicyclic p-groups, where
p is in the spectrum of B. Since no prime in the spectrum of B can divide
k, it follows that X ∩ Bk = Xk, so that X = Xk and X is finite. Hence
B is finite, which is a contradiction. Therefore ψ is not an automorphism
and G is not co-hopfian. �

Proof of Theorem 2.1. Assume that G is co-hopfian. By hypoth-
esis there is a normal subgroup M such that |G : M | = m and M is
abelian-by-nilpotent. Put N = Gm and note that |G : N | is finite and
divides some power of m. Also A = γc+1(N) is abelian for some c ≥ 0.
Now apply Proposition 2.1 to show that some [A, iN ] is finite. Hence N is
finite-by-nilpotent. �

Corollary 2.1. Let G be a reduced minimax group which is abelian-

by-nilpotent-by-finite. If G is co-hopfian, then it is nilpotent-by-finite.

For G is finite-by-nilpotent-by-finite and hence is nilpotent-by-finite.
Thus co-hopficity forces the group to be virtually nilpotent.

Corollary 2.2. Let G be an infinite reduced minimax group which is

abelian-by-nilpotent and has trivial centre. Then G is not co-hopfian.

For, if G were co-hopfian, Theorem 2.1 (with m = 1) would imply that
G is finite-by-nilpotent. Hence, by a theorem of P. Hall – see [13, Part 1,
4.25] – some term of the upper central series of G has finite index. Since
the centre of G is trivial, we reach the contradiction that G is finite.

We record one further corollary of Proposition 2.1.
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Corollary 2.3. Let G be a reduced soluble minimax group with de-

rived length d ≥ 2. If G is co-hopfian, then G is finite-by-nilpotent-by-

(soluble of derived length at most d− 2).

Proof. Let A = G(d−1), the least non-trivial term of the derived
series of G. Apply Proposition 2.1 with N = G(d−2) to get [A, iN ] finite
for some i. The result now follows. �

In particular, if a reduced metabelian minimax group is co-hopfian,
it must be finite-by-nilpotent. This permits the construction of many
finitely generated coherent soluble groups of derived length 3 which are
not polycyclic.

3. The role of the Fitting subgroup

The Fitting subgroup of a soluble minimax group plays a crucial part
in the question of whether the group is co-hopfian. This is made clear by
the following result.

Theorem 3.1. Let G be a soluble-by-finite minimax group and let F

denote its Fitting subgroup. If F is co-hopfian, then so is G.

To prove this we need a number of auxiliary results. In the first of
these it should be kept in mind that the Fitting subgroup of a group need
not be fully invariant.

Lemma 3.1. Let G be a soluble-by-finite minimax group and let ϕ

be an injective endomorphism of G. Then (Fit(G))ϕ ≤ Fit(G).

Proof. First of all recall that F = Fit(G) is nilpotent. Thus it suf-
fices to show that Nϕ is subnormal in G whenever N is a normal nilpotent
subgroup of G. We argue by induction on the minimality m(G). (Recall
that the minimality of a soluble minimax group is the number of infinite
factors in a series with cyclic or quasicyclic factors). Then m(G) can be
assumed to be positive since otherwise G is finite and ϕ is an automor-
phism.

In the first place, there is a non-trivial, fully invariant, abelian sub-
group B which is either torsion-free or a radicable torsion group. Indeed,
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if G is not reduced, take B to be the maximum radicable abelian torsion
subgroup of G. If G is reduced, there is a k > 0 for which Gk is torsion-
free and soluble, with derived length d > 0 say, and we set B = (Gk)(d−1).
Note that in both cases B is fully invariant in G.

Next define

A = {x ∈ G | xϕi ∈ B for some i > 0}.
Observe that B ≤ A and A is the union of an ascending chain of isomorphic
copies of subgroups of B. Thus A is abelian. Notice also that A � G and
Aϕ ≤ A: in addition Gϕ ∩A = Aϕ.

From the definition of A we see that ϕ induces an injective endo-
morphism in G/A. Clearly m(G/A) < m(G), so by induction we have
NϕA/A ≤ Fit(G/A), and NϕA is subnormal in G. Since G � Gϕ, we have
m(G) = m(Gϕ) and hence |G : Gϕ| is finite. It follows that |A : Aϕ| is
finite – of order m say – since Gϕ ∩A = Aϕ.

