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Some properties of generalized higher-order convexity

By SZYMON WA̧SOWICZ (Bielsko-Bia�la)

Abstract. The generalized divided differences are introduced. They are ap-
plied to investigate some properties characterizing generalized higher-order con-
vexity. Among others some support-type property is proved.

1. Introduction

Let I ⊂ R be an interval and let ω1, . . . , ωn : I → R be continuous
functions. For n distinct points xi1 , . . . , xin ∈ I we define

Vn(xi1 , . . . , xin) =

∣∣∣∣∣∣∣

ω1(xi1) . . . ω1(xin)
...

. . .
...

ωn(xi1) . . . ωn(xin)

∣∣∣∣∣∣∣
. (1)

A system ωωω = (ω1, . . . , ωn) is called a Chebyshev system on I if Vn(x1, . . . ,

xn) �= 0 for any x1, . . . , xn ∈ I such that x1 < · · · < xn.

Example 1. The systems ωωω = (1, x, . . . , xn−1), ωωω = (eα1x, . . . , eαnx)
(for any distinct α1, . . . , αn ∈ R) are Chebyshev systems on any interval.

Remark 1. By the Cramer Rule a linear span of a Chebyshev system
ωωω = (ω1, . . . , ωn) is an n-parameter family on I, i.e. for any n distinct
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points x1, . . . , xn ∈ I and for any y1, . . . , yn ∈ R there exists exactly one
function ω = c1ω1 + · · · + cnωn (where c1, . . . , cn ∈ R are the constants)
such that ω(xi) = yi, i = 1, . . . , n. Such families were considered by
Tornheim [11] (see also Beckenbach [1], Beckenbach and Bing [2]).

If ωωω = (ω1, . . . , ωn) is a Chebyshev system on I then by continuity
of ω1, . . . , ωn the determinant Vn(x1, . . . , xn) does not change the sign in
a connected set

{
(x1, . . . , xn) ∈ I : x1 < · · · < xn

}
. Then a Chebyshev sys-

tem ωωω is called positive (negative) if Vn(x1, . . . , xn)> 0 (Vn(x1, . . . , xn)< 0)
for all x1, . . . , xn ∈ I such that x1 < · · · < xn. Notice that the Chebyshev
systems of Example 1 are positive.

Remark 2. Throughout the paper we will often assume that ωωω =
(ω1, . . . , ωn) is such a Chebyshev system on I that (ω1, . . . , ωn−1) is also
a Chebyshev system on I. This assumption is not too restrictive. Many
Chebyshev systems have this property, e.g. the systems mentioned in Ex-
ample 1. However (cos x, sin x) is a Chebyshev system on (0, π) but (cos x)
is not a Chebyshev system on (0, π).

We will also assume that ωωω = (ω1, . . . , ωn) is a positive Chebyshev sys-
tem on I such that (ω1, . . . , ωn−1) is also a positive Chebyshev system on I.
The systems of Example 1 satisfy this assumption as well. But there are
Chebyshev systems which do not have this property. Notice that (−1,−x)
is a positive Chebyshev system on any interval but (−1) is a negative one.

For a function f : I → R and for n+1 distinct points x1, . . . , xn+1 ∈ I

we define

Dn(x1, . . . , xn+1; f) =

∣∣∣∣∣∣∣∣∣

ω1(x1) . . . ω1(xn+1)
...

. . .
...

ωn(x1) . . . ωn(xn+1)
f(x1) . . . f(xn+1)

∣∣∣∣∣∣∣∣∣

. (2)

Let ωωω = (ω1, . . . , ωn) be a Chebyshev system on I. A function f : I → R

is called ωωω-n-convex if for any n distinct points x1, . . . , xn ∈ I such that
x1 < · · · < xn the (uniquely determined) function ω = c1ω1 + · · · + cnωn

such that ω(xi) = f(xi), i = 1, . . . , n, fulfils the conditions

(−1)n
(
f(x) − ω(x)

) ≥ 0 for x ≤ x1,

(−1)n+i
(
f(x) − ω(x)

) ≥ 0 for xi ≤ x ≤ xi+1, i = 1, . . . , n − 1,
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f(x) − ω(x) ≥ 0 for x ≥ xn

(see [4], [11]; for ωωω-n-convexity with respect to ωωω = (1, x, . . . , xn−1) see
also [6], [10]).

