Lie ideals and commuting mappings in prime rings

By RAM AWTAR (Pilani)

Abstract

J. VUKMAN [6, Theorem 1] proved that if R is a prime ring of characteristic different from two and if d is a derivation of R such that $[[d(x), x], x]=0$ for all x in R then either $d=0$ or R is commutative. This result extends one due to E . Posner [5, Theorem 2]. In this paper our object is to generalize the above mentioned result of J. Vukman to Lie ideals and we prove the following:

Theorem. Let R be a prime ring of characteristic different from two, and let d be a derivation of R. Let U be a Lie ideal of R such that $[[d(u), u], u]=0$ for all $u \in U$. Then either $d=0$ or $U \subset Z$, where Z is the center of R.

1. Introduction

A theorem of J. Vukman [6] states that if R is a prime ring of characteristic different from 2, and if d is a derivation of R such that $(d(x) x-x d(x)) x-x(d(x) x-x d(x))=0$ for all x in R then either $d=0$ or R is commutative. In this paper we extend this result to Lie ideals.

Throughout the paper we assume that R is an associative ring of characteristic not 2. The center of R is denoted by Z. We also assume that d is a derivation of R, i.e, an additive mapping of R into itself such that $d(x y)=x d(y)+d(x) y$ for all $x, y \in R$. For $x, y \in R$, let

$$
[x, y]=x y-y x \text { and } f(x)=[x, d(x)]
$$

An additive subgroup U of R is said to be a Lie ideal of R if $[u, r] \in U$ for all $u \in U$ and $r \in R$.

2. The main theorem

In this section we prove the main theorem of this paper which generalizes a result of J. Vukman [6, theorem 1] to Lie ideals. We begin with the main theorem.

Theorem 1. Let R be a prime ring, char $\neq 2$, and let U be a Lie ideal of R. If d is a derivation of R such that $[[d(u), u], u]=0$ for all $u \in U$, then either $d=0$ or $U \subset Z$.

Proof. By hypothesis,

$$
\begin{equation*}
[[d(u), u], u]=0 \quad \text { for all } u \in U \tag{1}
\end{equation*}
$$

In (1), replace u by $u+v$ where $v \in U$ and use (1) to get

$$
\begin{aligned}
{[[d(u), u], v] } & +[[d(u), v], u]+[[d(v), u], u]+[[d(v), v], u]+ \\
& +[[d(v), u], v]+[[d(u), v], v]=0 .
\end{aligned}
$$

Replace u by $-u$ then

$$
\begin{aligned}
{[[d(u), u], v] } & +[[d(u), v], u]+[[d(v), u], u]-[[d(v), v], u]- \\
& -[d(v), u], v]-[[d(u), v], v]=0 .
\end{aligned}
$$

Adding the last two equations and dividing by 2 , we have

$$
\begin{gather*}
{[[d(u), u], v]+[[d(u), v], u]+[[d(v), u], u]=0} \tag{2}\\
\text { for all } u, v \in U .
\end{gather*}
$$

Suppose now that $v, w \in U$ are such that $v w$ is also in U. By replacing v by $v w$ in (2), where $w \in U$, and after expanding we get

$$
\begin{gathered}
v[[d(u), u], w]+[[d(u), u], v] w+v[[d(u), w], u]+[v, u][d(u), w]+ \\
+[d(u), v][w, u]+[[d(u), v], u] w+d(v)[[w, u], u]+[d(v), u][w, u]+ \\
+[d(v), u][w, u]+[[d(v), u], u] w+v[[d(w), u], u]+[v, u][d(w), u]+ \\
+[v, u][d(w), u]+[[v, u], u] d(w)=0 .
\end{gathered}
$$

In view of (2), the last equation reduces to

$$
\begin{aligned}
{[v, u][d(u), w] } & +[d(u), v][w, u]+d(v)[[w, u], u]+2[d(v), u][w, u]+ \\
& +2[v, u][d(w), u]+[[v, u], u] d(w)=0 .
\end{aligned}
$$

For any $r \in R$, the element $w=v r-r v$ satisfies the criterion $v w \in U$, hence by the above equation, we get

$$
\begin{gather*}
\quad[v, u][d(u),[v, r]]+[d(u), v][[v, r], u]+d(v)[[[v, r], u], u]+ \\
+2[d(v), u][[v, r], u]+2[v, u][d[v, r], u]+[[v, u], u] d[v, r]=0 \tag{3}\\
\text { for all } u, v \in U, r \in R .
\end{gather*}
$$

Let $v=u$ in (3). Then

$$
3[u, d(u)][u,[u, r]]+d(u)[u,[u,[u, r]]]=0 .
$$

For $u \in U$, let $I(r)=[u, r]$ for all $r \in R$. Then I is an inner derivation of R.