If B is a radicable torsion group, then A is torsion and so has min.
Hence A = Aϕ and NϕA = (NA)ϕ is nilpotent, so that Nϕ is subnormal
in G.

Now assume that B is torsion-free. Then A is torsion-free and, if
a ∈ A, we have am ∈ Aϕ and

[a, rNϕ]m = [am, rN
ϕ] ≤ [Aϕ, rN

ϕ] = 1,

where r is the nilpotent class of NA. Thus [A, rNϕ] = 1 and Nϕ is
subnormal in NϕA and hence in G. �

Next come some elementary results on HNN-extensions.

Lemma 3.2. Let ϕ be an injective endomorphism of a group G and

let H = 〈t,G | xt = xφ, x ∈ G〉 be the corresponding HNN-extension. If

tG is locally nilpotent, then ϕ is an automorphism.

Proof. Let x ∈ [G, t] and put U = 〈xt, xt2 , . . . 〉. Then Uϕ = U t ≤ U

and tG ≥ 〈t, x〉 = 〈t, U〉. Now 〈t, U〉 is an HNN-extension of U . It is
also a finitely generated nilpotent group, so it satisfies max. Therefore
U = U t = Uϕ and it follows that [G, t]ϕ = [G, t]. For any x ∈ G we have

x = xϕ(x−1xϕ)−1 ≡ xϕ mod [G, t],

from which it follows that G = Gϕ. �
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Lemma 3.3. Let ϕ be an injective endomorphism of a group G which

is not an automorphism. Let H = 〈t,G〉 be the corresponding HNN-

extension. Then

Fit(H) ≤
⋃

i=1,2,...

Gt−i
.

Proof. Write Ḡ =
⋃

i=1,2,... Gt−i
. Suppose that u ∈ Fit(H), but

u /∈ Ḡ: clearly we may assume that u = tiv, where i > 0 and v ∈ Ḡ.
Replacing u by a suitable conjugate, we may also assume that v ∈ G.
Notice that conjugation by u induces an injective endomorphism in G and
uG is nilpotent. Applying Lemma 3.2 to 〈u,G〉, we conclude that Gu = G

and hence Gt = G, i.e., Gϕ = G, a contradiction. �

Lemma 3.4. Let ϕ be an injective endomorphism of a groupG and let

H = 〈t,G〉 be the corresponding HNN-extension. If H is abelian-by-finite,

then ϕ is an automorphism.

Proof. Let N �H, where N is abelian and H/N is finite. Then there
is an integer k > 0 such that tk ∈ N , so that (G ∩ N)t

−k
= G ∩ N ,

since N is abelian. Hence G ∩ N = (G ∩ N)t and G ∩ N � H. Put
Ḡ =

⋃
i=1,2,...G

t−i
. Then Ḡ/G ∩N is the union of the ascending chain of

Gt−i
/G∩N = (G/G∩N)t

−i
, i = 1, 2, . . . , and these have boundedly finite

orders. Hence Ḡ/G ∩N is finite and G = Gt = Gϕ. �

Proof of Theorem 3.1. Suppose that ϕ is an injective endomor-
phism of G which is not an automorphism. By Lemma 3.1 we have
Fϕ ≤ F , where F = Fit(G), and hence Fϕ = F by co-hopficity of F .
Form the HNN-extension H = 〈t,G〉, where xt = xϕ for x ∈ G. Then
F � H, so F ≤ F0 = Fit(H).

By Lemma 3.3 we have F0 ≤ Ḡ, where Ḡ =
⋃

i=1,2,...G
t−i

, and hence

F0 =
⋃

i=1,2,...

(F0 ∩Gt−i
).

