Publ. Math. Debrecen 68/1-2 (2006), 91-96

A representation of $CD_w(K)$ -spaces

By ZAFER ERCAN (Ankara)

Abstract. We give a representation of the space $CD_w(K)$ which was defined by Abramovich and Wickstead. We apply this to reprove the Banach–Stone type theorem for $CD_w(K)$ spaces. By using this representations we note that for each compact Hausdorff space K without isolated points there exists compact Hausdorff space T which contains K as a closed subspace such that the Dedekind completion of C(T) is B(K).

For a given non-empty set K, $l_w^{\infty}(K)$ denotes the set all real valued bounded functions d on K satisfying $\{k \in K : |d(k)| \neq 0\}$ is countable. As usual, for a given topological space K, C(K) is the set of all continuous real valued functions on K. Let K be a compact Hausdorff space without isolated points. Then $CD_w(K) = C(K) \oplus l_w^{\infty}(K)$ is an AM space with order unit 1 under pointwise operations (see [1] and [3]).

For any bounded function $f: S \to \mathbb{R}$, the continuous extension of f to the Stone-Cech compactification βS (of discrete space S) will be denoted by f^* . Let K be a compact Hausdorff space and set

$$T_K = \{(k, r) : k \in K, r \in \beta K \ f(k) = f^*(r) \text{ for each } f \in C(K) \}.$$

Let \sim be defined by

$$(k_1, r_1) \sim (k_2, r_2) \iff f(k_1) + d^*(r_1) = f(k_2) + d^*(r_2)$$

Mathematics Subject Classification: 46E40, 46B42.

Key words and phrases: AM spaces, $CD_w(K)$ -spaces, isometric Riesz isomorphism.

Zafer Ercan

for each $f \in C(K)$, $d \in l_w^{\infty}(K)$. Then ~ defines an equivalence relation on T_K . For each $(k,r) \in T_K$, let $[(k,r)] = \{(t,s) \in T_K, (k,r) \sim (t,s)\}$, the equivalence class of (k,r). Define

$$[T_K] = \{ [(k,r)] : (k,r) \in T_K \}$$

and

$$A_T] = \left\{ [(k,r)] \in [T_K] : d^*(r) = 0 \text{ for each } d \in l_w^\infty(K) \right\}$$

Lemma 1. Let K be a compact Hausdorff space $[T_K]$ and $[A_K]$ be defined as above. Then

i) $[T_K]$ is a comapact Hausdorff space under the convergence

$$[(k_{\alpha}, r_{\alpha})] \rightarrow [(k, r)] \iff f(k_{\alpha}) \longrightarrow f(k) \text{ and } d^{*}(r_{\alpha}) \longrightarrow d^{*}(r)$$

for all $f \in C(K)$ and $d \in l_w^{\infty}(K)$.

ii) $[A_K]$ is a closed subspace of $[T_K]$.

PROOF. i) It is easy to check the the convergence defines a Hausdorff topology on $[T_K]$. Let $([(k_{\alpha}, r_{\alpha})])$ be a net in $[T_K]$. Choose a subnet $(k_{\alpha_{\beta}})$ of (k_{α}) and subnet $(r_{\alpha_{\beta}})$ of (r_{α}) with $k_{\alpha_{\beta}} \to k$ in K and $r_{\alpha_{\beta}} \to r$ in βK . It is clear that $f(k) = f^*(r)$ for each $f \in C(K)$ and $[(k_{\alpha_{\beta}}, r_{\alpha_{\beta}})] \to [(k, r)]$ in $[T_K]$. This shows that $[T_K]$ is compact.

ii) Let $([(k_{\alpha}, r_{\alpha})])$ be net in $[A_K]$ with $[(k_{\alpha}, r_{\alpha})] \longrightarrow [(k, r)]$ in $[T_K]$. Then $f(k_{\alpha}) \longrightarrow f(k) + d^*(k)$ for each $f \in C(K)$ and $d \in l_w^{\infty}(K)$. If we take d = 0 then we see that $f(k_{\alpha}) \to f(k)$ for each $f \in C(K)$. This shows that $d^*(r) = 0$ for each $d \in l_w^{\infty}(K)$. Hence $[(k, r)] \in [A_K]$, that is $[A_T]$ is closed.