Thus from the above equation, we get

$$
\begin{equation*}
3 f(u) I^{2}(r)+d(u) I^{3}(r)=0 \quad \text { for all } \quad r \in R, u \in U \tag{4}
\end{equation*}
$$

In (4), let $r=u r$. Then, as $I(u)=0$,

$$
3 f(u) u I^{2}(r)+d(u) u I^{3}(r)=0
$$

From (1) $u f(u)=f(u) u$. So by (4) and the last equation, we get

$$
\begin{equation*}
f(u) I^{3}(r)=0 \quad \text { for all } r \in R, u \in U \tag{5}
\end{equation*}
$$

Similarly, after replacing v by $w v=[v, r] v$ in (2), and then putting $v=u$, we obtain

$$
\begin{equation*}
3 I^{2}(r) f(u)+I^{3}(r) d(u)=0 \quad \text { for all } r \in R, u \in U \tag{6}
\end{equation*}
$$

Replace r by $r d(u)$ in (4) and use (4) to get

$$
\begin{gathered}
3 f(u)\left\{2 I(r) I(d(u))+r I^{2}(d(u))\right\}+d(u)\left\{3 I^{2}(r) I(d(u))+\right. \\
\left.+3 I(r) I^{2}(d(u))+r I^{3}(d(u))\right\}=0 .
\end{gathered}
$$

In view of $(1), I^{2}(d(u))=0$, and $I(d(u))=[u, d(u)]=f(u)$. Thus, we get

$$
\begin{equation*}
6 f(u) I(r) f(u)+3 d(u) I^{2}(r) f(u)=0 \quad \text { for all } \quad r \in R, u \in U \tag{7}
\end{equation*}
$$

Similarly, after replacing r by $d(u) r$ in (4), we have

$$
\begin{equation*}
6 f(u) f(u) I(r)+3 f(u) d(u) I^{2}(r)=0 \quad \text { for all } r \in R, u \in U \tag{8}
\end{equation*}
$$

In (6) replace r by $r d(u)$ and use (6). Then

$$
\begin{equation*}
6 I(r) f(u) f(u)+3 I^{2}(r) f(u) d(u)=0 \quad \text { for all } \quad r \in R, u \in U \tag{9}
\end{equation*}
$$

Similarly, after replacing r by $d(u) r$ in (6), we get

$$
\begin{equation*}
6 f(u) I(r) f(u)+3 f(u) I^{2}(r) d(u)=0 \quad \text { for all } \quad r \in R, u \in U \tag{10}
\end{equation*}
$$

In (4), let $r=r s$ where $s \in R$ and use (4) to get

$$
\begin{gather*}
3 f(u)\left\{2 I(r) I(s)+r I^{2}(s)\right\}+d(u)\left\{3 I^{2}(r) I(s)+3 I(r) I^{2}(s)+\right. \tag{11}\\
\left.+r I^{3}(s)\right\}=0 \text { for all } r, s \in R, u \in U
\end{gather*}
$$

Replace r by $f(u)$ in (11). Then, as $I(f(u))=0$ from (1) and $f(u) I^{3}(s)=0$ from (5), we get

$$
\begin{equation*}
3 f(u) f(u) I^{2}(s)=0 \quad \text { for all } s \in R, u \in U \tag{12}
\end{equation*}
$$

Write $s=r s, r \in R$ in (12) and use (12) to obtain

$$
\begin{equation*}
3 f(u) f(u)\left\{2 I(r) I(s)+r I^{2}(s)\right\}=0 \quad \text { for all } r, s \in R, u \in U \tag{13}
\end{equation*}
$$

From (11) and (13), we get

$$
\begin{gather*}
f(u) d(u)\left\{3 I^{2}(r) I(s)+3 I(r) I^{2}(s)+r I^{3}(s)\right\}=0 \tag{14}\\
\text { for all } r, s \in R, u \in U
\end{gather*}
$$

