On the solvability of some special equations over finite fields

By BÁLINT FELSZEGHY (Budapest)

Abstract

Let F be a polynomial over \mathbb{F}_{p} with n variables and of degree d. Suppose that it is impossible to transform F by invertible homogeneous linear change of variables to a polynomial, which has less than n variables. Also suppose that the degree of F in each variable is less than p. Rédei conjectured that if $d \leq n$ then $F=0$ has at least one solution in \mathbb{F}_{p}. This was disproved in [5] by a collection of counterexamples, but the cases $\operatorname{deg} F=3$ and $\operatorname{deg} F=5$ remained open. We give a counterexample with $\operatorname{deg} F=5$ over \mathbb{F}_{11}. On the positive side, we prove the statement for symmetric polynomials of degree 3 .

Along a related line, consider polynomials of the form $F\left(x_{1}, \ldots, x_{n}\right)=a_{1} x_{1}^{k}+$ $\cdots+a_{n} x_{n}^{k}+g\left(x_{1}, \ldots, x_{n}\right)$, where $a_{1} a_{2} \ldots a_{n} \neq 0, g \in \mathbb{F}_{p}\left[x_{1}, \ldots, x_{n}\right]$ and $\operatorname{deg} g<k$. We will show, that if $n \geq\left\lceil\frac{p-1}{\left\lfloor\frac{p-1}{k}\right\rfloor}\right\rceil$, then the equation $F\left(x_{1}, \ldots, x_{n}\right)=0$ is solvable in $\mathbb{F}_{p}{ }^{n}$. This is a generalization of a result of Carlitz ([2]).

1. Introduction

In 1946 LÁSZLÓ RÉDEI formulated a conjecture (see [4]) about the solvability of polynomial equations over finite fields. Although it turned out that there are counterexamples, for some special polynomials the conjecture holds. We give first a brief overview of the related results.

[^0]Let p be a prime, \mathbb{F}_{p} be a field with p elements and $F\left(x_{1}, \ldots, x_{n}\right) \in$ $\mathbb{F}_{p}\left[x_{1}, \ldots, x_{n}\right]$ be a polynomial, with n variables. We can assume that the degree of F in x_{i} is at most $p-1$ for $1 \leq i \leq n$, that is the polynomial is reduced. We denote the linear subspace (in the space of polynomials with n variables over \mathbb{F}_{p}) spanned by the partial derivates of F by V, so we put $V=\operatorname{Lin}\left\{\frac{\partial F}{\partial x_{i}}: 1 \leq i \leq n\right\}$. The rank of F is defined to be $\operatorname{dim}_{\mathbb{F}_{p}} V$.

We note that the original definition of rank in [4] is different. We will use that $\operatorname{rank} F$ is precisely the least positive integer r for which there exists an invertible homogeneous linear change of variables which carries F into a polynomial with r variables. The equivalence to the original notion can be found in [5]. With this notion of the rank, the conjecture is the following:

Rédei's Conjecture. Let $F \in \mathbb{F}_{p}\left[x_{1}, \ldots, x_{n}\right]$ be reduced, not constant and $\operatorname{deg} F \leq \operatorname{rank} F$. Then $F\left(x_{1}, \ldots, x_{n}\right)=0$ is solvable.

In [5] Rónyai disproved this by giving counterexamples. Let $c \in \mathbb{F}_{p}$ $(p \geq 5)$ be a quadratic nonresidue, and $F\left(x_{1}, \ldots, x_{n}\right)=\left(\sum_{i=1}^{n} x_{i}^{2}\right)^{2}-c$. It is clear, that $F=0$ cannot be solvable in \mathbb{F}_{p}. In the case $n \geq 4, F$ serves as a counterexample to the conjecture, as it is not difficult to see that $n=\operatorname{rank} F$. A similar polynomial can be constructed for $p=3$. (The conjecture is true if $p=2$.) There are counterexamples for every degree $d \geq 6$.

It is pointed out in [5] that the conjecture is valid for degrees 1 (this case is trivial) and 2 . The remaining cases ($\operatorname{deg} F=3$ or 5) are still open. In Section 2 we show a counterexample for $\operatorname{deg} F=5$ and $p=11$, and, as a positive result, we prove the conjecture for cubic symmetric polynomials. We note that the counterexample given above for $\operatorname{deg} F=4$ is symmetric.

