Title: On the solvability of some special equations over finite fields
Author(s): Bálint Felszeghy
Let F be a polynomial over \mathbb{F}_{p} with n variables and of degree d. Suppose that it is impossible to transform F by invertible homogeneous linear change of variables to a polynomial, which has less than n variables. Also suppose that the degree of F in each variable is less than p. Rédei conjectured that if $d \leq n$ then $F=0$ has at least one solution in \mathbb{F}_{p}. This was disproved in [5] by a collection of counterexamples, but the cases $\operatorname{deg} F=3$ and $\operatorname{deg} F=5$ remained open. We give a counterexample with $\operatorname{deg} F=5$ over \mathbb{F}_{11}. On the positive side, we prove the statement for symmetric polynomials of degree 3 . Along a related line, consider polynomials of the form $F\left(x_{1}, \ldots, x_{n}\right)=a_{1} x_{1}^{k}+\cdots+a_{n} x_{n}^{k}+g\left(x_{1}, \ldots, x_{n}\right)$, where $a_{1} a_{2} \ldots a_{n} \neq 0$, $g \in \mathbb{F}_{p}\left[x_{1}, \ldots, x_{n}\right]$ and $\operatorname{deg} g<k$. We will show, that if $n \geq\left\lceil\frac{p-1}{\left\lfloor\frac{p-1}{k}\right\rfloor}\right\rceil$, then the equation $F\left(x_{1}, \ldots, x_{n}\right)=0$ is solvable in $\mathbb{F}_{p}{ }^{n}$. This is a generalization of a result of Carlitz ([2]).

Address:

Bálint Felszeghy
Department of Algebra
Budapest University of Technology and Economy
H-1111 Budapest, P.O. Box 91
Hungary
and
Hungarian Academy of Sciences
Computer And Automation Research Institute
Hungary
E-mail: fbalint@math.bme.hu

