Publ. Math. Debrecen 68/1-2 (2006), 161–170

Skew derivations with annihilating Engel conditions

By CHEN-LIAN CHUANG (Taipei), MING-CHU CHOU (Taipei) and CHENG-KAI LIU (Taipei)

Abstract. Let *R* be a noncommutative prime ring and $a \in R$. Suppose that δ is a σ -derivation of *R* such that $a[\delta(x), x]_k = 0$ for all $x \in R$, where *k* is a fixed positive integer. Then a = 0 or $\delta = 0$ except when $R = M_2(GF(2))$.

1. Introduction and results

Throughout this paper, R is always a prime ring with center Z(R). For $x, y \in R$, set $[x, y]_1 = [x, y] = xy - yx$ and $[x, y]_k = [[x, y]_{k-1}, y]$ for k > 1.

Let σ be an automorphism of R. A σ -derivation $\delta : R \to R$ is an additive map satisfying $\delta(rs) = \sigma(r)\delta(s) + \delta(r)s$ for all $r, s \in R$. For brevity, σ -derivations are generally called skew derivations. When σ is an identity map, σ -derivations are simply ordinary derivations. For $\sigma \neq 1$, the simplest example of σ -derivations is the $1 - \sigma$, where 1 denotes the identity map. Thus results of skew derivations are generalizations of both derivations and automorphisms.

For a subset S of R, a mapping $f : S \to R$ is called centralizing if $[f(x), x] \in Z(R)$ for all $x \in S$. In [19] POSNER showed that R must be commutative if it possesses a nonzero centralizing derivation on R. In [17] MAYNE proved the analogous result for nonidentity centralizing

Mathematics Subject Classification: 16W20, 16W25, 16W55.

Key words and phrases: skew derivation, automorphism, prime ring, generalized polynomial identity (GPI).

automorphisms. Many related generalizations have been obtained by a number of authors in the literature. See, for instance, [11]–[13], [18] and [21]. Recently, FILIPPIS [7] proved the following: Let R be a prime ring of characteristic different from 2, d a nonzero derivation and L a noncentral Lie ideal of R. For $a \in R$, if a[d(u), u] = 0 for all $u \in L$, then a = 0. That is, the left annihilator of the set $\{[d(u), u] \mid u \in L\}$ is zero. SHIUE [20] generalized this result by imposing the condition: $a[d(u), u]_k = 0$ for all $u \in L$, where k is a fixed positive integer. The main purpose of this article is to extend Shiue's result to skew derivations. Precisely, we will prove the following

Main Theorem. Let R be a noncommutative prime ring and $a \in R$. Suppose that δ is a σ -derivation of R such that $a[\delta(x), x]_k = 0$ for all $x \in R$, where k is a fixed positive integer. Then a = 0 or $\delta = 0$ except when $R = M_2(GF(2))$.

We give an example to show that the exceptional case indeed exists in the Main Theorem.

Example. Let $R = M_2(GF(2))$, $a = e_{11} + e_{12}$ and $\sigma(x) = gxg^{-1}$, where $g = e_{12} + e_{21}$. Let δ be a nonzero inner σ -derivation defined by $b = e_{21} + e_{22}$, that is $\delta(x) = \sigma(x)b - bx$. Then by a direct computation we have $a[[\delta(x), x], x] = 0$ for all $x \in R$.

2. Preliminaries

We denote by Q the two-sided Martindale quotient ring of R and by C the center of Q, which is called the extended centroid of R. Note that Q is also a prime ring and C is a field (see [1] for details).

A σ -derivation δ of Q is called inner if $\delta(x) = \sigma(x)b-bx$ for some $b \in Q$. Otherwise, it is said to be outer. An automorphism σ of Q is called inner if there exists an invertible $g \in Q$ such that $\sigma(x) = gxg^{-1}$ for all $x \in Q$. Otherwise, it is said to be outer. It is well-known that any automorphism of R can be uniquely extended to an automorphism of Q. Thus it is easy to verify that any σ -derivation of R can be uniquely extended to a σ derivation of Q. An automorphism (a σ -derivation respectively) of R is

called X-inner or X-outer according as its extension to Q is equal to an inner automorphism (or an inner σ -derivation respectively) of Q or not.

