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Union-free regular languages
and 1-cycle-free-path-automata

By BENEDEK NAGY (Debrecen and Tarragona)

Abstract. In this paper, we analyze a subclass of the regular languages,
namely the union-free regular languages. These languages can be given by regular
expressions without the operation union. In a union-free language the words look
like each other, each word contains the so-called “backbone” word of the language
in scattered way. The family of special type of finite automata is investigated to
recognize these languages. These automata are the 1-cycle-free-path-automata.
In these class from each state there is exactly one cycle-free path going to the
final state. We also have result about regular expressions with union describing
union-free languages.

1. Introduction

The regular languages are the most common, well-known and well-
applicable languages. They are the simplest languages in the Chomsky-
hierarchy. In this paper we will consider a special subclass of the regular
languages. A regular language can contain words which are completely
different from each other. This can happen if the regular expression of the
language contains the operation union (in regular expression we use +).
For example a + b∗. The operation union (+) is very powerful, when we
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allow infinite sums the expressions can describe all the type 0 languages
in Chomsky-hierarchy (i.e. the whole recursive enumerable class). We will
investigate the languages which can be described by regular expressions
without +. The words of a language of this union-free family have the
same “shape”. In [1] the algebraic properties of union-free languages were
examined, in this paper we use another approach.

The structure of the paper is as follows. In the next section we de-
fine the union-free regular languages. In Section 3 a special class of finite
automata is defined. We prove that these, so-called, 1-cycle-free-path au-
tomata accept exactly the union-free subfamily of the regular languages.
In Section 4 some properties of these languages are presented. In the
last section we summarize our results and we raise some interesting open
questions.

2. The union-free languages

In this section we recall the definitions of regular expression and regu-
lar languages [2], [5]. We define the union-free languages as well. We start
this section with the basic definitions.

In the next definition we use the well-known regular operators, such
as union, concatenation and Kleene-star (+, · , ∗ respectively).

Definition 1. The finite expressions are regular expressions using the
letters of the alphabet and symbols +, · , ∗ in the following way.

The letters of the alphabet together with the empty word (signed by λ)
and the empty set (empty language) are regular expressions.

If r, q are regular expressions, then r + q, r · q and r∗ are regular
expressions as well.

Note that the brackets can be used in regular expressions to show the
order of the operations (+, · , ∗). If it is obvious, then we omit the sign of
the operator concatenation ( · ), as usual.

We call a language regular if there is a regular expression which de-
scribes it.

We call a regular expression union-free (regular) expression if only the
operators · , ∗ are used in it. Consequently, a language which can be defined
by a union-free expression is a union-free (regular) language.
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Note that another important and well-examined class of the regular
languages is the class of finite languages. Each of them contains only finite
number of words. They can be described by the (strongly) star-free regular
expressions, in which only the concatenation and the union are the allowed
operations and the Kleene-star is not used. In this paper we will use the
star-freeness in this strong sense (in the literature other [set-theoretical]
operations such as intersection and complement are allowed to use at the
[extended] star-free expressions).

Each regular expression can be written in a tree form, in which exactly
the leaves are the terminal symbols of the language (λ is also allowed), and
other nodes are some operations.

Note that the operation Kleene-plus is used sometimes. It is an ab-
breviation: r+ = r · r∗.

Example 1. Let V = {a1, a2, . . . , an} be a finite alphabet. The lan-
guage V ∗ = (a1 + a2 + · · · + an)∗ is union-free. One can write it in the
following form: L = (a∗1a∗2 . . . a∗n)∗. It is trivial that λ is in L. Moreover
L contains all the letters of the alphabet V . With one more iteration of
the whole bracket we can concatenate any letters to the previous string.
Therefore L = V ∗.

The language V + is union-free if and only if V is singular, i.e. it
contains exactly one letter (and the language V is union-free only in this
case also). Having at least two letters in the alphabet, V + contains the
letters but it does not contain λ. Therefore the shortest word in V + is not
unique. As we will show in Lemma 4 this fact implies that the language
is not union-free.

The previous example shows, that the Kleene-star and Kleene-plus
have different properties.

Example 2. Let V = {a, b, c}. The language containing the words bab,
baba, babc∗, . . . given by the regular expression bab(a + c∗)∗ is union-free.
The union-free expression bab(a∗c∗)∗ describes it as well. In Figure 1 the
tree forms are presented for both regular expressions.
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Figure 1. Examples for regular expressions in tree form

As Figure 1 shows one can express the regular expressions by trees.
In the next section we are going to define a subfamily of finite automata

to accept union-free languages.

3. The class of 1-cycle-free-path-automata

The concept of finite automata is recalled in the next definition.

