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Integral inequalities for concave functions

By SORINA BARZA (Karlstad) and CONSTANTIN P. NICULESCU (Craiova)

Abstract. The aim of this paper is to extend to the context of several vari-
ables a number of results related to the Favard–Berwald inequalities.

1. Introduction

The aim of this paper is to prove extensions and refinements of some
integral inequalities for concave functions of several variables, that is, for
those real-valued functions f defined on convex subsets K of R

n such that

f((1 − λ)x + λy) ≥ (1 − λ)f(x) + λf(y)

for all x, y ∈ K and all λ ∈ [0, 1]. The following examples show that the
class of concave functions covers a large spectrum of important functions:

(1) (x1, . . . , xn) → (x1x2 . . . xn)1/n, on the positive orthant

R
n
+ = {(x1, . . . , xn) | x1, . . . , xn ≥ 0} ;

this example extends to e
1/k
k , where ek is the k-th elementary symmet-

ric function of n variables (1 ≤ k ≤ n),

e1 = x1 + x2 + . . . + xn
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e2 =
∑
i<j

xixj

. . .

en = x1x2 . . . xn.

(2) (x1, . . . , xn) → (xp
1 − xp

2 − . . . − xp
n)1/p, on the subset of R

n
+ where

xp
1 ≥ xp

2 + . . . + xp
n. Here p > 1.

(3) A → (detA)1/n, on the cone Sn
++ of all n×n dimensional positively de-

fined matrices. The same is true for the functions (det A/detAk)
1/(n−k),

where Ak denotes the principal submatrix of A formed by taking the
first k rows and k columns of A. Because every concave function is
also log-concave, we infer that log (detA) is also concave on Sn

++.

(4) A → min‖x‖=1〈Ax, x〉, on the the subset of all n × n dimensional
Hermitian matrices in Mn(R). Letting

λ↓
1(A) ≥ λ↓

2(A) ≥ . . . ≥ λ↓
n(A)

be the sequence of eigenvalues of A in decreasing order, this func-
tion associates to each matrix A its smallest eigenvalue λ↓

n(A). More
generally, all functions A → λ↓

k(A) + . . . + λ↓
n(A) are also concave.

For details, see the classical book of E. F. Beckenbach and R. Bell-

man [4]. While the one variable case has received a great deal of attention,
the literature concerning the peculiar properties of concave functions of
several variables is quite scarce. In fact, leaving out those results which
can be obtained by a change of sign from similar ones, for convex func-
tions, what remains counts few significant facts. The most prominent is
the following theorem due to L. Berwald [5]:

Theorem 1. Let K be a compact convex subset of R
n of positive

volume, and let f, f1, . . . , fm : K → R+ be continuous concave functions.

Then:

i) The function

t →
[(

t + n

n

)
1
|K|

∫
K

f t(x) dV

]1/t

is decreasing on (0,∞);
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ii) For every positive constants α1, . . . , αm the following inequality

holds

1
|K|

∫
K

fα1
1 (x) . . . fαm

m (x)dV ≤
(α1+n

n

)
. . .

(αm+n
n

)
(
α1+...+αm+n

n

) m∏
k=1


 1
|K|

∫
K

fαk
k (x) dV


 .

Here dV denotes the volume measure in R
n (that is, the Lebesgue

measure) and |K| denotes the volume of K.

Theorem 1 extends an earlier result due to J. Favard [7], which asserts
that

(
1

b − a

∫ b

a
fp(x)dx

)1/p

≤ 2
(p + 1)1/p

(
1

b − a

∫ b

a
f(x)dx

)

for all continuous concave functions f : [a, b] → R+ and all parameters
p > 1. This complements a well known consequence of the Rogers–Hölder
inequality,

1
b − a

∫ b

a
f(x)dx ≤

(
1

b − a

∫ b

a
fp(x)dx

)1/p

.

The limiting case (for p → ∞) of Favard’s inequality gives us

1
2

sup
x∈[a,b]

f(x) ≤ 1
b − a

∫ b

a
f(x)dx.