An automorphism σ of Q is called Frobenius if, in the case of char R=0, $\sigma(\alpha) = \alpha$ for all $\alpha \in C$ and if, in the case of char $R = p \ge 2$, $\sigma(\alpha) = \alpha^{p^n}$ for all $\alpha \in C$, where n is a fixed integer, positive, zero, or negative.

Theorem A. ([5]). Let R be a prime ring with an X-outer σ -derivation δ . Then any generalized polynomial identity of R in the form $\phi(x_i, \delta(x_i)) = 0$ yields the generalized polynomial identity $\phi(x_i, y_i) = 0$ of R, where x_i, y_i are distinct indeterminates.

Theorem B. ([3]). Let R be a prime ring with an X-outer automorphism σ . Suppose that R satisfies a generalized polynomial identity $\phi(x_i, \sigma(x_i)) = 0$, where $\phi(x_i, y_i)$ is a nontrivial generalized polynomial in distinct indeterminates x_i, y_i . Then R is a GPI-ring.

Theorem C. ([4]). Let R be a prime ring with an automorphism σ . Suppose that σ is not an Frobenius automorphism of R. Then any generalized polynomial identity of R in the form $\phi(x_i, \sigma(x_i)) = 0$ yields the generalized polynomial identity $\phi(x_i, y_i) = 0$ of R, where x_i, y_i are distinct indeterminates.

Theorem D. ([9, p. 140] or [1, Theorem 4.7.4]). Let R be a prime GPI-ring with an automorphism σ and extended centroid C. Suppose that $\sigma(\alpha) = \alpha$ for all $\alpha \in C$. Then σ is an X-inner automorphism.

Let V_D be a right vector space over a division ring D. An additive map $T \in \text{End}(V)$ is called semi-linear transformation if for some automorphism τ of D, $T(v\alpha) = (Tv)\tau(\alpha)$ for all $v \in V$ and $\alpha \in D$ (see [8, p. 44]).

Theorem E. ([8, p. 79]). Let R be a primitive ring with nonzero socle and $_{R}V$ a faithful irreducible left R-module. Let $D = \text{End}(_{R}V)$. Suppose that σ is an automorphism of R. Then there exists a semi-linear automorphism $T \in \text{End}(V)$ such that $\sigma(r) = TrT^{-1}$ for all $r \in R$.

Lemma F. ([15, Lemma 1.2]). Let R be a prime ring and $a_i, b_i, c_j, d_j \in RC$. Suppose that $\sum_{i=1}^m a_i x b_i + \sum_{j=1}^n c_j x d_j = 0$ for all $x \in R$. If a_1, \ldots, a_m are C-independent, then each b_i is a C-linear combination of d_1, \ldots, d_n .

C.-L. Chuang, M.-C. Chou and C.-K. Liu

3. Proof of the Main Theorem

We first give a well-known lemma which has appeared in various papers.

Lemma 1. Let V_D be a right vector space over a division ring D with $\dim V_D \geq 2$ and $T \in \operatorname{End}(V)$ such that v and Tv are D-dependent for every $v \in V$. Then there exists $\lambda \in D$ such that $Tv = v\lambda$ for all $v \in V$.

PROOF. For each $v \in V$, we write $Tv = v\lambda_v$, where $\lambda_v \in D$. Pick a nonzero $v \in V$. For $w \in V$, if w and v are D-independent, then $(w+v)\lambda_{w+v} = T(w+v) = T(w) + T(v) = w\lambda_w + v\lambda_v$. So $w(\lambda_{w+v} - \lambda_w) = v(\lambda_v - \lambda_{w+v})$, and $\lambda_{w+v} = \lambda_w = \lambda_v$. If w and v are D-dependent, there exists $u \in V$ such that u and v are D-independent. So u and w are also D-independent. Then $\lambda_u = \lambda_v = \lambda_w$. We have done.