Observe that for n = 2 and ωωω = (1, x) ωωω-2-convexity reduces to con-
vexity in the usual sense. Indeed, f is ωωω-2-convex if and only if for any
x1, x2 ∈ I such that x1 < x2 there exists an affine function ω(x) = c1+c2x,
x ∈ I, such that ω(xi) = f(xi), i = 1, 2 and f ≤ ω on [x1, x2] (and ω ≤ f

on I \ [x1, x2]). This statement is evidently equivalent to convexity of f .
For ωωω = (1, x, . . . , xn−1) ωωω-n-convex functions are convex functions of

higher orders (see [6], [8], [9], [10], [11]).
Bessenyei and Páles obtained the following result ([4, Theorem 2

(i) ⇔ (iii)]).

Theorem A. Let ωωω = (ω1, . . . , ωn) be a positive Chebyshev system

on I. A function f : I → R is ωωω-n-convex if and only if

Dn(x1, . . . , xn+1; f) ≥ 0

for all x1, . . . , xn+1 ∈ I such that x1 < · · · < xn+1.

Nörlund [7] considered the divided differences given by the following
recurrence: [x1, f ] = f(x1) and

[x1, . . . , xn+1; f ] =
[x2, . . . , xn+1; f ] − [x1, . . . , xn; f ]

xn+1 − x1
(3)

(cf. also [6], [9], [10]). Now we are going to generalize this notion.
Let ωωω = (ω1, . . . , ωn) be a Chebyshev system on I such that (ω1, . . . ,

ωn−1) is also a Chebyshev system on I. For n distinct points x1, . . . , xn ∈ I

we introduce the generalized divided differences by the formula

[x1, . . . , xn; f ]ωωω =
Dn−1(x1, . . . , xn; f)

Vn(x1, . . . , xn)
. (4)

For ωωω = (1, x, . . . , xn−1) the generalized divided difference [x1, . . . , xn; f ]ωωω
is equal to [x1, . . . , xn; f ] given by (3) (see [6], [9]).

Remark 3. The generalized divided differences are symmetric. Namely,
if (xi1 , . . . , xin) is a permutation of (x1, . . . , xn) then

[x1, . . . , xn; f ]ωωω = [xi1 , . . . , xin ; f ]ωωω. (5)
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This is a simple consequence of the properties of determinants. To get
[xi1 , . . . , xin ; f ]ωωω we need to make the same inversions both in the numer-
ator and in the denominator of [x1, . . . , xn; f ]ωωω.

In this paper we prove in Theorem 1 an analogue of (3) for general-
ized divided differences, which seems to be very convenient to investigate
the properties of ωωω-n-convexity. Using Theorem 1 we prove in Theorem 2
that a function f is ωωω-n-convex if and only if its generalized divided dif-
ferences are nondecreasing. Another characterization of ωωω-n-convexity is
some support-type property proved in Theorem 3. The classical support
theorems state that for a real function f and for some element x0 of its
domain under suitable assumptions there exists a function g (the sup-
porting function) such that g(x0) = f(x0) and g ≤ f . Our Theorem 3
is not the classical support theorem. The graph of obtained “supporting
function” meets the graph of the “supported function” f at n − 1 points
x1 < · · · < xn−1 and passing through x1, . . . , xn−2 it changes successively
the side of the graph of f being the classical supporting function in the
subinterval (xn−2,+∞)∩I. It is worth mentioning that this result extends
the recent result of Bessenyei and Páles ([3, Theorem 4 (i) ⇔ (iii)]) con-
cerning ωωω-2-convexity.

2. Some property of generalized divided differences

We start with the generalization of (3). This is an equation (6) below
which seems to be very convenient to investigate the properties of ωωω-n-
convexity. It is easy to observe that for ωωω = (1, x, . . . , xn−1) (6) reduces
to (3).