Theorem 1 extends this conclusion to all continuous concave functions
f : K → R+ defined on an arbitrary compact convex subset K ⊂ R

n of
positive volume:

1
n + 1

sup
x∈K

f(x) ≤ 1
|K|

∫
K

f(x) dV. (FB)

The inequality (FB) (called in what follows the Favard–Berwald in-
equality) has a very simple geometrical meaning: the volume of every
conoid of base K and height f(x) (for every x ∈ K) does not exceed the
volume of the cylindroid of base K, bounded above by the hypersurface
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v = f(u). From this geometrical interpretation one can infer immediately
the equality case in (FB).

Advanced Calculus allows us to complement (FB) using the barycenter
of K, that is,

xK =
1
|K|

∫
K

x dV.

In fact, as an easy consequence of Jensen’s inequality we get

1
|K|

∫
K

f(x) dV ≤ f(xK). (J)

The conjunction of (FB) and (J) is a powerful device even in the 1-dim-
ensional case. For example, they yields Stirling’s inequality,

(
1 +

1
1 + 2x

)(
1 +

1
x

)x

< e <

(
1 +

1
x

)x+1/2

,

which works for every x > 0.
In this paper the inequality (FB) will be the object of several gener-

alizations and refinements. In Section 2 we shall describe the connection
of (FB) and (J) with the topics of Choquet’s theory. In Section 3 we shall
prove an extension of (FB), while in Section 4 we shall show that a re-
verse counterpart of Berwald’s inequality (mentioned in Theorem 1) yields
a multiple (FB) inequality:

1
|K|

∫
K


 m∏

j=1

fj(x)


 dV ≥ C(n,m)

m∏
j=1

(
sup
x∈K

fj(x)
)

. (MFB)

Here C(n,m) is a positive constant that depends only on m and n. In the
case of functions of one real variable, the inequality (MFB) was previously
noticed by J. L. Brenner and H. Alzer [6], who in turn extended the
limiting case (for p, q → ∞) of a result due to D. C. Barnes [2]: If p, q ≥ 1
and the functions f and g are non-negative, concave and continuous on
[a, b], then

1
b − a

∫ b

a
f(x)g(x)dx ≥ (p + 1)1/p (q + 1)1/q

6
‖f‖p ‖g‖q .
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Of course, an inequality like (MFB) is not possible without certain
restrictions. However, a remarkable result due to C. Visser [23] offers
the alternative of passing to subsequences. More precisely, if (X,Σ, µ) is
a probability space and (fn)n is a sequence of random variables such that
0 ≤ fn ≤ 1 and

∫
X fndµ ≥ α > 0, then for every ε > 0 there exists a

subsequence, say (gn)n, such that

∫
X

gn1 . . . gnsdµ ≥ (1 − ε)αs

for every string of indices n1 < . . . < ns. See G. G. Lorentz [13] for a
nice combinatorial argument.

In the last section we discuss the generalization of our results to the
context of superharmonic functions.

2. The Favard–Berwald inequality within Choquet’s theory

In what follows we shall prove a number of estimates from above and
from below of the integral mean value

M(f) =
1
|K|

∫
K

f(x)dV,

of a concave function f defined on a compact convex subset K ⊂ R
n of

positive volume. For each such function f ,

inf
x∈K

f(x) = inf
x∈Ext K

f(x), (E)

where ExtK denotes the set of all extreme points of K. Recall that a point
x ∈ K is said to be an extreme point of K if it admits no representation
of the form

x = (1 − λ)u + λv with u, v ∈ K, u 
= v and λ ∈ (0, 1).

The equality (E) is a consequence of the celebrated Krein–Milman theorem,
which asserts that K is the closed convex hull of ExtK.
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By (FB), applied to the non-negative concave function f−infx∈K f(x),
we get

1
|K|

∫
K

f(x)dV ≥ 1
n + 1

sup
x∈K

f(x) +
n

n + 1
inf
x∈K

f(x),

so that, taking into account the relations (E) and (J), we arrive at the
following result:

Proposition 1. For every continuous concave function f defined on

a compact convex subset K ⊂ R
n of positive volume,

1
n + 1

sup
x∈K

f(x) +
n

n + 1
inf

x∈=ExtK
f(x) ≤ 1

|K|
∫

K
f(x)dV ≤ f(xK).