The following lemma plays a key role in our proof.

Lemma 2. Let R be a dense subring of the ring of linear transformations of a vector space V_D over a division ring D, containing nonzero linear transformations of finite rank, where dim $V_D \ge 2$. Let σ be an automorphism of R. Suppose that $a, b \in R$ and $\delta(x) = \sigma(x)b - bx$ satisfy $a[\delta(x), x]_k = 0$ for all $x \in R$, where k is a fixed positive integer. Then a = 0 or $\delta = 0$ unless dim $V_D = 2$ and D = GF(2), the Galois field of two elements.

PROOF. We assume $a \neq 0$ and $\delta \neq 0$ and proceed to show that D = GF(2). Since R is a primitive ring with nonzero socle [8, p. 75], by Theorem E, there exists a semi-linear automorphism $T \in \text{End}(V)$ such that $\sigma(x) = TxT^{-1}$ for all $x \in R$. Hence $a[TxT^{-1}b - bx, x]_k = 0$ for all $x \in R$.

We claim that there exists $v_0 \in V$ such that v_0 and $T^{-1}bv_0$ are *D*independent: If not, then v and $T^{-1}bv$ are *D*-dependent for all $v \in V$. That is, for each $v \in V$ there exists $\lambda_v \in D$ such that $T^{-1}bv = v\lambda_v$. By Lemma 1, there exists $\lambda \in D$ such that $T^{-1}bv = v\lambda$ for all $v \in V$. Then

$$\delta(x)v = (TxT^{-1}b - bx)v = T(xv\lambda) - bxv = T((xv)\lambda) - bxv$$
$$= T(T^{-1}bxv) - bxv = 0,$$

for all $x \in R$ and $v \in V$. Since V is faithful, we have $\delta = 0$, a contradiction. So v_0 and $T^{-1}bv_0$ are D-independent for some $v_0 \in V$.

First, assume dim $V_D \geq 3$. Choose $w \in V$ such that w is *D*-independent of v_0 and $T^{-1}bv_0$. By the density of *R*, there exists $x \in R$ such that

$$xv_0 = 0, \quad xT^{-1}bv_0 = T^{-1}w, \quad xw = w.$$

This implies that

$$0 = a[TxT^{-1}b - bx, x]_k v_0 = a \sum_{i=0}^k (-1)^i \binom{k}{i} x^i (TxT^{-1}b - bx) x^{k-i} v_0$$

= $(-1)^k a x^k T x T^{-1} b v_0 = (-1)^k a x^k w = (-1)^k a w$

and so aw = 0. Since $w + v_0$ is also *D*-independent of v_0 and $T^{-1}bv_0$, using $w + v_0$ instead of w, we also have $a(w + v_0) = 0$. Similarly, $a(w + T^{-1}bv_0) = 0$. So $av_0 = 0$ and $aT^{-1}bv_0 = 0$. Then aV = 0, a contradiction.

Second, assume dim $V_D = 2$. Then v_0 and $T^{-1}bv_0$ form a basis of V_D . We claim that there exists $w \in V$ such that $w \notin v_0 D$ and $Tw \notin v_0 D$. Suppose on the contrary, for each $w \in V$, either $w \in v_0 D$ or $w \in (T^{-1}v_0)D$. Then $V = v_0 D \cup (T^{-1}v_0)D$. As a vector space cannot be the union of two proper subspace, we must have dim $V_D = 1$, a contradiction. For such w with $w \notin v_0 D$ and $w \notin (T^{-1}v_0)D$, write $w = v_0 \alpha + (T^{-1}bv_0)\beta$ and $Tw = v_0 \gamma + (T^{-1}bv_0)\ell$, where $\alpha, \beta, \gamma, \ell \in D$ and $\beta, \ell \neq 0$. By the density of R, there exists $x \in R$ such that $xv_0 = 0, xT^{-1}bv_0 = w$. This implies that $xw = x(v_0\alpha + (T^{-1}bv_0)\beta) = x(T^{-1}bv_0)\beta = w\beta$ and