Rédei's conjecture holds also for some equations of diagonal type, see [5]. We prove the conjecture in Section 3 for a class of generalized diagonal polynomials.

2. The cases of degree 3 and 5

Proposition 1. Let $n>5$ be an integer, and let F be the polynomial over \mathbb{F}_{11} :

$$
F\left(x_{1}, \ldots, x_{n}\right)=x_{1}^{5}+\left(x_{2}^{2}+x_{3}^{2}+\cdots+x_{n}^{2}\right)^{2}-7
$$

Then $\operatorname{deg} F=5$, rank $F=n$, but $F\left(x_{1}, \ldots, x_{n}\right)=0$ has no solutions in \mathbb{F}_{11}^{n}, so Rédei's conjecture is not true for degree 5 in general.

Proof. Consider the polynomial $f(x, y)=x^{5}+y^{2}-7$. Since in \mathbb{F}_{11} $x^{5} \in\{-1,0,1\}$ and $y^{2} \in\{0,1,3,4,5,9\}, x^{5}+y^{2}$ never equals 7 . So $f=0$ has no solutions, and hence nor has $F=0$.

It remains to show that $\operatorname{rank} F=n$, that is the partial derivates of F are linearly independent. Indeed, suppose that $\alpha_{1}, \alpha_{2}, \ldots, \alpha_{n} \in \mathbb{F}_{11}$ and $0=\sum_{i=1}^{n} \alpha_{i} \frac{\partial F}{\partial x_{i}}$. For a fixed j, we can regard $\sum_{i=1}^{n} \alpha_{i} \frac{\partial F}{\partial x_{i}}$ as a polynomial in x_{j} (over the extension field $\mathbb{F}_{p}\left(x_{1}, \ldots, x_{j-1}, x_{j+1}, \ldots, x_{n}\right)$), so it can be 0 for all x_{j} only if each coefficient of x_{j}^{l} is zero. Since

$$
\sum_{i=1}^{n} \alpha_{i} \frac{\partial F}{\partial x_{i}}=5 \alpha_{1} x_{1}^{4}+4\left(x_{2}^{2}+x_{3}^{2}+\cdots+x_{n}^{2}\right) \sum_{i=2}^{n} \alpha_{i} x_{i}
$$

the coefficient of x_{1}^{4} is $5 \alpha_{1}$, so $\alpha_{1}=0$. Thus we have

$$
0=4\left(x_{2}^{2}+x_{3}^{2}+\cdots+x_{n}^{2}\right) \sum_{i=2}^{n} \alpha_{i} x_{i}
$$

and $0=\sum_{i=2}^{n} \alpha_{i} x_{i}$. This can happen only if $\alpha_{i}=0(2 \leq i \leq n)$, which means that $\operatorname{rank} F=n$.

On the positive side, we prove the conjecture for symmetric cubic polynomials. We are only interested in reduced polynomials, so for the remaining part of this section we suppose that $p \geq 5$. We denote the r th elementary symmetric function in variables x_{1}, \ldots, x_{n} by σ_{r} for $1 \leq r \leq n$.

Proposition 2. If $F\left(x_{1}, \ldots, x_{n}\right)$ is a symmetric polynomial of degree 3 , then there exists a uniquely determined polynomial f in $\mathbb{F}_{p}\left[y_{1}, y_{2}, y_{3}\right]$ of the form

$$
f\left(y_{1}, y_{2}, y_{3}\right)=a y_{3}+y_{2}\left(b y_{1}+c\right)+g\left(y_{1}\right)
$$

with $a, b, c \in \mathbb{F}_{p}$ and $g\left(y_{1}\right) \in \mathbb{F}_{p}\left[y_{1}\right], \operatorname{deg} g \leq 3$, such that $F\left(x_{1}, \ldots, x_{n}\right)=$ $f\left(\sigma_{1}, \sigma_{2}, \sigma_{3}\right)$.