In the 1-dimensional case, when K = [a, b], the result above represents
an improvement of the classical Hermite–Hadamard inequality,

f(a) + f(b)
2

≤ 1
b − a

∫ b

a
f(x)dx ≤ f

(
a + b

2

)
. (HH)

See [17], [20], [21].
It is worth to notice that the left hand inequality in (HH) can be

strengthened as

f(a) + f(b)
2

≤ 1
2

[
f

(
a + b

2

)
+

f(a) + f(b)
2

]

≤ 1
b − a

∫ b

a
f(x)dx.

(LHH)

In fact, we may assume that f ≥ 0 (replacing f by f − infx∈[a,b] f(x)
if necessary), which allows us to interpret an equivalent form of (LHH),

(b − a) · f (a+b
2

)
2

+
b−a
2 · f(a)

2
+

b−a
2 · f(b)

2
≤
∫ b

a
f(x)dx,

in terms of areas: the sum of the areas of the triangles PAB, PMA and
PBN (with basis of lengths b − a, f(a) and respectively f(b)) does not
exceeds the area of the subgraph of f . See Figure 1.

Using the same geometrical idea, one can prove the following refine-
ment of Proposition 1:
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Figure 1. A polygonal approximation of the subgraph of a con-
cave function.

Theorem 2. Suppose that K ⊂ R
n is a compact convex set of posi-

tive volume, with piecewise smooth boundary. Then for every continuous

concave function f : K → R+,

1
n +1

· sup
y∈K

[
f(y)+

1
|K|

∫
∂K

d(y, Tx∂K)f(x)dS

]
≤ 1
|K|

∫
K

f(x)dV ≤ f(xK).

Here Tx∂K is the tangent hyperplane at x to the boundary of K and

dS is the (n − 1)-dimensional surface measure induced by the Lebesgue

measure.

Corollary 1. Under the assumptions of Theorem 2,

1
n +1

[
f(xK)+

1
|K|

∫
∂K

d(xK , Tx∂K)f(x)dS

]
≤ 1
|K|

∫
K

f(x)dV ≤f(xK).

The next example gives us an idea how good is the estimate offered
by Proposition 1.

Example 1. Let us consider the function f(x1, . . . , xn) = (x1 . . . xn)1/n,
when restricted to the domain

Dn = {x1, . . . , xn ≥ 0 | x1 + . . . + xn ≤ 1} .
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y

f(x)

dS

Figure 2. A hint for the surface integral appearing in Theorem 2.

By a well known formula due to Liouville,

∫
. . .

∫
Dn

ϕ(x1 + . . . + xn)xp1−1
1 . . . xpn−1

n dV

=
Γ(p1) . . . Γ(pn)

Γ(p1 + . . . + pn)

∫ 1

0
ϕ(u)up1+...+pn−1 du (LF)

(that works for all p1, . . . , pn > 0), we easily deduce that the volume of Dn

is 1/n! and
1

|Dn|
∫

Dn

f(x)dV =
Γn(1 + 1/n)

n + 1
.

Notice that limn→∞ Γn(1 + 1/n) = e−γ = 0.561 46 . . . .
Proposition 1 yields

1
n(n + 1)

<
1

|Dn|
∫

Dn

f(x)dV <
1

n + 1

which provides a rough estimate of the integral mean of f . Corollary 1
gives us a much better bound from below. For example, for n = 2, it leads
to

0.234 52 < M(f) =
Γ2(3/2)

3
= 0.261 80 <

1
3
.

While Theorem 1 has a finite dimensional character, the Hermite–
Hadamard inequality (HH) can be extended to the context of continuous
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concave functions defined on compact convex sets, not necessarily finite
dimensional. This touches the core of Choquet’s theory, a theory that
had at the origin the Krein–Milman theorem. We recall here the following
result due to G. Choquet:

Theorem 3 (G. Choquet; see [20] or [22] for details). Suppose

that K is a metrizable compact convex set (in a locally convex Hausdorff

space E). Then the set ExtK of all extreme points of K is a Gδ-subset of K

and for every Borel probability measure µ on K there exists a Borel prob-

ability measure λ on K supported by Ext K (that is, λ(K \ ExtK) = 0)
such that ∫

Ext K
f(x) dλ(x) ≤

∫
K

f(x) dµ(x) ≤ f(xµ) (Ch)

for every continuous concave function f : K → R.