Now F0 ∩ Gt−i
= (F0 ∩ G)t

−i ≤ F t−i
= F , from which it follows that

F = F0 � H.
Since Ḡ is the union of a chain of isomorphic copies of subgroups of G,

we see that it is a finite extension of a soluble group with finite abelian total
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rank (for this concept see [12, Chapter 5]), as must be H. By a well known
result of Mal’cev – see [12, 5.2] – the group H is nilpotent-by-abelian-by-
finite and so H/F is abelian-by-finite. But H/F is also an HNN-extension,
so by Lemma 3.4 its associated endomorphism is an automorphism. Hence
Gϕ = G and G is co-hopfian. �

Application to the construction of co-hopfian polycyclic groups

We now show how to apply Theorem 3.1 to construct examples of
co-hopfian polycyclic groups which are not nilpotent-by-finite. This is in
contrast to results in Section 2 such as Corollary 2.1.

The construction hinges on the following result of Belegradek [3,
Corollary 3.1], which is based on earlier work of Bryant and Groves [7].

Let A be an arithmetic subgroup of GLn(Q). Then there is a finitely gen-
erated, torsion-free, co-hopfian nilpotent group G of derived length at most
3 such that Gab is free abelian of rank n and A is commensurable with I,
the image of the canonical map Aut(G) → Aut(Gab).

We apply this result with A = SLn(Z), n > 1. Choose β ∈ A such that no
power of β is unipotent. By commensurability βk ∈ I for some k > 0. Let
α ∈ Aut(G) map to βk under the map Aut(G) → Aut(Gab) and note that
α has infinite order.

Now form the semidirect product H of 〈α〉 and G. Then H is a
nilpotent-by-cyclic polycyclic group. Clearly G ≤ Fit(H): if this contain-
ment were proper, αl ∈ Fit(H) for some l > 0 and βkl would be unipotent,
a contradiction which shows that Fit(H) = G. Since G is co-hopfian, so is
H by Theorem 3.1. Also H cannot be nilpotent-by-finite. Thus we have
proved:

Theorem 3.2. There is a torsion-free nilpotent-by-cyclic polycyclic

group of derived length at most 4 which is co-hopfian, but not nilpotent-

by-finite.

We are grateful to the referee for suggesting that it might be possible
to use this method of construction for co-hopfian polycyclic groups.
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4. Co-hopficity and locally finite groups
with min-p for all p

Since any group satisfying min is co-hopfian, a natural class of groups
to test for co-hopficity is the class of locally finite groups with min-p for
all primes p. However there are countable locally finite groups with min-p
for all p which are not co-hopfian (see for instance [8, 5.4.10]). In fact,
Belyaev [5] – see also [8, 5.5.13] – has proved that a countable locally
finite group with min-p for all primes p which is co-hopfian is necessarily
hyperfinite. Belyaev mentions that the converse of this is true. Since there
seems to be no proof of this fact in the literature, we shall provide one here.

Theorem 4.1. Let G be a hyperfinite group with min-p for all prim-

es p. Then G is co-hopfian.

Proof. Let ϕ be an injective endomorphism of G.
(i) We may assume that G has finite Sylow subgroups.

Let D be the subgroup generated by all the quasicyclic subgroups of G.
Note that D � G and Dϕ ≤ D. Consider an ascending normal series of
G with finite factors. Since D must centralize each factor of this series,
it is contained in the hypercentre of G. By a theorem of Černikov (see
[13, see Part 2, 9.23]), we deduce that D is abelian, and so D is the direct
product of its Sylow p-subgroups. It follows from min-p that Dϕ = D.
If P1/D is a Sylow p-subgroup of G/D, then P1 is locally nilpotent and
hence P1 = PD, where P is the p-component of P1. Since P is a Černikov
p-group, it follows that PD/D is finite. Therefore, by replacing G by G/D,
we may assume that all Sylow subgroups of G are finite.

(ii) If π is a finite set of primes, then G has a unique largest finite
normal π-subgroup F.
Define F to be the subgroup generated by all the finite normal π-subgroups
of G. If H is a finite π-subgroup of G, then |H| ≤ ∏

p∈π p
m(p), where pm(p)

is the order of a Sylow p-subgroup of G. Hence H has boundedly finite
order and so F is finite.