Proof. The fundamental theorem of symmetric polynomials yields that there exists a uniquely determined $f_{1}\left(y_{1}, \ldots, y_{n}\right) \in \mathbb{F}_{p}\left[y_{1}, \ldots, y_{n}\right]$, such that $F\left(x_{1}, \ldots, x_{n}\right)=f_{1}\left(\sigma_{1}, \ldots, \sigma_{n}\right)$. The algebraic independence of σ_{i} implies that if $y_{1}^{k_{1}} y_{2}^{k_{2}} \ldots y_{n}^{k_{n}}$ is a monomial of f_{1} with nonzero coefficient, then F has nonzero terms, with degree $\sum_{i=1}^{n} i k_{i}$. It follows from $\operatorname{deg} F=3$ that the only products with nonzero coefficients in f_{1} can be $y_{3}, y_{2} y_{1}, y_{2}$, $y_{1}^{3}, y_{1}^{2}, y_{1}, 1$, thus $f\left(y_{1}, y_{2}, y_{3}\right):=f_{1}\left(y_{1}, \ldots, y_{n}\right)$ completes the proof.

The main part of the next statement is a corollary of Hasse's Theorem (see [6] or HASSE's original paper [3]) on elliptic curves over finite fields.

Proposition 3. Let $p \geq 5$, and $h(x)$ be a polynomial in $\mathbb{F}_{p}[x]$, and suppose that $1 \leq \operatorname{deg} h \leq 3$. Then the equation $y^{2}=h(x)$ is always solvable in $\mathbb{F}_{p}{ }^{2}$.

Proof. If $\operatorname{deg} h \leq 2$, then $y^{2}-h(x)$ is a polynomial with rank 2 , so it has a root in $\mathbb{F}_{p}{ }^{2}$.

Suppose that $\operatorname{deg} h=3$. If $x_{0} \in \mathbb{F}_{p}$ is a root of h, then $\left(x_{0}, 0\right)$ is a solution of the above equation. If h has no roots in \mathbb{F}_{p}, then h is irreducible, and so h has three distinct roots (in $\mathbb{F}_{p^{3}}$), which means that $y^{2}=h(x)$ is an equation of a (nonsingular) elliptic curve over \mathbb{F}_{p}. Hasse's Theorem yields that for the number E of the projective points of the curve the inequality $|E-(p+1)| \leq 2 \sqrt{p}$ holds. Consequently $E \geq p+1-2 \sqrt{p}$, which is greater than one, if p is greater than 4 , and so the curve has at least 2 projective points. Since an elliptic curve with equation of type $y^{2}=h(x)$ has exactly one point at infinity, this proves the statement.

We apply the two propositions above to prove Rédei's conjecture for cubic symmetric polynomials.

Theorem 4. Let $p \geq 5$, and $F\left(x_{1}, \ldots, x_{n}\right)$ be a symmetric polynomial over \mathbb{F}_{p} of degree 3 with rank $F \geq 3$. Then $F\left(x_{1}, \ldots, x_{n}\right)=0$ has a solution in $\mathbb{F}_{p}{ }^{n}$.

Proof. It suffices to show the statement for $n=3$. Using Proposition 2 we obtain that $F\left(x_{1}, x_{2}, x_{3}\right)=a \sigma_{3}+\sigma_{2}\left(b \sigma_{1}+c\right)+g\left(\sigma_{1}\right)$. Finding a root for F is equivalent to find a solution (in $x_{1}, x_{2}, x_{3}, y_{1}, y_{2}, y_{3}$) for the following system of equations:

$$
\begin{array}{r}
a y_{3}+y_{2}\left(b y_{1}+c\right)+g\left(y_{1}\right)=0 \\
x_{1}+x_{2}+x_{3}=y_{1} \\
x_{1} x_{2}+x_{1} x_{3}+x_{2} x_{3}=y_{2} \\
x_{1} x_{2} x_{3}=y_{3} \tag{4}
\end{array}
$$

By (2), we eliminate first x_{1} from (3) and (4).

$$
\begin{gather*}
\left(y_{1}-\left(x_{2}+x_{3}\right)\right)\left(x_{2}+x_{3}\right)+x_{2} x_{3}=y_{2} \\
\left(y_{1}-\left(x_{2}+x_{3}\right)\right) x_{2} x_{3}=y_{3}
\end{gather*}
$$

From (1), $\left(3^{\prime}\right)$ and ($\left.4^{\prime}\right)$ we infer

$$
\begin{align*}
& a\left(y_{1}-\left(x_{2}+x_{3}\right)\right) x_{2} x_{3} \\
& \quad+\left(\left(y_{1}-\left(x_{2}+x_{3}\right)\right)\left(x_{2}+x_{3}\right)+x_{2} x_{3}\right)\left(b y_{1}+c\right)+g\left(y_{1}\right)=0 \tag{5}
\end{align*}
$$