For convex functions this formula should be reversed.

The point xµ represents the barycenter of K according to the mass
distribution given by µ, that is, the unique point xµ ∈ K such that

x′(xµ) =
∫

K
x′(x) dµ(x)

for every continuous linear functional x′ ∈ E′.

In the case of the function h(x1, . . . , xn) = (1+ x1)1/n . . . (1+ xn)1/n

(defined on Dn), Proposition 1 gives us

1 +
1

n(n + 1)
≤ 1

|Dn|
∫

Dn

h(x)dV ≤ 1 +
1

n + 1
,

which is weaker than the estimate offered by Theorem 3:

1 + n · 21/n

n + 1
≤ 1

|Dn|
∫

Dn

h(x)dV ≤ 1 +
1

n + 1
.

For n = 2, the mean value to be evaluated is

M(h) =
1

|Dn|
∫

Dn

h(x)dV

=
4
3

∫ 1

0

(
(2 − x)3/2 − 1

)√
1 + xdx = 1. 318 2.
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Corollary 1 yields the estimate

1. 217 5 < M(h) < 1. 333 3

while Theorem 3 yields

1. 276 1 < M(h) < 1. 333 3.

However, the estimates indicated by Theorem 3 are not always better
than those by Theorem 2 (or even by Corollary 1). See the function that
made the object of Example 1.

Theorem 3 has deep applications to many areas of Mathematics such
as Function Algebras, Invariant Measures and Potential Theory. The book
of R. R. Phelps [22] contains a good account on this matter.

The connection of Theorem 3 with the field of inequalities made the
object of several papers, including [18], [19], [21]. It is worth to notice that
many interesting inequalities relating weighted means represent averages
over the (m − 1)-dimensional simplex

∆m = {(u1, . . . , um) | u1, . . . , um ≥ 0, u1 + . . . + um = 1} ,

whose extreme points are the “corners” e1 = (1, 0, . . . , 0), . . . ,
em = (0, 0, . . . , 1).

An easy consequence of Theorem 3 is the following refinement of the
classical Jensen inequality:

Theorem 4. Suppose that f is a continuous convex function defined

on a compact convex subset K of a locally convex Hausdorff space E.

Then for every m-tuple (x1, . . . , xm) of elements of K and every Borel

probability measure µ on ∆m,

f

(
m∑

k=1

wkxk

)
≤
∫

∆m

f

(
m∑

k=1

ukxk

)
dµ ≤

m∑
k=1

wkf(xk). (HHJ)

Here (w1, . . . , wm) denotes the barycenter of ∆m with respect to µ.

Notice that every point of ∆m is the barycenter of a Borel probability

measure.

The above inequalities should be reversed if f is concave on K.
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Among the Borel probability measures on ∆m we recall here the
Dirichlet measure,

Γ(p1 + . . . + pm)
Γ(p1) . . . Γ(pm)

xp1−1
1 . . . x

pm−1−1
m−1 (1−x1 − . . .−xm−1)pm−1 dx1 . . . dxm−1.

In principle, it allows us to refine (via Theorem 4) all Jensen inequalities
associated to the concave functions listed in the Introduction, but we do
not know any practical consequence of this fact.

3. An extension of the Favard–Berwald inequality

A basic ingredient in our extension of the Favard–Berwald inequality
is Green’s first identity,∫

Ω
〈∇u,∇v〉 dV =

∫
∂Ω

u
∂v

∂n
dS −

∫
Ω

u∆v dV,

which should be regarded as a higher analogue of integration by parts. See
[8]. Actually, we shall need only a special case of it:

Lemma 1. Suppose that Ω is a bounded open subset of R
n with a

Lipschitz boundary, y is a point of Ω, and u ∈ C(Ω) ∩ C1(Ω). Then∫
Ω
〈∇u, x − y〉 dV = −n

∫
Ω

u dV +
∫

∂Ω
u

∂ϕ

∂n
dS,

where ϕ(x) = 1
2 ‖x − y‖2.