Definition 2. A 5-tuple A = (Q,S, V, δ, F ) is a non-deterministic finite
automaton, with the finite (non-empty) set of states Q; S ∈ Q is the
initial state; V is the (input) alphabet and F ⊂ Q is the set of final (or
accepting) states. The function δ : Q × (V ∪ λ) → 2Q is the transition
function. A path is called accepting path by the word w if it is written as
(S = Q0)a1Q1a2Q2 . . . an−1Qn−1anQn where δ(Qi, ai+1) � Qi+1 for every
0 ≤ i < n and Qn ∈ F moreover w = a1a2 . . . an (deleting the possible
symbols ai = λ as usual). A word is accepted by the finite automata if
there is an accepting path for it.
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The paths written as sequences of letters and states will be called
mixed-form.

Now we define a class of finite automata, and after this we prove that
this class of automaton defines exactly the union-free languages.

Definition 3. Let A be a nondeterministic finite automaton. A is a
1cfpa (1 cycle-free-path automaton) if there is a unique cycle-free accept-
ing path from each of its states.

Figure 2 shows an example.
As a consequence of the definition above, a 1cfpa has exactly one final

state. (From now on F will refer not only for the set of final states, but
for its unique element as well.)

Note that we allow only transitions with exactly one symbol (from
V ∪ {λ}).

The transitions allowing symbols more than one – like P
a,b→ R – mean

at least two different paths (in this case from P to R, these paths are PaR

and PbR using mixed form).

Figure 2. An example for a 1-cycle-free-path-automaton

Graph-theoretically these automata can be characterized as follows.
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Proposition 1. The graphs of the 1cfp automata are exactly those

ones in which there exists a node R with the following property. For every

node P in the graph there is exactly one directed path from P to R without

repetition of any node.

Proof. It is trivial from the definition. �

Note here that it can be several nodes with this property in a graph.
For instance in the graph in Figure 2 there are four such nodes. They are
F and the other nodes of the loop containing F .

There is a special consequence of the previous definition and fact.

Proposition 2. Since from every state R there is exactly one transi-

tion going to the direction of F (without cycle), the word which transfers

the state R to F in the cycle-free way is unique for each state.

Proof. It is evident. �

The word which transfers the initial state to the final one has a special
importance, therefore we name it.

Definition 4. We will call the word accepted by the cycle-free path from
the initial state (S) to the final state (F ) as a backbone of the automaton.
The other parts of the automaton are the loops, sub-loops etc.

Theorem 1. The family of languages which are described by union-

free expressions and the family of languages recognized by 1cfpas are ex-

actly the same.

Proof. We will prove this in two parts. First we show that each
automaton of this type recognizes a union-free language. After that we
explain how we can construct a 1cfp automaton for each union-free ex-
pression.

Now, we are going to prove that each automaton of this type recognizes
a union-free language. Let A be a 1cfpa. We will construct a union-free
expression which describes the language accepted by A.

We will use mixed-form words, which contain terminals and names of
the states of the automaton. Initially let our expression r0 = Sx . . . F be a
word which contains the name of states and the terminals of the transitions
of the backbone (from the initial state S to the final state F , x ∈ V ∪{λ}).
At λ-transitions we allow that two neighbors in r0 are state names.
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In the next part we use the recursion as many times as the automaton
branching (i.e. at least two states can follow the actual [so-called branching]
state). If the automaton has no branching, then the backbone is the exactly
one word of the accepted language. Assume that our expression is ri. Then
choose the last state P (which has the last occurrence) in the mixed form ri

among the states which has starting branch(es) and has not been examined
yet. Now we construct ri+1 by modifying ri.

Put a pair of brackets to ri to the point immediately after each occur-
rence of P . Put a star after the brackets. (The following form:

x1P ()∗x2 . . . xnP ()∗xn+1,

where P has n occurrences, and xi does not contain any P for any i =
1, . . . , n + 1.) Then put into these brackets as many sequence ()∗ as many
starting branch the state P has. After this write into these brackets the
mixed form of the words reading by the shortest circles (loops) using all
the starting branches at state P without the symbol P . The obtained
expression is ri+1.

It is easy to show that after a step the number of occurrences of P

remains n; and all the states which are in number k loops starting from P

have kn new occurrences. Moreover, since the automaton is a 1cfpa there
are no states appearing in the new brackets which have already examined.

Repeat the procedure above if there is at least one non-examined
branching state.

We have only finitely many branching states in the automaton, there-
fore this procedure will be finished. Let rn be its result. Deleting the
names of the states from rn we get a union-free expression which describes
our language. It is easy to show that due to the construction there is
a one-to-one mapping from the running of the automaton to reading the
union-free expression for each accepted word.

And now, we construct a 1cfp automaton for each union-free expression
q by an inductive method.