Theorem 1. Let n ≥ 2, let ωωω = (ω1, . . . , ωn) be a Chebyshev system

on I such that (ω1, . . . , ωn−1) is also a Chebyshev system on I and let

f : I → R. Then

[x2, . . . , xn+1; f ]ωωω − [x1, . . . , xn; f ]ωωω

=
Dn(x1, . . . , xn+1; f)Vn−1(x2, . . . , xn)

Vn(x2, . . . , xn+1)Vn(x1, . . . , xn)
(6)

for any n + 1 distinct points x1, . . . , xn+1 ∈ I.
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Proof. Since (ω1, . . . , ωn−1) is a Chebyshev system then by Remark 1
we can choose the constants c1, . . . , cn−1 such that for ω = c1ω1 + · · · +
cn−1ωn−1 we have ω(xk) = f(xk), k = 2, . . . , n. Then for f∗ = f − ω we
obtain

f∗(x2) = · · · = f∗(xn) = 0. (7)

By the elementary properties of determinants we get [x2, . . . , xn+1;ω]ωωω = 0
and

ωωω = [x2, . . . , xn+1;ω + f∗]ωωω

= [x2, . . . , xn+1; f∗]ωωω.

Similarly [x1, . . . , xn; f ]ωωω = [x1, . . . , xn; f∗]ωωω and Dn(x1, . . . , xn+1; f) =
Dn(x1, . . . , xn+1; f∗). Then replacing in (6) f by ω + f∗ and using the
previous three equations we can see that it is enough to prove (6) only
for f∗.

Expanding Dn(x1, . . . , xn+1; f∗) by its last row and using (7) we obtain

Dn(x1, . . . , xn+1; f∗)

= (−1)nf∗(x1)Vn(x2, . . . , xn+1) + f∗(xn+1)Vn(x1, . . . , xn). (8)

By (4) we have

[x2, . . . , xn+1; f∗]ωωω − [x1, . . . , xn; f∗]ωωω

=
Dn−1(x2, . . . , xn+1; f∗)

Vn(x2, . . . , xn+1)
− Dn−1(x1, . . . , xn; f∗)

Vn(x1, . . . , xn)
.

Expanding the numerators by the last rows and using (7) we get

[x2, . . . , xn+1; f∗]ωωω − [x1, . . . , xn; f∗]ωωω

=
f∗(xn+1)Vn−1(x2, . . . , xn)

Vn(x2, . . . , xn+1)
− (−1)n+1f∗(x1)Vn−1(x2, . . . , xn)

Vn(x1, . . . , xn)

Then by (8) we obtain (6) for f∗ which finishes the proof. �
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3. Some characterizations of ωωω-n-convexity

Corollary 1. Let n ≥ 2, let ωωω = (ω1, . . . , ωn) be a positive Chebyshev

system on I such that (ω1, . . . , ωn−1) is also a positive Chebyshev system

on I. A function f : I → R is ωωω-n-convex if and only if

[x2, . . . , xn+1; f ]ωωω ≥ [x1, . . . , xn; f ]ωωω

for all x1, . . . , xn+1 ∈ I such that x1 < · · · < xn+1.

Proof. Since ωωω and (ω1, . . . , ωn−1) are positive Chebyshev systems
then the determinants Vn(x1, . . . , xn), Vn(x2, . . . , xn+1) and Vn−1(x2, . . . ,

xn) are positive for all x1, . . . , xn+1 ∈ I such that x1 < · · · < xn+1. Then
Corollary 1 follows immediately by (6) and by Theorem A. �

Remark 4. Corollary 1 generalizes the equivalence (i) ⇔ (ii) of Theo-
rem 4 of [3]. We obtain it using Corollary 1 for n = 2.

Next we state that a function f is ωωω-n-convex if and only if its gener-
alized divided differences are nondecreasing. For n = 2 and ωωω = (1, x) we
obtain the very well known characterization of the usual convexity: a func-
tion f is convex if and only if its difference quotients are nondecreasing.
By I0 we denote the interior of I.

Theorem 2. Let n ≥ 2, let ωωω = (ω1, . . . , ωn) be a positive Chebyshev

system on I such that (ω1, . . . , ωn−1) is also a positive Chebyshev system

on I. A function f : I → R is ωωω-n-convex if and only if for all x1, . . . , xn−1 ∈
I0 such that x1 < · · · < xn−1 the function x 
→ [x1, . . . , xn−1, x; f ]ωωω is

nondecreasing on the set I \ {x1, . . . , xn−1}.
Proof. Take x1, . . . , xn−1 ∈ I0 such that x1 < · · · < xn−1 and x, y ∈