When Ω is a ball BR(a), the derivative ∂ϕ
∂n is non-negative at the

boundary of Ω. In fact,

∂ϕ

∂n
(x) =

〈
x − y,

x − a

‖x − a‖
〉

=
‖x − a‖2 − 〈y − a, x − a〉

R
≥ R2 − R ‖y − a‖

R
≥ 0.

This remark provides very useful in strengthening inequalities for concave
functions defined on balls.
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A convex body in R
n is any compact convex subset of R

nwith nonempty
interior and a Lipschitz boundary.

The Favard–Berwald inequality represents the case where α = 0 and
β = 1 of the following result, whose one-dimensional variant was previously
noticed by J. L. Brenner and H. Alzer [6]:

Theorem 5. If K is a convex body in R
n and f : K → R+ is a

continuous concave function, then for all numbers α and β with α ≥ 0 and

0 < β ≤ 1,

α + β

α + (n + 1)β
sup
x∈K

fβ(x)
∫

K
fα(x) dV ≤

∫
K

fα+β(x) dV. (GFB)

Proof. We may assume that f > 0 on IntK and f | ∂K = 0. This
needs to apply an approximation argument. Choosing a point p inside K

and a number ε∈ (0, 1), the compact convex set Kε={(1−ε)x+ εp | x∈K}
is an ε-approximation of K. For each x ∈ ∂K, we bend the graph of f

along the segment [(1−ε)x+εp, x] to get a continuous concave function fε

for which fε | ∂K = 0. Clearly, supx∈K fβ
ε (x) approximates supx∈K fβ(x)

and the two integrals which appear in (GFB) are approximated by the
corresponding integrals where f is replaced by fε. A second approximation
argument allows us to assume that f is also C1-differentiable.

Next step is to notice that fβ is a concave function. In fact, the
composition g ◦ h of any increasing concave function g with a concave
function h is also concave.

Under the above hypotheses on f and K, for all x, y ∈ K,

fβ(x) ≤ fβ(y) + βfβ−1(y)〈∇f(y), x − y〉

which yields

fα(y)fβ(x) ≤ fα+β(y) + βfα+β−1(y)〈∇f(y), x − y〉

= fα+β(y) +
β

α + β
〈∇fα+β(y), x − y〉.

By integrating over y and taking into account Lemma 1, we get

fβ(x)
∫

K
fα(y) dV ≤

∫
K

fα+β(y)dV − β

α + β

∫
K
〈∇fα+β(y), y − x〉dV
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≤
∫

K
fα+β(y)dV +

nβ

α + β

∫
K

fα+β(y)dV

and the conclusion is now clear. �

When K = B̄R(a) is a compact ball in R
n, the above argument yields

a better conclusion:

Corollary 2. If f : B̄R(a) → R+ is a continuous concave function,

then for all numbers α and β with α ≥ 0 and 0 < β ≤ 1 we have

sup
x∈B̄R(a)

(
fβ(x)

∫
B̄R(a)

fα(y)dV +
β

α + β

∫
SR(a)

fα +β(y)
〈

y−x,
y− a

‖y − a‖
〉

dS

)

≤ α + (n + 1)β
α + β

∫
B̄R(a)

fα+β(y) dV.

A problem which is left open is whether the constant (α + β)/(α +
(n + 1)β) in Theorem 5 is the best possible for each triplet (α, β, n). The
case of the following function

f : {x1, x2 ≥ 0 | x1 + x2 ≤ 1} → R, f(x1, x2) = 1 − x1 − x2,

shows that the answer is positive for the triplet (α, 1, 2). In fact, a simple
computation yields

∫
K

fα+β(x) dV/

(
sup
x∈K

fβ(x)
∫

K
fα(x) dV

)
=

(α + 1)(α + 2)
(α + β + 1)(α + β + 2)

and

(α + 1)(α + 2)
(α + β + 1)(α + β + 2)

− α + β

α + (2 + 1)β
=

(3α + β + 4)(1 − β)β
(α + 3β)(α + β + 1)(α + β + 2)

vanishes for β = 1 and approaches 0 as α → ∞ (whenever 0 < β ≤ 1).
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4. A reverse Berwald inequality

In this section we show that a reverse Berwald inequality holds true.
The main result is as follows:

Theorem 6. Let K be a convex body in R
n and let f1, . . . , fm : K →

R+ be continuous concave functions and let p1, . . . , pm be non-negative

numbers. Then(
n +

m∑
k=1

pk

)
|K|

∫
K

m∏
j=1

f
pj

j (x) dV

≥
m∑

k=1


pk

∫
K


∏

j �=k

f
pj

j (x)


 fpk−1

k (x)dV


∫

K
fk(y)dV.