Iteration step:
We start from the deterministic automaton which accepts the shortest

word (i.e. each sub-expression in the form r∗ is the empty word.) This will
be the backbone of the automaton. Specially, let

q = x1(r1)∗x2 . . . xn(rn)∗xn+1,
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where the parts xi are star-free (it is allowed that xi = λ). (Let each xi =
ai,1ai,2 . . . ai,ki

, where ki is the length of xi.) Then the initial automaton
A1 is the following.

S
a1,1→ P1,1

a1,2→ . . . P1,k1−1

a1,k1→ R1
a2,1→ P2,1

a2,2→ · · · a2,k2→ R2 . . .

. . . Rn
an+1,1→ Pn+1,1

an+1,2→ · · · an+1,kn+1→ F

Iteration step:
Let r∗ be a subexpression which have not created yet. (We can use

the order of subexpressions as they are in the tree form of the regular
expression starting from the top.) Then draw the loop to the state Rj

according to this subexpression (using λ for all subexpression of r∗ which
are in the form r∗i ) to the automaton by the similar way as we draw the
backbone.

Since the union-free expression contains finitely many stars this pro-
cedure will be finished after finitely many steps. It is evident that the
constructed automaton accepts the language defined by the given union-
free expression. By the inductive construction, it is trivial that from each
state there is exacly 1 cycle-free path goes to the final state. �

Note that the accepted languages of the sequence of automata con-
structed in the proof are in strictly monotonous increasing sequence.
The constructions can be seen in the following example.

Example 3. Let our automaton be given as the table and Figure 3
show.

State A (initial) B C D E F(inal)

Transition a→ B b→ C c→ D d→ E, λ→ B e→ F, λ→ C −

It is easy to check that this automaton is a 1cfpa. Let us construct a
union-free regular expression. Initial step: the backbone in mixed form is:

AaBbCcDdEeF.

There is a loop starting from E, therefore we get:

AaBbCcDdE(CcDd)∗eF.
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Figure 3. The automaton of Example 3

There is another loop at D, we write it to both occurrences of D:

AaBbCcD(BbCc)∗dE(CcD(BbCc)∗d)∗eF.

There are no other loops, deleting the states our expression is:

abc(bc)∗d(c(bc)∗d)∗e.

Now, we will construct a 1cfpa for this union-free expression. The back-
bone will be: A

a→ B
b→ C

c→ D
d→ E

e→ F . Then using the the first and
the third Kleene-stars (the third one is at higher level in the tree than the
second one) we get two loops: D

b→ G
c→ D, and E

c→ H
d→ E. Now using

the second star we get: H
b→ I

c→ H.

4. Properties of union-free languages

Now we detail some properties of the languages defined above.

Lemma 1. There are infinitely many non-comparable union-free lan-

guages.

Proof. All the languages containing exactly one word are union-free
languages. There are infinitely many of them. �

Lemma 2. A union-free language is infinite if and only if there is no

star-free regular expression to describe it.

Proof. Without ∗ the language contains exactly one word. �

Corollary 1. A union-free language is either infinite or contains at

most one word.
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Lemma 3. Let L be an infinite union-free language. There are in-

finitely many sequences of union-free languages starting with L, in which

each language is a proper subset of the previous one.

Proof. First we construct an infinite union-free language L1, which
is strictly included in L. According to Lemma 2 there is a Kleene-star in
the union-free regular expression of L and so there is at least one loop in
the corresponding 1cfpa. It is easy to construct a new 1cfpa with a new
backbone. Let us go through the original 1cfpa in such a way that we use
exactly 1 of its (non-empty) loops. Let the read word is the backbone of
the new automaton. This backbone includes the backbone of the original
1cfpa containing the letters of the loop with new states. Use at least the
read loop of the original automaton in the new 1cfpa. The new automata
recognizes a strictly smaller language than L, so we get a new infinite
union-free language, which is a proper subset of L. And now, the procedure
can be continued for the language L1, which is also an infinite union-
free one. Let L0 = L. It is evident that for any infinite subsequence of
L = L0, L1, . . . , Li, . . . starting with L hold the conditions of the lemma.
Therefore their number is infinite. �

Corollary 2. There is no smallest infinite union-free language. (For

each infinite union-free language L there is an infinite union-free language

which is a proper subset of L.)

Now, using the backbone, we describe some other interesting proper-
ties of the union-free languages.

One of the simple similarity facts of the words of a union-free language
is the following.

Proposition 3. In a union-free language each word contains the back-

bone in scattered way.

Proof. It is obvious by using the corresponding 1cfpa. �
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Let L be a union-free language. Note that λ ∈ L if and only if the
backbone is the empty word. This implies that every terminal is under
a Kleene-star in the tree of the regular expression. Under these circum-
stances the language can be accepted by a 1cfpa with S = F .

From the previous facts we have the following useful lemma, which
can be applied to decide if a language cannot be union-free.