Now we are ready to give a representation of $CD_w(K)$ as follows:

Theorem 2. Let K be a compact Hausdorff space without isolated points. Then

- i) $CD_w(K)$ is isometric Riesz isomorphic to $C([T_K])$.
- ii) C(K) is isometric Riesz isomorphic to $C([A_T])$.
- iii) K and $[A_T]$ are homeomorphic spaces.

92

PROOF. i) Let $L: CD_w(K) \to C([T_K])$ be defined by

$$L(f+d)([(k,r)]) = f(k) + d^*(r)$$

It is clear that L is linear. Let $f \in C(K)$, $d \in l_w^{\infty}(K)$ with $0 \leq f + d$ in $CD_w(K)$. Then $0 \leq (f + d)^*$ in $C(\beta K)$. Let $(k, r) \in T_K$. Then

$$L(f+d)([(k,r)]) = f(k) + d^*(r) = f^*(r) + d^*(r) = (f+d)^*(r) \ge 0$$

so L is positive and clearly $0 \le f + d$ in $CD_w(K)$ whenever $L(f + d) \ge 0$, since $(k, k) \in T_K$ for each $k \in K$. This shows L is bipositive, so it is Riesz isomorphism into $C([T_K])$. We also have that

$$\|f + d\| = \sup_{k \in K} |f(k) + d(k)| \le \sup_{[(k,r)] \in [T_K]} |f(k) + d^*(r)|$$
$$= \|L(f + d)\|$$

and

$$||L(f+d)|| \le ||L|| \, ||f+d|| = ||L(1)|| \, ||f+d|| = ||f+d||$$

so ||L(f)|| = ||f|| for each $f \in CD_w(K)$. Let $(k_1, r_1) \neq (k_2, r_2)$. Choose $f \in C(K)$ and $d \in l_w^{\infty}(K)$ with $f(k_1) + d^*(r_1) \neq f(k_2) + d^*(r_2)$, that is, $T(f+d)([(k,r)]) \neq T(f+d)([(k_2, r_2)])$. This shows that $L(CD_w(K))$ separates the points of $[T_K]$. Now it follows from the Stone–Weierstrass theorem that L is also onto since $L(CD_w(K))$ is closed in $C(T_K)$. This proves the first part of the theorem.

ii) Define

$$R: C(K) \to C([A_K]), \quad R(f)([(k,r)]) = f(k).$$

It is clear that R is isometry Riesz isomorphism and R(C(K)) separates the points of $[A_K]$. We apply the Stone–Weierstrass Theorem to complete the proof.

iii) Since $C([A_K])$ and C(K) are Riesz isomorphic, from Banach–Stone Theorem $[A_K]$ and K are homeomorphic spaces.

The proof of the following lemma is clear so we omit its proof.

Lemma 3. Let K and M be compact Hausdorff spaces without isolated points. If Q is an isometric Riesz isomorphism from $CD_w(K)$ onto $CD_w(M)$ then

$$Q(l_w^{\infty}(K)) = l_w^{\infty}(M).$$

Zafer Ercan

Theorem 4. Let K and M be compact Hausdorff spaces without isolated points. If $[T_K]$ and $[T_M]$ are homeomorphic then K and M are homeomorphic.

PROOF. Let $R: C([T_K]) \longrightarrow C([T_M])$ be an isometric Riesz isomorphism defined by $R(f) = f \circ \pi^{-1}$ where $\pi: [T_K] \longrightarrow [T_M]$ is a homeomorphism. For $S \in \{K, M\}$ define $R_S: CD_w(S) \longrightarrow C([T_S])$ by

$$R_S(f+d)([(k,r)]) = f(s) + d^*(r)$$

for each $f \in C(S)$, $d \in l_w^{\infty}(S)$. It is enough to show that $\pi([A_K]) \subset [A_M]$. Let $Q = R_K^{-1} \circ R^{-1} \circ R_M$. Q is isometric Riesz isomorphic from $CD_w(M)$ onto $CD_w(K)$. Let