Consequently, taking into account Theorem 1, there exists a positive con-

stant C = C(n,m, p1, . . . , pm) such that

C

m∏
k=1

(
1
|K|

∫
K

fpk
k dV

)
≤ 1

|K|
∫

K

(
m∏

k=1

fpk
k

)
dV. (RB)

Proof. As in the proof of Theorem 5 we may assume that all the
functions fk are differentiable and vanish at ∂K. Then

fk(x) − fk(y) ≥ 〈∇fk(x), x − y〉

for all x, y ∈ K and all k = 1, . . . ,m. By multiplying both sides by
pkf

pk−1
k (x) we get

pkf
pk
k (x) − pkf

pk−1
k (x)fk(y) ≥ 〈∇fpk

k (x), x − y〉
and a further multiplication by

∏
j �=k f

pj

j (x) leads us to

pk

m∏
j=1

f
pj

j (x) − pk


∏

j �=k

f
pj

j (x)


 fpk−1

k (x)fk(y)

≥

∏

j �=k

f
pj

j (x)


 〈∇fpk

k (x), x − y〉.
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Summing side by side these inequalities (over k) and integrating over x we
get

(
m∑

k=1

pk

)∫
K

m∏
j=1

f
pj

j (x) dV −
m∑

k=1


pk

∫
K


∏

j �=k

f
pj

j (x)


 fpk−1

k (x)dV


 fk(y)

≥
∫

K

〈
∇

 m∏

j=1

f
pj

j (x)


 , x − y

〉
dV = −n

∫
K


 m∏

j=1

f
pj

j (x)


 dV

and then integrating over y we arrive at the main inequality in the state-
ment of Theorem 6. The second assertion follows by mathematical induc-
tion. �

The following result gives us an estimate of the constant C which
appears in Theorem 6, in the particular case where all exponents pk are
equal to 1. It extends to the context of several variables some inequalities
first noticed by D. C. Barnes [2], S. Karlin and Z. Ziegler [14] and
J. L. Brenner and H. Alzer [6] in the case of functions defined on
intervals:

Corollary 3. Let K be a convex body in R
n and let f1, . . . , fm : K →

R+ be continuous concave functions. Then

C(n,m)
m∏

k=1

(
1
|K|

∫
K

fk dV

)
≤ 1

|K|
∫

K

(
m∏

k=1

fk

)
dV

where C(n, 1) = 1 and C(n,m) =
m!

(n + 2) . . . (n + m)
for m ≥ 2.

Proof. In fact, it suffices to deal with continuous concave functions
fk : K → R+, normalized by 1

|K|
∫
K fk dV = 1. Then the first formula

in Theorem 6 yields a recurrence procedure to compute the constants
C(n,m):

C(n, 1) = 1 and C(n,m) =
m

n + m
C(n,m − 1) for m ≥ 2. �

We have C(n, 2) = 2/(n + 2), which allows us to retrieve the case
p = q = 1 of Barnes’ result mentioned in Introduction. The value indicated
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in Corollary 3 for the constants C(n,m) is not the best possible. In the
case n = 1, this problem was solved by J. L. Brenner and H. Alzer [6].

An inspection of the argument given in Theorem 6 shows that a better
inequality works if the domain K is a closed ball B̄R(a) in R

n. In fact, in
this case

1
|B̄R(a)|

∫
B̄R(a)

(
m∏

k=1

fk(x)

)
dV ≥C(n,m)

m∏
k=1

(
1

|B̄R(a)|
∫

B̄R(a)
fk(x)dV

)

+
1

(n + m)
∣∣B̄R(a)

∣∣
∫

B̄R(a)

(∫
SR(a)

〈
x − y,

x − a

‖x − a‖
〉 m∏

k=1

fk(x) dS

)
dV.