$$xTw = x(v_0\gamma + (T^{-1}bv_0)\ell) = w\ell.$$

Then

$$0 = a[TxT^{-1}b - bx, x]_k v_0 = (-1)^k ax^k TxT^{-1}bv_0$$

= $(-1)^k ax^k Tw = (-1)^k ax^{k-1}w\ell = (-1)^k aw\beta^{k-1}\ell$

and so aw = 0. If there exists a nonzero $\lambda \in D$ such that $T(w+v_0\lambda) \notin v_0D$, using $w+v_0\lambda$ instead of w, we have $a(w+v_0\lambda) = av_0\lambda = 0$ and so $av_0 = 0$. Since w and v_0 are D-independent and dim $V_D = 2$, we have aV = 0, a contradiction. Thus $T(w+v_0\lambda) \in v_0D$ for all nonzero $\lambda \in D$. Suppose that |D| > 2. Choose two nonzero λ_1 and λ_2 in D with $\lambda_1 \neq \lambda_2$ such that $T(w + v_0\lambda_1) \in v_0D$ and $T(w + v_0\lambda_2) \in v_0D$. Then $T(v_0(\lambda_1 - \lambda_2)) = T(w + v_0\lambda_1) - T(w + v_0\lambda_2) \in v_0D$ and using semi-linearity of T, we have $T(v_0) \in v_0D$ and then $T(w) \in v_0D$, a contradiction. The proof is now complete.

PROOF OF MAIN THEOREM. We may assume $a \neq 0$ and $\delta \neq 0$ and proceed to show that $R = M_2(GF(2))$. Suppose that δ is X-outer. By Theorem A, we have $a[y, x]_k = 0$ for all $x, y \in R$. Pick $b \in R \setminus C$ and replace y by xb - bx. Then $a[d(x), x]_k = 0$ for all $x \in R$, where d(x) = xb - bx is a nonzero X-inner derivation. Hence we may assume that δ is X-inner and write $\delta(x) = \sigma(x)b - bx$ for some $b \in Q$.

Case 1. Suppose that σ is X-inner. Thus there exists an invertible element $g \in Q$ such that $\sigma(x) = gxg^{-1}$. Note that $g^{-1}b \notin C$. If $g^{-1}b \in C$, then $\delta(x) = gxg^{-1}b - bx = g(xg^{-1}b - g^{-1}bx) = g[x,g^{-1}b] = 0$, a contradiction. With this, we can see easily that

$$f(x) = a \left[\sigma(x)b - bx, x \right]_k = a \sum_{i=0}^{k-1} (-1)^i \binom{k}{i} x^i (gxg^{-1}b - bx) x^{k-i} + (-1)^k ax^k (-b)x + (-1)^k ax^k gxg^{-1}b$$

is a nontrivial GPI of R, since $g^{-1}b \notin C$ and $a \neq 0$. By [2], f(x) is also a GPI of Q. Denote by F the algebraic closure of C or C according as Cis infinite or finite respectively. By a standard argument [14, Proposition], f(x) is also a GPI of $Q \otimes_C F$. Since $Q \otimes_C F$ is a centrally closed prime F-algebra [6, Theorem 3.5], by replacing R, C with $Q \otimes_C F$ and F respectively, we may assume that R is centrally closed and the field C is either algebraically closed or finite. By MARTINDALE's Theorem [16, Theorem 3], R is a primitive ring having nonzero socle with the field C as its associated division ring. By [8, p. 75] R is isomorphic to a dense subring of the ring of linear transformations of a vector space V over C, containing nonzero linear transformations of finite rank. Since R is not commutative, we may assume dim_C $V \geq 2$. By Lemma 2, we are done in this case.