I \ {x1, . . . , xn−1} such that x < y. The points x1, . . . , xn−1 divide the set
I \ {x1, . . . , xn−1} into n subintervals I1 = (−∞, x1) ∩ I, Is = (xs−1, xs),
s = 2, . . . , n− 1 (if n≥ 3) and In = (xn−1,+∞) ∩ I. Let x ∈ Ij, y ∈ Ik.
Since x < y then j ≤ k. There are j − 1 inversions of x needed to trans-
form the ordered system of n points (x1, . . . , x, . . . , xn−1) to the system
(x, x1, . . . , xn−1). Then

Vn(x, x1, . . . , xn−1) = (−1)j−1Vn(x1, . . . , x, . . . , xn−1). (9)
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We need n− k inversions of y to transform the ordered system of n points
(x1, . . . , y, . . . , xn−1) to the system (x1, . . . , xn−1, y). Then

Vn(x1, . . . , xn−1, y) = (−1)n−kVn(x1, . . . , y, . . . , xn−1). (10)

Observe that starting from the ordered system of n+1 points (x1, . . . , x, . . . ,

y, . . . , xn−1) after j− 1 inversions of x and n− k inversions of y we get the
system (x, x1, . . . , xn−1, y). Then

Dn(x, x1, . . ., xn−1, y; f)

= (−1)j−1+n−kDn(x1, . . . , x, . . . , y, . . . , xn−1; f). (11)

By (9), (10), (11), Remark 3 and Theorem 1 we obtain

[x1, . . . ,xn−1, y; f ]ωωω − [x1, . . . , xn−1, x; f ]ωωω

= [x1, . . . , xn−1, y; f ]ωωω − [x, x1, . . . , xn−1; f ]ωωω

=
Dn(x, x1, . . . , xn−1, y; f)Vn−1(x1, . . . , xn−1)

Vn(x1, . . . , xn−1, y)Vn(x, x1, . . . , xn−1)

=
Dn(x1, . . . , x, . . . , y, . . . , xn−1)Vn−1(x1, . . . , xn−1)
Vn(x1, . . . , y, . . . , xn−1)Vn(x1, . . . , x, . . . , xn−1)

.

Observe that the determinants Vn−1(x1, . . . , xn−1), Vn(x1, . . . , y, . . . , xn−1)
and Vn(x1, . . . , x, . . . , xn−1) are positive since ωωω and (ω1, . . . , ωn−1) are
positive Chebyshev systems and the systems of points involved are ordered.
Then Theorem 2 follows immediately by Theorem A. �

4. Support-type property of ωωω-n-convexity

In this section we are going to prove some kind of support theorem.
In the classical approach the graph of the supporting function lies below
(precisely not above) the graph of the supported function and it meets
this graph (at least) at one point. For a discussion of our approach see
the Introduction. The “support” property proved in Theorem 3 character-
izes ωωω-n-convexity. Let us mention that Ger [5, Corollary 2] proved the
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classical support theorem for convex functions of an odd order n. Here
the supporting function is the polynomial of an order at most n. The
classical polynomial support property is no longer valid for convex func-
tions of an even order (see [5, Remark 1]). Our Theorem 3 (applied for
ωωω = (1, x, . . . , xn−1)) characterizes the convexity of both odd and even
order. We start with the following technical result.

Lemma 1. Let n ≥ 2, let ωωω = (ω1, . . . , ωn) be a Chebyshev system

on I such that (ω1, . . . , ωn−1) is also a Chebyshev system on I, let cn ∈ R

and let f : I → R. Then for any n − 1 distinct points x1, . . . , xn−1 ∈ I0

there exist the constants c1, . . . , cn−1 ∈ R such that for ω = c1ω1 + · · · +
cn−1ωn−1 + cnωn we have ω(xk) = f(xk), k = 1, . . . , n − 1 and

f(x) − ω(x) =
Dn−1(x1, . . . , xn−1, x; f) − cnVn(x1, . . . , xn−1, x)

Vn−1(x1, . . . , xn−1)

for all x ∈ I \ {x1, . . . , xn−1}.
Proof. Fix cn ∈ R. Since (ω1, . . . , ωn−1) is a Chebyshev system, the

constants c1, . . . , cn−1 are (uniquely) determined by the system of linear
equations

c1ω1(xk) + · · · + cn−1ωn−1(xk) = f(xk) − cnωn(xk), k = 1, . . . , n − 1.