$$\pi([(k,r)]) = [(m,s)], [(k,r)] \in [A_K].$$

Let $d \in l_w^{\infty}(M)$. Then from the previous lemma

$$Q(d) \in l_w^\infty(K)$$

and

$$0 = (Q(d))^{*}(r) = R_{K} \circ Q(d)([(k, r)])$$

= $R^{-1} \circ R_{M}(d)([(k, r)])$
= $R_{M}(d) \circ \pi([(k, r)])$
= $R_{M}(d)([(m, s)])$
= $d^{*}(s)$.

So, $[T_K]$ and $[T_M]$ are homeomorphic. From Theorem 2, K and M are homeomorphic.

We reprove the following theorem which is one of the main results of [2].

Theorem 5. Let K and M be compact Hausdorff spaces without isolated points. If $CD_w(K)$ and $CD_w(M)$ are isometric isomorphic spaces then K and M are homeomorphic.

94

PROOF. Let R be an isometry operator from $CD_w(K)$ onto $CD_w(M)$. Then it is easy to see that R(1) is a unimodular function, so $Q = T(1)^{-1}R$ is an isometry from $CD_w(K)$ onto $CD_w(M)$ and Q(1) = 1. From the following fact

$$||f - ||f||1|| \le ||f|| \iff 0 \le f$$

that Q is also a Riesz isomorphism. So $CD_w(K)$ and $CD_w(M)$ are isometric Riesz isomorphic spaces. Under the assumptions of Theorem 2, $C([T_K])$ and $C([T_M])$ are isometric Riesz isomorphic spaces. From the Banach Stone Theorem $[T_K]$ and $[T_M]$ are homeomorphic spaces. From the previous theorem K and M are homeomorphic spaces.

If K is Stone–Cech compactification of a discrete space M, then the Dedekind completion of C(K) (already is Dedekind complete) is B(M). The following theorem also provides many examples of infinity compact Hausdorff space A such that the Dedekind completion of C(A) is B(S) (= the set of all real valued bounded functions on S) with cardinal number of S is less than the cardinal number of A.

Theorem 6. For each compact Hausdorff space K without isolated points there exists another compact Hausdorff space K' which contains Kas a closed subspace where the Dedekind completion of C(K') is B(K)and the universal completion is \mathbb{R}^{K} .

PROOF. Let $K' = [T_K]$. It follows immediately from the [3] and Theorem 1 that the Dedekind completion of C(K') is B(K) so the universal completion of C(K') is \mathbb{R}^K .

Remark. Let α be an infinity cardinal and let K be a compact Hausdorff space such that the interior of any subset of K with cardinality at most α is empty. Let $l_{\alpha}^{\infty}(K)$ be the set of all bounded real valued functions f on K with the cardinality of support f at most α . Then

$$CD^{\infty}_{\alpha}(K) = C(K) \oplus l^{\infty}_{\alpha}(K)$$

is an AM-space with order unit 1. The above theorems can also be proved for $CD^{\infty}_{\alpha}(K)$ -spaces.

Z. Ercan : A representation of $CD_w(K)$ -spaces

References

- Y. A. ABRAMOVICH and A. W. WICKSTEAD, Remarkable classes of unitial AM-spaces, *Journal of Math. Anal. Appl.* 180 (1993), 398–411.
- [2] Y. A. ABRAMOVICH and A. W. WICKSTEAD, A Banach Stone Theorem for new class of Banach spaces, *Indiana University Mathematics Journal* 45 (1996), 709–720.
- [3] S. ALPAY and Z. ERCAN, $CD_0(K, E)$ and $CD_w(K, E)$ spaces as Banach lattices, *Positivity* **3** (2000), 213–225.

ZAFER ERCAN DEPARTMENT OF MATHEMATICS MIDDLE EAST TECHNICAL UNIVERSITY 06531 ANKARA TURKEY

E-mail: zercan@metu.edu.tr

(Received December 14, 2003; revised September 9, 2005)