It is obvious that (5) is solvable iff the initial system of equations has a solution. Now let $u=x_{2}+x_{3}, v=x_{2} x_{3}$ and $y=y_{1}$. With these variables (5) takes the form

$$
a(y-u) v+((y-u) u+v)(b y+c)+g(y)=0
$$

Thus we have

$$
\begin{equation*}
\frac{(y-u) u(b y+c)+g(y)}{(a+b) y-a u+c}=-v \tag{6}
\end{equation*}
$$

Since $\operatorname{rank} F=3$, at least one of a, b and c is nonzero, so $(a+b) y-a u+c$ is not identically 0 . If we can solve (6) then x_{2} and x_{3} have to be the two roots of the polynomial $x^{2}-u x+v$. So precisely those solutions of (6) are satisfactory for which $\left(\frac{u}{2}\right)^{2}-v=z^{2}$ is solvable. Together, we have the equation

$$
\begin{equation*}
\frac{(y-u) u(b y+c)+g(y)}{(a+b) y-a u+c}+\left(\frac{u}{2}\right)^{2}=z^{2} \tag{7}
\end{equation*}
$$

to solve. Let $d \in \mathbb{F}_{p}$ be 1 or 2 . If $a \neq 0$ then choose $u=\frac{1}{a}((a+b) y+c-d)$. If $a=0$, but $b \neq 0$ then choose $y=\frac{1}{b}(d-c)$. In both cases the denominator of (6) becomes d, so the left hand side of (7) is a polynomial h in
one indeterminate (y or u) of degree at most 3 . It is clear, that for $d=1$ or $d=2 h$ is not constant. If $a=b=0$, then choose $u=1$ or $u=0$ according as g is constant or not, respectively.

So finally we have an equation of the form $z^{2}=h(u)$, and application of Proposition 3 completes the proof.

3. Generalized diagonal equations

In this section we give some more positive examples. We consider polynomials $F\left(x_{1}, \ldots, x_{n}\right) \in \mathbb{F}_{p}\left[x_{1}, \ldots, x_{n}\right]$ of form

$$
F\left(x_{1}, \ldots, x_{n}\right)=\sum_{i=1}^{n} a_{i} x_{i}^{k}+g\left(x_{1}, \ldots, x_{n}\right)
$$

where p is a prime, \mathbb{F}_{p} is the field with p elements, $1 \leq k \leq p-1$, $a_{1}, \ldots, a_{n} \in \mathbb{F}_{p}, a_{1} a_{2} \ldots a_{n} \neq 0$ and $g\left(x_{1}, \ldots, x_{n}\right) \in \mathbb{F}_{p}\left[x_{1}, \ldots, x_{n}\right]$ is an arbitrary polynomial with $\operatorname{deg} g<k$. Then we call F a generalized diagonal polynomial. Our goal is to prove the following theorem.

Theorem 5. Suppose that $n \geq\left\lceil\frac{p-1}{\left\lfloor\frac{p-1}{k}\right\rfloor}\right\rceil$. Then $F\left(x_{1}, \ldots, x_{n}\right)=$ $\sum_{i=1}^{n} a_{i} x_{i}^{k}+g\left(x_{1}, \ldots, x_{n}\right)=0$ is solvable in $\mathbb{F}_{p}{ }^{n}$.

To compare this to Rédei's conjecture, we observe that if $k=1$ then $\operatorname{rank} F=1$, otherwise we have $\operatorname{rank} F=n$. Indeed, put

$$
F_{i}\left(x_{1}, \ldots, x_{n}\right):=\frac{\partial F}{\partial x_{i}}\left(x_{1}, \ldots, x_{n}\right)=k a_{i} x_{i}^{k-1}+\frac{\partial g}{\partial x_{i}}\left(x_{1}, \ldots, x_{n}\right)
$$

Suppose that there exist some α_{i} such that $\sum_{i=1}^{n} \alpha_{i} F_{i}\left(x_{1}, \ldots, x_{n}\right)=0$ holds for all $\left(x_{1}, \ldots, x_{n}\right) \in \mathbb{F}_{p}{ }^{n}$. Since $\operatorname{deg} \frac{\partial g}{\partial x_{i}}<k-1$, the coefficient of x_{j}^{k-1} is $\alpha_{j} k a_{j}$, hence $\alpha_{j}=0$ for each j, which means that the F_{i} are linearly independent, and $\operatorname{rank} F=n$.