Replacing r by ur in (14) and using (14), as $u f(u)=f(u) u$ from (1), we get

$$
f(u) f(u)\left\{3 I^{2}(r) I(s)+3 I(r) I^{2}(s)+r I^{3}(s)\right\}=0
$$

In view of (12), the last equation reduces to

$$
f(u) f(u)\left\{3 I(r) I^{2}(s)+r I^{3}(s)\right\}=0
$$

i.e,

$$
2 f(u) f(u)\left\{3 I(r) I^{2}(s)+r I^{3}(s)\right\}=0
$$

In (13), putting $s=I(s)$ and then subtracting, from the last equation, we have $f(u) f(u) R I^{3}(s)=0$. Since R is prime, if $f(u) f(u) \neq 0$ for some u in U, then $I^{3}(s)=0$ for all $s \in R$. Thus, from (6), $3 I^{2}(r) f(u)=0$ and so, from (9), $6 I(r) f(u) f(u)=0$, i.e, $3 I(r) f(u) f(u)=0$ for all $r \in R$. Suppose R is of characteristic different from 3. Then $I(r) f(u) f(u)=0$ and so $0=\{I(r) s+r I(s)\} f(u) f(u)=I(r) R f(u) f(u)=[u, R] R f(u) f(u)$. Since $f(u) f(u) \neq 0$ and R is prime, then $u \in Z$ and so $f(u) f(u)=0$. Thus $f(u) f(u)=0$ for all $u \in U$.

Suppose now that R is of characteristic 3. Then from (4), $d(u) I^{3}(r)=$ 0 . Thus

$$
\begin{equation*}
0=d(u)[u,[u,[u, r]]]=d(u)\left[u^{3}, r\right] \quad \text { for all } r \in R, u \in U . \tag{15}
\end{equation*}
$$

In (15), replace u by $u+v$ where $v \in U$ and use (15). Then

$$
\begin{gathered}
\{d(u)+d(v)\}\left[u^{2} v+u v u+v u^{2}+u v^{2}+v u v+v^{2} u, r\right]+ \\
+d(u)\left[v^{3}, r\right]+d(v)\left[u^{3}, r\right]=0 .
\end{gathered}
$$

Replace u by $-u$, then

$$
\begin{gathered}
\{-d(u)+d(v)\}\left[u^{2} v+u v u+v u^{2}-u v^{2}-v u v-v^{2} u, r\right]- \\
-d(u)\left[v^{3}, r\right]-d(v)\left[u^{3}, r\right]=0 .
\end{gathered}
$$

Adding the last two equations and dividing by 2 , we have

$$
\begin{gather*}
d(u)\left[u v^{2}+v u v+v^{2} u, r\right]+d(v)\left[u^{2} v+u v u+v u^{2}, r\right]=0 \tag{16}\\
\text { for all } r \in R \text { and } u, v \in U .
\end{gather*}
$$

Replacing r by $r u$ in (16) and using (16) we get

$$
d(u) r\left[u v^{2}+v u v+v^{2} u, u\right]+d(v) r\left[u^{2} v+u v u+v u^{2}, u\right]=0
$$

or
$d(u) r\left[u v^{2}+v u v+v^{2} u, u\right]+d(v) r\left\{\left(u^{2} v+u v u+v u^{2}\right) u-u\left(u^{2} v+u v u+v u^{2}\right)\right\}=0$ or

$$
\begin{gather*}
d(u) r\left[u v^{2}+v u v+v^{2} u, u\right]+d(v) r\left[v, u^{3}\right]=0 \tag{17}\\
\text { for all } r \in R, \text { and } u, v \in U .
\end{gather*}
$$

In (15) let $r=r s$, then $0=d(u)\left\{\left[u^{3}, r\right] s+r\left[u^{3}, s\right]\right\}=d(u) R\left\{u^{3}, s\right]$. So, if for some $u \in U, d(u) \neq 0$ then $\left[u^{3}, s\right]=0$ for all $s \in R$, since R is prime. Thus from (17) $d(u) R\left[u v^{2}+v u v+v^{2} u, u\right]=0$, i.e, $\left[u v^{2}+v u v+v^{2} u, u\right]=0$ for all $v \in U$, as $d(u) \neq 0$ and R is prime. Thus

$$
\begin{aligned}
0 & =I\left(u v^{2}+v u v+v^{2} u\right) \\
& =I\{(u v-v u) v-v(u v-v u)\}, \text { as } \operatorname{char} R=3, \\
& =I[I(v), v]=\left[I^{2}(v), v\right]
\end{aligned}
$$

Linearize the last equation on v to get

$$
\left[I^{2}(v), w\right]+\left[I^{2}(w), v\right]=0 \text { for all } v, w \in U
$$