For B = [0, 1] and m = 2, the last inequality becomes∫ 1

0
f1f2 dx ≥ 2

3

(∫ 1

0
f1 dx

)(∫ 1

0
f2 dx

)
+

f1(0)f2(0) + f1(1)f2(1)
6

,

which represents a remark made by C. Borell to Barnes’ inequality.
See [15].

Combining Corollary 3 with inequality (FB) we get:

Proposition 2. Under the assumptions of Corollary 3, for K a closed

ball in R
n, the following inequalities hold:

1
|K|

∫
K

(
m∏

k=1

fk

)
dV

≥ C(n,m)
(n + 1)m

m∏
k=1

(
sup
y∈K

[
fk(y) +

1
|K|

∫
∂K

d(y, Tx∂K)fk(x)dS

])

≥ C(n,m)
(n + 1)m

m∏
k=1

(
sup
x∈K

fk(x)
)

.

For certain strings of concave functions it is possible to get a reverse
Berwald inequality (RB) with a much better constant (even with C = 1).
In fact according to [12], Theorem D8, if f, ϕ : [0, 1] → R+ are continuous
and concave, and ϕ(x) = ϕ(1 − x), then∫ 1

0
ϕ(x)f(x)dx ≥

∫ 1

0
ϕ(x)dx

∫ 1

0
f(x)dx.
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Particularly, this happens if ϕ is sinp πx or xp(1 − x)p, for p ∈ (0, 1].
A similar phenomenon occurs in higher dimensions, for functions on balls.

Since the proof of Theorems 5 and 6 depends on Green’s formula,
their extension to the context of weighted Lebesgue measure is unclear.
The interested reader may find weighted inverse Roger–Hölder inequalities
(for functions of a real variable) in the papers of R. W. Barnard and J.

Wells [1], and L. Maligranda, J. E. Pečarić and L.-E. Persson [16].

5. Berwald type inequalities for superharmonic
functions

A natural higher dimensional generalization of the notion of concave
function is that of a superharmonic function. Given an open subset Ω of
R

n, a function u : Ω → R is said to be superharmonic if for every closed
ball B in Ω and every harmonic function h : B → R with u ≤ h on ∂B

we have u ≤ h on B. See L. Hörmander [11] for a nice account on this
subject.

We may wonder if the results in the preceding sections extend to the
framework of superharmonic functions. Simple examples such as

f(x, y) = 1 − (
x2 + y2

)α
,

for (x, y) in the unit ball of R
2 and α ∈ (0, 1), shows that the Favard–

Berwald inequality (FB) does not work. However the result of Theorem 1
has a partial extension which will be detailed here. For convenience we
shall restrict to the case of smooth functions u ∈ C(Ω)∩C2(Ω) defined on
convex bodies Ω in R

n.
Consider the Green kernel G(x, y) associated with −∆ on Ω. The

solution u ∈ C(Ω) ∩ C2(Ω) of the Dirichlet problem{
−∆u = f on Ω

u | ∂Ω = 0,
(5.1)

where f ∈ L1(Ω), and f ≥ 0, can be represented as

u(x) =
∫

Ω
G(x, y)f(y) dV. (5.2)
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By varying f , the set of all such functions u constitutes a subcone SH+
0 (Ω),

of the convex cone SH+(Ω) of all superharmonic functions which are non-
negative on Ω. The maximum principle for elliptic operators assures that
u ≥ 0 (and the same is true for G). See [8].

Theorem 7. Assume that 0 < r ≤ 1 ≤ s and

C = C(r, s;µ, ν)

= sup
y∈Ω

[(∫
Ω

G(x, y)sdµ(x)
)1/s / (∫

Ω
G(x, y)rdν(x)

)1/r
]

< ∞,

where µ and ν are two Borel probability measures on Ω. Then(∫
Ω

us(x)dµ(x)
)1/s

≤ C

(∫
Ω

ur(x)dν(x)
)1/r

(5.3)

for every u ∈ SH+
0 (Ω) and the constant C = C(r, s;µ, ν) is sharp.