Then for ω = c1ω1 + · · · + cn−1ωn−1 + cnωn we have

ω(xk) = f(xk), k = 1, . . . , n − 1. (12)

Let x ∈ I \{x1, . . . , xn−1}. Expanding the determinant Dn−1(x1, . . . , xn−1,

x; f − ω) by the last row and using (12) we get

Dn−1(x1, . . . , xn−1, x; f − ω) =
(
f(x) − ω(x)

)
Vn−1(x1, . . . , xn−1). (13)

Since Dn−1(x1, . . . , xn−1, x;ωk) = 0, k = 1, . . . , n − 1, then

Dn−1(x1, . . . , xn−1, x;ω)

=
n−1∑

k=1

ckDn−1(x1, . . . , xn−1, x;ωk) + cnDn−1(x1, . . . , xn−1, x;ωn)
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= cnVn(x1, . . . , xn−1, x). (14)

Then using (13) and (14) we obtain

f(x) − ω(x) =
Dn−1(x1, . . . , xn−1, x; f − ω)

Vn−1(x1, . . . , xn−1)

=
Dn−1(x1, . . . , xn−1, x; f) − Dn−1(x1, . . . , xn−1, x;ω)

Vn−1(x1, . . . , xn−1)

=
Dn−1(x1, . . . , xn−1, x; f) − cnVn(x1, . . . , xn−1, x)

Vn−1(x1, . . . , xn−1)
,

which was to be proved. �

Next we prove the support-type result mentioned at the beginning of
this section.

Theorem 3. Let n ≥ 2, let ωωω = (ω1, . . . , ωn) be a positive Cheby-

shev system on I such that (ω1, . . . , ωn−1) is also a positive Chebyshev

system on I. A function f : I → R is ωωω-n-convex if and only if for all

x1, . . . , xn−1 ∈ I0 such that x1 < · · · < xn−1 there exist the constants

c1, . . . , cn ∈ R such that for ω = c1ω1 + · · ·+ cnωn we have ω(xk) = f(xk),
k = 1, . . . , n − 1 and

(−1)n−1
(
f(x) − ω(x)

) ≤ 0 for x ∈ I such that x < x1, (15)

(−1)n−k
(
f(x) − ω(x)

) ≤ 0 for xk−1 < x < xk, k = 2, . . . , n − 1, (16)

f(x) − ω(x) ≥ 0 for x ∈ I such that x > xn−1 (17)

(for n = 2 there are no inequalities (16)).

Proof. Assume that f is ωωω-n-convex and fix x1, . . . , xn−1 ∈ I0 such
that x1 < · · · < xn−1. By Theorem 2 the function x 
→ [x1, . . . , xn−1, x; f ]ωωω
is nondecreasing on the set I \ {x1, . . . , xn−1}. Then we define

cn = lim
x→x+

n−1

[x1, . . . , xn−1, x; f ]ωωω. (18)

By Lemma 1 there exist the constants c1, . . . , cn−1 ∈ R such that for
ω = c1ω1 + · · ·+ cn−1ωn−1 + cnωn we have ω(xk) = f(xk), k = 1, . . . , n−1.
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Then to prove the necessity we have to check the inequalities (15), (16)
and (17). We start with (17). Fix x ∈ I such that x > xn−1. Theorem 2
and (18) yield cn ≤ [x1, . . . , xn−1, x; f ]ωωω. Then by (4) we have

cn ≤ Dn−1(x1, . . . , xn−1, x; f)
Vn(x1, . . . , xn−1, x)

.

Since x1 < · · · < xn−1 < x, then Vn(x1, . . . , xn−1, x) > 0, whence

Dn−1(x1, . . . , xn−1, x; f) − cnVn(x1, . . . , xn−1, x) ≥ 0.

Dividing both sides of this inequality by Vn−1(x1, . . . , xn−1) > 0 and using
Lemma 1 we obtain f(x) − ω(x) ≥ 0.