Case 2. Suppose that σ is X-outer. We first claim that if $a \neq 0$ and $b \neq 0$, then R is a GPI-ring: Observe that $a[yb - bx, x]_k = a[yb, x]_k - a[bx, x]_k$ is a nontrivial generalized polynomial. Thus $a[\sigma(x)b - bx, x]_k = 0$

is a nontrivial GPI of R. So R is a GPI-ring follows from Theorem B. By [4], $a[\sigma(x)b - bx, x]_k = 0$ is also a GPI of Q. By MARTINDALE's Theorem [16], Q is a primitive ring having nonzero socle and its associated division ring D is finite-dimensional over C. Hence Q is isomorphic to a dense subring of the ring of linear transformations of a vector space V over D, containing nonzero linear transformations of finite rank. If dim $V_D \ge 2$, by Lemma 2, we are done. So we may assume dim $V_D = 1$, that is, $Q \cong D$. If Cis finite, then dim $D_C < \infty$ implies that D is also finite. Thus D is a field by Wedderburn's Theorem [8, p. 183] on finite division rings. In particular, Q is commutative, a contradiction. Hence from now on we assume C is infinite and Q is a division ring. By assumption $a \neq 0$, we have $[\sigma(x)b - bx, x]_k = 0$ for all $x \in R$.

Subcase 1. Suppose that σ is not Frobenius. Then by Theorem C, $[yb - bx, x]_k = 0$ for all $x, y \in R$. Taking y = x, we have $[b, x]_{k+1} = 0$ for all $x \in R$. By [12], it follows that $b \in C$. Then $0 = [yb - bx, x]_k = b[y - x, x]_k = b[y, x]_k$. Thus $0 = [y, x]_k$ for all $x, y \in R$. So $y \in C$ for all $y \in R$ by [12] again. Hence R is commutative, a contradiction.

Subcase 2. Suppose that σ is Frobenius. For simplicity, we denote x^{σ} by $\sigma(x)$. We may assume that char R = p > 0. Otherwise, if char R = 0, then the Frobenius automorphism σ fixes C and hence must be X-inner by Theorem D, a contradiction. So for all $\alpha \in C$, $\alpha^{\sigma} = \alpha^{p^n}$ for some nonzero fixed integer n. Also we may assume $n \neq 0$ by Theorem D. By [4], $[\sigma(x)b - bx, x]_k = 0$ for all $x \in Q$. Replacing x by $x + \alpha$, where $0 \neq \alpha \in C$, we have

$$0 = [(x + \alpha)^{\sigma} b - b(x + \alpha), x + \alpha]_{k} = [(x^{\sigma} + \alpha^{p^{n}})b - b(x + \alpha), x]_{k}$$

= $[b, x]_{k}\alpha^{p^{n}} - [b, x]_{k}\alpha + [x^{\sigma}b - bx, x]_{k} = [b, x]_{k}\alpha^{p^{n}} - [b, x]_{k}\alpha.$

If $[b, x]_k \neq 0$ for some $x \in Q$, we see that $\alpha^{p^n} = \alpha$ for all $\alpha \in C$. So C is finite, a contradiction. Hence $[b, x]_k = 0$ for all $x \in Q$. By [12], we have $b \in C$ and then $0 = [x^{\sigma}b - bx, x]_k = b[x^{\sigma} - x, x]_k = b[x^{\sigma}, x]_k$. Thus $0 = [x^{\sigma}, x]_k$. Since there exists integer m such that $p^m > k$, we have that $[x^{\sigma}, x]_{p^m} = 0$. It follows that $[x^{\sigma}, x^{p^m}] = 0$ for all $x \in Q$, since char R = p > 0.

Suppose first $n \ge 1$. For $\alpha \in C$ and $y \in Q$, replacing x by $x + \alpha y$, we have $0 = \left[(x + \alpha y)^{\sigma}, (x + \alpha y)^{p^m} \right] = \left[x^{\sigma} + \alpha^{p^n} y^{\sigma}, \sum_{i=0}^{p^m} \phi_i(x, y) \alpha^i \right]$, where