(iii) Fϕ = F .
Let P be a Sylow p-subgroup of G, where p ∈ π. Then P � Pϕ ≤ P1 for
some Sylow p-subgroup P1 of G. But P and P1 are conjugate since they
are finite. Hence Pϕ = P1. It follows that Gϕ contains a Sylow p-subgroup
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of F for all p ∈ π. Consequently F ≤ Gϕ, since F is generated by its Sylow
subgroups. Also F is a finite normal π-subgroup of Gϕ, so F ≤ Fϕ by
maximality. Hence F = Fϕ since F is finite.

(iv) Conclusion.
Consider an ascending normal series of G with finite factors and apply (ii)
and (iii) to its successive terms, using transfinite induction. This yields
an ascending normal series {Fα} with finite factors such that Fϕ

α = Fα for
all α. Hence Gϕ = G and G is co-hopfian. �

We can apply 4.1 and Belyaev’s result cited above [8, 5.5.13], together
with the simple fact that a hyperfinite group with min-p for all p is count-
able, to conclude that the following classes of groups coincide:

(a) countable, locally finite, co-hopfian groups with min-p for all
primes p;

(b) hyperfinite groups with min-p for all primes p.

Recall that a group is said to be of finite rank in the sense of Prüfer
if there is a positive integer n such that every finitely generated subgroup
can be generated by at most n elements. Then we have:

Corollary 4.1. A locally finite group G of finite rank is co-hopfian.

Proof. First note that G satisfies min-p for all primes p. By a deep
theorem of Belyaev [4] – see also [8, 3.5.15] – the group G is locally
soluble-by-finite: furthermore, if R is its Hirsch–Plotkin radical, G/R is
abelian-by-finite with finite Sylow subgroups by a result of Kargapolov –
see [8, 3.2.3]. Also the primary components of R are Černikov groups.
Therefore G is hyperfinite and thus is co-hopfian. �

Soluble groups with min-n

As usual, let min-n denote the minimal condition for normal sub-
groups. By a well known theorem of Baer [1], a soluble group with min-n
is locally finite. Thus it is natural to ask if such groups are co-hopfian.
Notice that an insoluble group satisfying min-n need not be co-hopfian.
For example, let A be the finitary alternating group on the set of positive
integers. Then A is isomorphic with the stabilizer of the integer 1, so it is
not co-hopfian. Of course A is simple, so it satisfies min-n.
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The next result shows that the situation is entirely different for soluble
groups.

Theorem 4.2. A soluble-by-finite group satisfying min-n is co-hopfian.

Proof. Let ϕ be an injective endomorphism of G. First assume that
G is soluble with min-n. We must prove that ϕ is surjective. For this
purpose we argue by induction on the derived length d of G. If d ≤ 1,
then G satisfies min and the result is known. Suppose that d > 1 and put
A = G(d−1): thus Aϕ ≤ A. For each integer i > 0, we define a subgroup

Ki = {x ∈ G | xϕi ∈ A}.

Clearly each Ki is normal in G and contains A, and Ki is isomorphic to a
subgroup of A; thus in particular Ki is abelian. Furthermore Ki ≤ Ki+1

and Kϕ
i+1 ≤ Ki. Hence K =

⋃
i=0,1,2...Ki is an abelian normal subgroup

of G and Kϕ ≤ K. Then ϕ induces in G/K an endomorphism ϕ which is
injective, since xϕ ∈ K implies that x ∈ K.

By induction G/K is co-hopfian and thus ϕi is surjective for each
integer i > 0; hence G = KGϕi

. Since K is abelian and Aϕi � Gϕi
, it

follows that Aϕi � G. Applying min-n to the descending chain (Aϕi
)i>0,

we obtain Aϕi+1
= Aϕi

for some i > 0, whence Aϕ = A. Thus ϕ induces
in G/A an injective endomorphism; by induction this endomorphism is
surjective, so G = AGϕ = AϕGϕ = Gϕ and ϕ is surjective.