Lemma 4. The shortest word of a union-free language L is unique

and it is the backbone.

Proof. Trivial. �

Now, we are in the position to claim the theorem about the closure
properties of union-free languages.

Theorem 2. The union-free language-family is closed under the foll-

owing operations: concatenation, Kleene-star, substitution by union-free

language. It is not closed under the following operations: union (of course),

complementation, intersection, substitution by regular language.

Proof. The cases of concatenation and Kleene-star: trivial by using
regular expressions in sense of the definition of union-free languages.
The substitution by union-free expression is also trivial.
Union: consider the following two languages: {a}, {b}.
Complementation: assume the language a∗ over the alphabet {a, b, c}.
Then the complement is V ∗bV ∗ + V ∗cV ∗, which has two shortest words,
namely b and c. (Or for binary alphabet, the complement of the language
defined by (aa)∗ has the following two shortest words: a, b.)
Intersection: V ∗aV ∗, V ∗bV ∗ (we cannot do without union because the
letters a and b can be in two kinds of order in the words). The intersection
language has two shortest words: ab, ba.
Consequence: it is not closed under substitution by regular expression. �

As a consequence of the previous theorem we have:

Corollary 3.The union-free language-family is closed under Kleene +,

and for any fixed natural number n it is closed under the n-th power.

And now we have some notes about the non union-free regular expres-
sions describing union-free regular languages.
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Figure 4. A possible rewriting of regular expressions to a union-
free form

Let r be a given regular expression. For the sake of simplicity assume
that, it is fully bracketed (i.e. its tree is a binary tree, which means that
all unions and concatenations have exactly two components, while the
Kleene-stars have exactly one).

Well known, and it is easy to prove that the next statement is true.

Proposition 4. The following equivalence holds. (See Figure 4 as

well.)

(1) (x + y)∗ can be written in the form (x∗y∗)∗

where x and y are arbitrary regular expressions.

Using the above equivalence the union can be removed under a Kleene-
star operation. Moreover we have the following theorem about the relation
between regular languages defined by regular expressions and the union-
free ones.

Theorem 3. Let r be a regular expression. If all operations union

are under some Kleene-star operations in the tree form of r, then r defines

a union-free regular language.

Proof. Using the following well-known equivalences among regular
expressions (see the table; x, y, z and v are arbitrary regular expressions)
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one can move the operations union above the concatenations in the tree
of the regular expression.

Original form Form with union on upper level
(x + y) · z x · z + y · z
x · (z + v) x · z + y · z
(x + y) · (z + v) (x · z + x · v) + (y · z + y · v)

Using these equivalences the operations union move up to the level immedi-
ately below a Kleene-star. With the equivalence of the previous proposition
the union can be removed from that level. �

With the previous theorem we have a nice characterization of the
union-free languages. Suppose that the regular language L is given by a
regular expression r. Then L is union-free if in r there is no union operation
which is not under a Kleene-star (i.e. each + is under a ∗ in the tree form
of the regular expression). Therefore a 1cfpa can recognize each of these
languages.

As a special consequence of the previous facts we have:

Corollary 4. For each regular language L the language L∗ is a union

free regular one.

5. Conclusions, further remarks

The regular languages are the most well-known languages in computer
science. The description of them by regular expressions is well known. In
this paper we analyzed a subclass of the regular languages. The properties
of the union-free regular languages were described. These languages are
defined by union-free regular expressions. The family of automata 1cfpa
was investigated, in these automata there is exactly one cycle-free path
to the final state from each of their states. It was shown by constructive
methods that this family of automata can recognize exactly the family
of union-free languages. Moreover, it was shown that regular expressions
using union can define union-free languages as well, especially when each
union operation is under Kleene-star operations.
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We have the following open question. What is the connection between
the language families accepted by 1cfpa and deterministic 1cfpa, respec-
tively? (Note that we used only non-deterministic 1cfpa which recognize
union-free languages. So the question is that the language family accepted
by deterministic 1cfpas is the same, or smaller than the union-free language
family?)

It will be interesting to examine how the union-free languages are
related to the pattern languages. It looks, that the linear star-pattern
languages have a strong relation to the union-free languages.

It is an interesting problem as well, to describe the (extended) union-
free languages allowing operation intersection or complement. It is easy
to show that allowing both of them, via De Morgan law one get the whole
regular class.

Another further direction is to analyse the relation between bounded
or polynomial-density regular languages and union-free languages ([4]).

There are some possibly interesting questions about decidability, com-
plexity of decidability, state complexity of operations etc. Is it decidable
or not, that a given language is a union-free one? If so, then also interest-
ing problem to find an (efficient) algorithm which decides whether a given
language is a union-free or not.

Note, that based on the equivalences of regular expressions their nor-
mal form and the union-complexity of languages can be defined ([3]).
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