

Title: On the solvability of some special equations over finite fields

Author(s): Bálint Felszeghy

Let F be a polynomial over \mathbb{F}_p with n variables and of degree d. Suppose that it is impossible to transform F by invertible homogeneous linear change of variables to a polynomial, which has less than n variables. Also suppose that the degree of F in each variable is less than p. Rédei conjectured that if $d \leq n$ then F = 0 has at least one solution in \mathbb{F}_p . This was disproved in [5] by a collection of counterexamples, but the cases deg F = 3 and deg F = 5 remained open. We give a counterexample with deg F = 5 over \mathbb{F}_{11} . On the positive side, we prove the statement for symmetric polynomials of degree 3. Along a related line, consider polynomials of the form $F(x_1, \ldots, x_n) = a_1 x_1^k + \cdots + a_n x_n^k + g(x_1, \ldots, x_n)$, where $a_1 a_2 \ldots a_n \neq 0$, $g \in \mathbb{F}_p[x_1, \ldots, x_n]$ and deg g < k. We will show, that if $n \ge \left\lceil \frac{p-1}{\lfloor p-1 \rfloor} \right\rceil$, then the equation $F(x_1, \ldots, x_n) = 0$ is solvable in \mathbb{F}_p^n . This is a generalization of a result of CARLITZ ([2]).

Address:

Bálint Felszeghy
Department of Algebra
Budapest University of Technology and Economy
H-1111 Budapest, P.O. Box 91
Hungary
and
Hungarian Academy of Sciences
Computer And Automation Research Institute
Hungary *E-mail:* fbalint@math.bme.hu