 $\phi_i(x, y)$ denotes the sum of all monic monomials with x-degree $p^m - i$ and y-degree *i* for $0 \le i \le p^m$. In particular, $\phi_1(x, y) = x^{p^m - 1}y + x^{p^m - 2}yx + \cdots + yx^{p^m - 1} = \sum_{i=0}^{p^m - 1} x^{(p^m - 1 - i)}yx^i$. As *C* is infinite, it follows from the Vander Monde determinant argument that $[x^{\sigma}, \phi_1(x, y)] = 0$. Hence

$$x^{\sigma} \sum_{i=0}^{p^{m}-1} x^{(p^{m}-1-i)} y x^{i} - \sum_{i=0}^{p^{m}-1} x^{(p^{m}-1-i)} y x^{i} x^{\sigma} = 0$$
(1)

for all $x, y \in Q$. Given $x \in Q$, if $\phi_1(x, y)$ is an identity of Q, that is, $\phi_1(x, y) = 0$ for all $y \in Q$, then $0 = [x, \phi_1(x, y)] = [x, \sum_{i=0}^{p^m-1} x^{(p^m-1-i)}yx^i] = [x^{p^m}, y]$ for all $y \in Q$. Thus $x^{p^m} \in C$. If $x^{p^m} \in C$ for all $x \in R$, then Q is a field by [8, p. 185, Theorem 3] and R is commutative, a contradiction. We may thus choose $x \in Q$ such that $x^{p^m} \notin C$ and for this $x, \phi_1(x, y)$ is not an identity in y. Let $1 \leq l \leq p^m - 1$ be the maximal integer such that $1, x, \ldots, x^l$ are C-independent. Write $\phi_1(x, y) = \sum_{i=0}^l x^i y g_i(x)$, where $g_i(x)$ are polynomials in $1, x, \ldots, x^l$ over C. Note that $g_s(x) \neq 0$ for some s, since $\phi_1(x, y)$ is not an identity in y. Rewrite (1) in a form that

$$x^{\sigma} \sum_{i=0}^{p^{m-1}} x^{(p^{m-1}-i)} y x^{i} - \sum_{i=0}^{l} x^{i} y g_{i}(x) x^{\sigma} = 0,$$

for all $y \in Q$. By Lemma F, $g_i(x)x^{\sigma}$ are *C*-linear combinations of $1, x, \ldots, x^{p^m-1}$ for $i = 0, \ldots, l$. Since $g_s(x) \neq 0$ for some *s* and *Q* is a division ring, we also have x^{σ} is the *C*-linear combination of $\{g_s(x)^{-1}x^i\}$. Hence $[x^{\sigma}, x] = 0$. For any $y \in Q$, there exist infinite many $\beta \in C$ such that $(x + \beta y)^{p^m} \notin C$. Thus $0 = [(x + \beta y)^{\sigma}, x + \beta y] = [x^{\sigma} + \beta^{p^n}y^{\sigma}, x + \beta y]$. By the Vander Monde determinant argument again, $[x^{\sigma}, y] = 0$ for all $y \in Q$. Then $x^{\sigma} \in C$. Hence $x \in C$ and so $x^{p^m} \in C$, a contradiction.

Suppose next that $n \leq -1$. Recall that $[x^{\sigma}, x^{p^m}] = 0$ for all $x \in Q$. Similarly, replacing x by $x + \alpha y$, we have $0 = [(x + \alpha y)^{\sigma}, (x + \alpha y)^{p^m}] = [x^{\sigma} + \alpha^{p^n} y^{\sigma}, \sum_{i=0}^{p^m} \phi_i(x, y) \alpha^i]$, where $\phi_i(x, y)$ denotes the sum of all monic monomials with x-degree $p^m - i$ and y-degree i for $0 \leq i \leq p^m$. Then $[\alpha^{p^{-n}} x^{\sigma} + y^{\sigma}, \sum_{i=0}^{p^m} \phi_i(x, y) \alpha^i] = 0$. As C is infinite, it follows from the Vander Monde determinant argument that $[y^{\sigma}, x^{p^m}] = 0$ for all $x, y \in R$. Thus Q is commutative by [12], a contradiction. The proof is now complete.