Now assume that G is soluble-by-finite with min-n and let H be a
soluble normal subgroup of G such that G/H is finite, of orderm say. Then
G/Gm is a soluble-by-finite group of finite exponent with min-n. Using the
fact that min-n is inherited by subgroups of finite index – see [13, Part 1,
5.31] – we can easily prove that such a group is finite. Therefore Gm has
finite index in G and thus it has min-n. Therefore Gm, being soluble,
is co-hopfian. Since ϕ induces an injective endomorphism in Gm, this
endomorphism is an automorphism and (Gm)ϕ = Gm. This implies that
the endomorphism induced by ϕ in G/Gm is injective and hence surjective,
since G/Gm is finite. Therefore G = Gϕ(Gm) = Gϕ(Gm)ϕ = Gϕ, as
required. �
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5. A weak form of co-hopficity

In a sense co-hopficity is too strong a property. For example, even the
infinite cyclic group is not co-hopfian; however, in this case the image of
each injective endomorphism at least has finite index in the group, and it is
not difficult to show that this result remains true in any finitely generated
abelian group. On the other hand, in a finitely generated metabelian
group the image of an injective endomorphism can have infinite index in
the group.

For example, let 〈a〉 be infinite cyclic and F = 〈x, y〉 a free abelian
group of rank 2. Denote by G the wreath product 〈a〉wr F . Then G is
a finitely generated metabelian group. The assignments x �→ x, y �→ y,
a �→ axay determine an injective endomorphism ϕ of G, but it is easy to
see that Gϕ has infinite index in G.

Our next result shows that this phenomenon cannot occur in a soluble
group with finite abelian ranks. (For the definition see [12, Chapter 5]).
Furthermore, it is not necessary to suppose that the endomorphism is
injective, but merely that its kernel is finite.

Theorem 5.1. Let G be a soluble-by-finite group with finite abelian

ranks and let ϕ be an endomorphism. If kerϕ is finite, then the index

of Gϕ in G is finite.

A special case of this result appears as Lemma 10 in [2].

Proof. (i) Case: G is abelian.
In the torsion subgroup T ofG, each primary component is a direct product
of finitely many cyclic and quasicyclic groups. Thus T is co-hopfian and
so Tϕ = T . Since G = G/T is torsion-free of finite rank, ϕ induces an
injective endomorphism ϕ in G. Then Gϕ has finite index in G by a result
of Fuchs – see [12, 6.1.3]. Hence |G : TGϕ| < ∞ and so |G : Gϕ| < ∞,
since T = Tϕ.
(ii) Case: G is soluble.
Let G have derived length d > 1. Put A = G(d−1) and

K = {x ∈ G | xϕi ∈ A, for some i > 0}.

Then K is abelian and Kϕ ≤ K � G, so that |K : Kϕ| < ∞ by (i). By
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considering the injective endomorphism induced by ϕ in G/K, we obtain
|G : KGϕ| <∞ by induction on d. Hence |G : Gϕ| is finite.
(iii) The general case.
The argument in the soluble-by-finite case is similar to that used to prove
Theorem 4.2. �

We remark that the converse of Theorem 5.1 fails, namely the fact
that |G : Gϕ| is finite does not imply that kerϕ is finite. Indeed, consider
a direct product G of quasicyclic p-groups, where p ranges over the set
of primes, and the endomophism ϕ of G defined on the p-component by
xϕ = xp. Then G is an abelian group with finite abelian ranks and ϕ is
surjective, but kerϕ is infinite.

Nevertheless, the converse property holds for minimax groups. Indeed,
if G is a soluble minimax group and ϕ is an endomorphism of G such that
|G : Gϕ| is finite, it is easy to see that

m(G) = m(Gϕ) = m(G) −m(kerϕ),

so that kerϕ is finite. As in Theorem 5.1, this result may be extended
to soluble-by-finite minimax groups without difficulty. Therefore we can
state a partial converse of Theorem 5.1 in the following form.

Theorem 5.2. Let G be a soluble-by-finite minimax group and let ϕ

be an endomorphism of G. If |G : Gϕ| is finite, then kerϕ is finite.

(A similar result was proven by Hirshon in the case where G is a
finitely generated residually finite group [10]). Theorems 5.1 and 5.2 com-
bine to give the following result.

Corollary 5.1. In a soluble-by-finite minimax group the kernel of an

endomorphism is finite if and only if its image has finite index in the group.

Note that a finitely generated soluble group of finite rank is a minimax
group [13, Part 2, 10.38], so Corollary 5.1 applies to such groups.
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