Rédei's conjecture predicts that there is a solution $\left(x_{1}, \ldots, x_{n}\right) \in \mathbb{F}_{p}{ }^{n}$ for $F\left(x_{1}, \ldots, x_{n}\right)=0$, in case $n \geq k$. We cannot prove this in general, but if $k \mid p-1$, then this is an immediate consequence of Theorem 5. Carlitz proved this special case in [2] in a way different from ours. It could happen that for a fixed p and k there would be polynomials $g_{n}\left(x_{1}, \ldots, x_{n}\right)$, such
that $F_{n}\left(x_{1}, \ldots, x_{n}\right)=\sum_{i=1}^{n} a_{n, i} x_{i}^{k}+g_{n}\left(x_{1}, \ldots, x_{n}\right)$ and none of the F_{n}-s have solution, however big n we would choose. Theorem 5 shows that it is impossible by presenting an upper bound $\leq p-1$ for n.

Now recall a consequence of Alon's Combinatorial Nullstellensatz, that can be found in [1].

Theorem 6. Let $G\left(x_{1}, \ldots, x_{n}\right) \in \mathbb{F}_{p}\left[x_{1}, \ldots, x_{n}\right]$ be a polynomial, assume that $\operatorname{deg} G=\sum_{i=1}^{n} t_{i} \geq 1$, the coefficient of $\prod_{i=1}^{n} x_{i}^{t_{i}}$ is not 0 , and $0 \leq t_{i} \leq p-1$ for each i. Choose for all i an arbitrary $S_{i} \subseteq \mathbb{F}_{p}$ with $\left|S_{i}\right|=t_{i}+1$. Then G cannot be constant on $S_{1} \times S_{2} \times \cdots \times S_{n}$.

Theorem 6 allows a simple proof of Theorem 5.
Proof of Theorem 5. We can assume that $n=\left\lceil\frac{p-1}{\left\lfloor\frac{p-1}{k}\right\rfloor}\right\rceil$, because otherwise we can get a similar polynomial in $\left\lceil\frac{p-1}{\left\lfloor\frac{p-1}{k}\right\rfloor}\right\rceil$ variables by substituting zeros in place of some x_{i}. Let $G\left(x_{1}, \ldots, x_{n}\right)=F\left(x_{1}, \ldots, x_{n}\right)^{p-1}$. We intend to show, using Alon's Theorem, that G is not constant on $\mathbb{F}_{p}{ }^{n}$. Since the value of $G\left(x_{1}, \ldots, x_{n}\right)$ can be either 0 or 1 , this will imply that there exists a root of G. Let

$$
\begin{aligned}
t_{i} & =\left\lfloor\frac{p-1}{k}\right\rfloor k \quad \text { for } 1 \leq i \leq n-1 \quad \text { and } \\
t_{n} & =(p-1) k-(n-1)\left\lfloor\frac{p-1}{k}\right\rfloor k .
\end{aligned}
$$

It is obvious that $0 \leq t_{i} \leq p-1$ for all $1 \leq i \leq n-1$ and $\sum_{i=1}^{n} t_{i}=$ $(p-1) k=\operatorname{deg} G$. The following simple calculation

$$
\begin{aligned}
t_{n} & =(p-1) k-\left(\left\lfloor\frac{p-1}{\left\lfloor\frac{p-1}{k}\right\rfloor}\right\rfloor-1\right)\left\lfloor\frac{p-1}{k}\right\rfloor k \\
& \leq(p-1) k-\left(\frac{p-1}{\left\lfloor\frac{p-1}{k}\right\rfloor}-1\right)\left\lfloor\frac{p-1}{k}\right\rfloor k=\left\lfloor\frac{p-1}{k}\right\rfloor k \leq p-1 \quad \text { and } \\
t_{n} & >(p-1) k-\frac{p-1}{\left\lfloor\frac{p-1}{k}\right\rfloor}\left\lfloor\frac{p-1}{k}\right\rfloor k=0
\end{aligned}
$$

gives that t_{n} is also suitable.
In G there is a monomial $m=\prod_{i=1}^{n} x_{i}^{t_{i}}$ contributed by $\left(\sum_{i=1}^{k} a_{i} x_{i}^{k}\right)^{p-1}$,

$$
\frac{(p-1)!}{\prod_{i=1}^{n} \frac{t_{i}}{k}!} \prod_{i=1}^{n} a_{i}^{\frac{t_{i}}{k}} \neq 0
$$