Let us now check (15) and (16). Similarly as in the proof of Theorem 2
denote I1 = (−∞, x1) ∩ I and (if n ≥ 3) Ik = (xk−1, xk), k = 2, . . . , n − 1.
Let x ∈ Ik for some k ∈ {1, . . . , n − 1}. Fix y ∈ I such that y > xn−1.
By Theorem 2 we get [x1, . . . , xn−1, x; f ]ωωω ≤ [x1, . . . , xn−1, y; f ]ωωω. Tending
with y to x+

n−1 and using (18) we obtain [x1, . . . , xn−1, x; f ]ωωω ≤ cn, whence
by (4)

Dn−1(x1, . . . , xn−1, x; f)
Vn(x1, . . . , xn−1, x)

≤ cn. (19)

We need n− k inversions of x to transform the ordered system of n points
(x1, . . . , x, . . . , xn−1) to the system (x1, . . . , xn−1, x). Then

0 < Vn(x1, . . . , x, . . . , xn−1) = (−1)n−kVn(x1, . . . , xn−1, x).

Hence multiplying both sides of an inequality (19) by (−1)n−kVn(x1, . . . ,

xn−1, x) we get

(−1)n−k
(
Dn−1(x1, . . . , xn−1, x; f) − cnVn(x1, . . . , xn−1, x)

) ≤ 0

and dividing both sides of this inequality by Vn−1(x1, . . . , xn−1) > 0 we
obtain (15) (for k = 1) and (16) (for k = 2, . . . , n − 1 if n ≥ 3).

Now we prove the sufficiency. Fix x1, . . . , xn+1 ∈ I such that x1 <

x2 < · · · < xn < xn+1. By Theorem A it is enough to check that
Dn(x1, . . . , xn+1; f) ≥ 0. By the assumption there exist the constants
c1, . . . , cn ∈ R such that for ω = c1ω1 + · · ·+ cnωn we have ω(xk) = f(xk),
k = 2, . . . , n and

f(xn+1) − ω(xn+1) ≥ 0, (20)
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(−1)n
(
f(x1) − ω(x1)

) ≥ 0. (21)

Finally we expand the determinant Dn(x1, . . . , xn+1; f − ω) by the last
row. By the definition of ω its elements f(xk) − ω(xk) (k = 2, . . . , n) are
equal to zero. Since ωωω is a positive Chebyshev system, the determinants
Vn(x2, . . . , xn+1), Vn(x1, . . . , xn) are positive. Since Dn(x1, . . . , xn+1;ω) =
0 then by (20), (21) we infer

Dn(x1, . . . , xn+1; f) = Dn(x1, . . . , xn+1; f − ω)

= (−1)n+2
(
f(x1) − ω(x1)

)
Vn(x2, . . . , xn+1)

+
(
f(xn+1) − ω(xn+1)

)
Vn(x1, . . . , xn) ≥ 0,

which finishes the proof. �

Using Theorem 3 for n = 2 we obtain immediately the following result
(see [3, Theorem 4 (i) ⇔ (iii)]).

Corollary 2. Let ωωω = (ω1, ω2) be a positive Chebyshev system on I

such that ω1 > 0. A function f : I → R is ωωω-2-convex if and only if for any

x1 ∈ I0 there exist the constants c1, c2 ∈ R such that for ω = c1ω1 + c2ω2

we have ω(x1) = f(x1) and ω ≤ f on I.

Remark 5. By Corollary 2 Theorem 3 reduces for n = 2 to the classical
support theorem. For n ≥ 3 it is not the case. The function ω supports f

in the interval (xn−2,+∞) ∩ I. Passing through the points
(
xi, f(xi)

)
,

i = 1, . . . , n − 2 the graph of ω successively changes the side of the graph
of f . Let us illustrate this situation by the following example.

Example 2. Let n = 3 and ωωω = (1, x, x2). Obviously ωωω and (1, x) are
positive Chebyshev systems on any interval. By Theorem A it is easy to
see that f(x) = x3 is ωωω-3-convex (D3(x1, x2, x3, x4; f) is the Vandermonde
determinant). Observe that the function ω(x) = 2x2 − x fulfils the in-
equalities (15), (16) and (17) of Theorem 3 for x1 = 0, x2 = 1. Namely,
ω(0) = f(0), ω(1) = f(1) and

f(x) − ω(x) ≤ 0 for x < 0,

f(x) − ω(x) ≥ 0 for 0 < x < 1,

f(x) − ω(x) ≥ 0 for x > 1.
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