References

- K. I. BEIDAR, W. S. MARTINDALE 3rd and A. V. MIKHALEV, Rings with Generalized Identities, Marcel Dekker, Inc., New York – Basel – Hong Kong, 1996.
- [2] C. L. CHUANG, GPIs having coefficients in Utumi quotient rings, Proc. Amer. Math. Soc. 103 (1988), 723–728.
- C. L. CHUANG, Differential identities with automorphisms and antiautomorphisms I, J. Algebra 149 (1992), 371–404.
- [4] C. L. CHUANG, Differential identities with automorphisms and antiautomorphisms II, J. Algebra 160 (1993), 292–335.
- [5] C. L. CHUANG and T. K. LEE, Identities with a single skew derivation, (to appear in J. Algebra).
- [6] T. S. ERICKSON, W. S. MARTINDALE 3rd and J. M. OSBORN, Prime nonassociative algebras, *Pacific J. Math.* 60 (1975), 49–63.
- [7] V. DE FILIPPIS, On the annihilator of commutators with derivation in prime rings, Rend. Del Circ. Math. Di Palermo, Serie II 49 (2000), 343–352.
- [8] N. JACOBSON, Structure of rings, Vol. 37, Amer. Math. Soc., Colloq. Pub., Rhode Island, 1964.
- [9] V. K. KHARCHENKO, Generalized identities with automorphisms, Algebra i Logika 14(2) (1975), 215–237; Engl. Transl.: Algebra and Logic 14(2) (1975), 132–148.
- [10] V. K. KHARCHENKO and A. Z. POPOV, Skew derivation of prime rings, Comm. Algebra 20 (1992), 3321–3345.
- [11] C. LANSKI, An Engel condition with derivation, Proc. Amer. Math. Soc. 118 (1993), 75–80.
- [12] C. LANSKI, An Engel condition with derivation for left ideals, Proc. Amer. Math. Soc. 125 (1997), 339–345.
- [13] P. H. LEE and T. K. LEE, Lie ideals of prime rings with derivations, Bull. Inst. Math. Acad. Sinica 11 (1983), 75–80.
- [14] P. H. LEE and T. L. WONG, Derivations cocentralizing Lie ideals, Bull. Inst. Math. Acad. Sinica 23 (1995), 1–5.
- [15] P. H. LEE, T. L. WONG, J. S. LIN and R. J. WANG, Commuting traces of multiadditive mappings, J. Algebra 193 (1997), 709–723.
- [16] W. S. MARTINDALE III, Prime rings satisfying a generalized polynomial identity, J. Algebra 12 (1969), 576–584.
- [17] J. H. MAYNE, Centralizing automorphisms of prime rings, Canad. Math. Bull. 19 (1976), 113–115.
- [18] J. H. MAYNE, Centralizing mappings of prime rings, Canad. Math. Bull. 27 (1984), 122–126.
- [19] E. C. POSNER, Derivations in prime rings, Proc. Amer. Math. Soc. 8 (1957), 1093–1100.
- [20] W. K. SHIUE, Annihilators of derivations with Engel conditions, Rend. Del Circ. Math. Di Palermo, Serie II, 52 (2003), 505–509.

- 170 C.-L. Chuang *et al.* : Skew derivations with annihilating...
- [21] J. VUKMAN, Commuting and centralizing mappings in prime rings, Proc. Amer. Math. Soc. 109 (1990), 47–52.

CHEN-LIAN CHUANG DEPARTMENT OF MATHEMATICS NATIONAL TAIWAN UNIVERSITY TAIPEI 106 TAIWAN

E-mail: chuang@math.ntu.edu.tw

MING-CHU CHOU DEPARTMENT OF MATHEMATICS NATIONAL TAIWAN UNIVERSITY TAIPEI 106 TAIWAN

E-mail: bella@vot2.url.com.tw

CHENG-KAI LIU DEPARTMENT OF MATHEMATICS NATIONAL TAIWAN UNIVERSITY TAIPEI 106 TAIWAN

E-mail: ckliu@math.ntu.edu.tw

(Received May 27, 2004; revised December 15, 2004)