The conditions of Theorem 6 are satisfied. G is not constant, hence there exists an $\left(x_{1}, \ldots, x_{n}\right) \in \mathbb{F}_{p}{ }^{n}$ such that $G\left(x_{1}, \ldots, x_{n}\right)=0$, and equivalently $F\left(x_{1}, \ldots, x_{n}\right)=0$. The theorem is proved.

If $k \mid p-1$ then the statement is also true in an arbitrary finite field.
Theorem 7. Assume that $q=p^{r}$ is a prime power. If k divides $p-1$, $n \geq k$ and $F\left(x_{1}, \ldots, x_{n}\right)=\sum_{i=1}^{n} x_{i}^{k}+g\left(x_{1}, \ldots, x_{n}\right)$ then the equation $F\left(x_{1}, \ldots, x_{n}\right)=0$ is solvable in $\mathbb{F}_{q}{ }^{n}$.

Proof. In the preceding proof we used only once that p is a prime, namely when we stated that the corresponding coefficient is not zero. Using $k \mid p-1$ we can easily verify that $\frac{(q-1)!}{((q-1) / k)!^{k}} \neq 0$ in \mathbb{F}_{q}. The largest power of p which divides the numerator is

$$
\sum_{i=1}^{\infty}\left\lfloor\frac{p^{r}-1}{p^{i}}\right\rfloor=\sum_{i=1}^{r-1}\left\lfloor p^{r-i}-\frac{1}{p^{i}}\right\rfloor=\sum_{i=1}^{r-1}\left(p^{r-i}-1\right)
$$

This is the same for the denominator. Indeed

$$
\begin{gathered}
k \sum_{i=1}^{\infty}\left\lfloor\frac{\frac{p^{r}-1}{k}}{p^{i}}\right\rfloor=k \sum_{i=1}^{r-1}\left\lfloor\frac{p^{r-i}-1}{k}+\frac{p^{i}-1}{p^{i} k}\right\rfloor \\
\quad=k \sum_{i=1}^{r-1} \frac{p^{r-i}-1}{k}=\sum_{i=1}^{r-1}\left(p^{r-i}-1\right) .
\end{gathered}
$$

The second to the last equality holds since $0<\frac{p^{i}-1}{p^{i} k}<1$ and $k \mid p-1$ implies that $\frac{p^{r-i}-1}{k}$ is an integer.

References

[1] N. Alon, Combinatorial Nullstellensatz, Combinatorics, Probability and Computing 8 (1-2) (1999), 7-29.
[2] L. Carlitz, Solvabillity of certain equations in a finite field, Quart. J. Math. (2) 7 (1956), 3-4.
[3] H. Hasse, Zur Theorie der abstrakten elliptischen Funktionenkörper, J. Reine Angew. Math. 175 (1936), 55-62, 69-88, 193-208.
[4] L. Rédei, Zur Theorie der Gleichungen in endlichen Körpern, Acta Univ. Szeged Sect. Sci. Math. 11 (1946), 63-70.
[5] L. Rónyai, On a conjecture of László Rédei, Acta Univ. Szeged Sect. Sci. Math. (to appear).
[6] J. H. Silverman, The Arithmetic of Elliptic Curves, Springer-Verlag, 1986, 131.

```
BÁLINT FELSZEGHY
DEPARTMENT OF ALGEBRA
BUDAPEST UNIVERSITY OF TECHNOLOGY AND ECONOMY
H-1111 BUDAPEST, P.O. BOX 91
HUNGARY
AND
HUNGARIAN ACADEMY OF SCIENCES
COMPUTER AND AUTOMATION RESEARCH INSTITUTE
HUNGARY
E-mail: fbalint@math.bme.hu
```

(Received May 5, 2003; revised April 21, 2005)

[^0]: Mathematics Subject Classification: 11T06, 11D79.
 Key words and phrases: finite fields, equations, solvability.
 Research supported in part by OTKA and NWO-OTKA grants, and the EU-COE Grant of MTA SZTAKI.