If µ and ν are absolutely continuous with respect to the Lebesgue

measure on Ω, then the inequality (5.3) extends (by density) to the whole

cone SH+(Ω).

Proof. We use the representation formula (5.2). Then, by applying
the Rogers–Hölder inequality, the Fubini theorem and finally the Minkow-
ski inequality, we get∫

Ω
us(x)dµ(x) =

∫
Ω

us−1(x)
(∫

Ω
G(x, y)f(y)dV

)
dµ(x)

=
∫

Ω

(∫
Ω

G(x, y)us−1(x)dµ(x)
)

f(y) dV

≤
∫

Ω

(∫
Ω

G(x, y)sdµ(x)
)1/s

·
(∫

Ω
u(s−1)s′(x)dµ(x)

)1/s′

f(y) dV

≤ C

(∫
Ω

us(x)dµ(x)
)1/s′ ∫

Ω

(∫
Ω

G(x, y)rdν(x)
)1/r

f(y) dV

≤ C

(∫
Ω

us(x)dµ(x)
)1/s′ (∫

Ω

(∫
Ω

G(x, y)f(y)dV

)r

dν(x)
)1/r

≤ C

(∫
Ω

us(x)dµ(x)
)1/s′ (∫

Ω
ur(x)dν(x)

)1/r



Integral inequalities for concave functions 157

and the proof of (5.3) is done. The fact that C = C(r, s;µ, ν) is sharp
follows by considering the case of functions u (x) = G(x, y), for y ∈ Ω
arbitrarily fixed. �

Remark 1. The result of Theorem 7 is valid for every function u rep-
resentable via non-negative kernels by formulae of the type (5.2), with f

continuous and non-negative.

Remark 2. Suppose that 1 ≤ r ≤ s < ∞. Then

(∫
Ω

us(x)dµ(x)
)1/s

≤ C(1, s;µ, ν)
∫

Ω
u(x)dν(x)

≤ C(1, s;µ, ν)
(∫

Ω
ur(x)dν(x)

)1/r

for every u ∈ SH+
0 (Ω) (and even for every SH+(Ω), if µ and ν are ab-

solutely continuous with respect to the Lebesgue measure on Ω), but the
constant C(1, s;µ, ν) may not be the best possible.

The problem with Theorem 7 is that the Green kernel is known in
compact form only in few cases, for examples, for balls (but even then it
is difficult to be handled). For Ω = (a, b), the Green kernel is

G(x, y) =

{
(y − a)(b − x), if a ≤ y ≤ x ≤ b,

(x − a)(b − y), if a ≤ x ≤ y ≤ b

and thus for dµ(x) = dν(x) = dx/(b − a) we have

C(r, s; dx/(b − a), dx/(b − a))

= sup
a<y<b

[(∫
Ω

G(x, y)sdµ(x)
)1/s / (∫

Ω
G(x, y)rdν(x)

)1/r
]

= (r + 1)1/r / (s + 1)1/s .

This allows us to recover Berwald’s inequality in the range 0 < r ≤ 1 ≤
s < ∞, for continuous concave functions of a real variable. Even more,
the technique of Green’s kernel allows us to write down discrete Berwald
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inequalities for concave sequences a0, a1, . . . , an of non-negative numbers.
The property of being concave means

∆2ak = ak − 2ak+1 + ak+2 ≤ 0

for all k = 0, . . . , n − 2. Again, the main problem is that of best con-
stants. This is known in few cases, including the following one, which was
circulated in the 80’s:

1
n + 1

n∑
k=0

ak ≥
(

3 (n − 1)
4 (n + 1)

)1/2
(

1
n + 1

n∑
k=0

a2
k

)1/2

for all concave sequences a0, a1, . . . , an of non-negative numbers. See D. C.

Barnes [3] for a companion inequality involving two concave sequences.
Saddles to say, nothing is known in the several variable case.
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ematical Library, 2nd edn, 1952, Reprinted 1988.

[10] H. Heinig and L. Maligranda, Weighted inequalities for monotone and concave

functions, Studia Math. 116 (1995), 133–165.
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