Replacing w by $I(w)$, as $I^{3}(w)=[u,[u,[u, w]]]=\left[u^{3}, w\right]=0$, we get $\left[I^{2}(v)\right.$, $I(w)]=0$ for all $v, w \in U$. Suppose that $u \notin Z$, then by Theorem 4 of [2], as $I \neq 0$ and $U \not \subset Z, I^{2}(v) \in Z$ for all $v \in U$. Now by Theorem 5 of [2], as $I \neq 0, U \subset Z$. Thus $u \in Z$ and so $f(u)=[u, d(u)]=0$. Hence for all $u \in U, f(u)=0$. Thus, in all cases

$$
\begin{equation*}
f(u) f(u)=0 \quad \text { for all } u \in U \tag{18}
\end{equation*}
$$

Linearizing (3) on v, we get

$$
\begin{gather*}
{[v, u][d(u),[w, r]]+[w, u][d(u),[v, r]]+[d(u), v][[w, r], u]+} \\
+[d(u), w][[v, r], u]+d(v)[[w, r], u], u]+d(w)[[[v, r], u], u]+ \\
+2[d(v), u][[w, r], u]+2[d(w), u][[v, r], u]+2[v, u][d[w, r], u]+ \tag{19}\\
+2[w, u][d[v, r], u]+[[v, u], u] d[w, r]+[[w, u], u] d[v, r]=0 \\
\text { for all } u, v, w \in U .
\end{gather*}
$$

Let $v=u=f(u)$ in (19). Then, since $f(u) f(u)=0$ and $f(u) d(f(u)) \times$ $f(u)=0$, we get

$$
\begin{gather*}
{[w, f(u)][d(f(u)),[[f(u), r]]+3[d(f(u)), f(u)][w, r] f(u)+} \\
+2[d(f(u)), w] f(u) r f(u)-2 d(f(u)) f(u)[w, r] f(u)+ \\
+4[d(w), f(u)] f(u) r f(u)+2[w, f(u)] d[f(u), r] f(u)=0 \tag{20}\\
\text { for all } \quad r \in R \text { and } u, w \in U .
\end{gather*}
$$

Multiplying by $f(u)$ from the right, the last equation yields

$$
[w, f(u)][d(f(u)),[f(u), r]] f(u)=0
$$

i.e,

$$
\begin{gathered}
f(u) U\{f(u) r d(f(u)) f(u)-d(f(u)) f(u) r f(u)\}=0 \\
\text { for all } r \in R, u \in U .
\end{gathered}
$$

If for some $u \in U, f(u) \neq 0$ then $u \notin Z$ and so by Lemma 4 of [3] the last equation yields

$$
f(u) r d(f(u)) f(u)=d(f(u))(f(u)) r f(u) \text { for all } r \in R .
$$

By using a result of Martindale (Corollary of Lemma 1.3.2 in [4]) we conclude that, as $f(u) \neq 0, d(f(u)) f(u)=\delta(u) f(u)$ where $\delta(u) \in C$, the extended centroid of R (See p. 22 of [4] for the notion of extended centroid).
Moreover, $f(u) d(f(u))=-d(f(u)) f(u)=-\delta(u) f(u)$.
Let $r=f(u) r$ in (20). Since $0=f(u) f(u)=f(u) d(f(u)) f(u)$, $d(f(u)) f(u)=\delta(u) f(u)$ and $f(u) d(f(u))=-\delta(u) f(u)$, we get

$$
\begin{aligned}
& -[w, f(u)][d(f(u)), f(u) r f(u)]+6 \delta(u) f(u) w f(u) r f(u)- \\
& -2 \delta(u) f(u) w f(u) r f(u)+2[w, f(u)] d\{f(u)[f(u), r]\} f(u)=0
\end{aligned}
$$

i.e.

$$
\begin{gathered}
f(u) w d(f(u)) f(u) r f(u)-f(u) w f(u) r f(u) d(f(u))+ \\
+4 \delta(u) f(u) w f(u) r f(u)+2[w, f(u)]\{d(f(u))[f(u), r]+ \\
+f(u)[d(f(u)), r]+f(u)[f(u), d(r)]\} f(u)=0
\end{gathered}
$$

i.e.

$$
\begin{gathered}
6 \delta(u) f(u) w f(u) r f(u)+2[w, f(u)] d(f(u)) f(u) r f(u)- \\
-2 f(u) w f(u)[d(f(u)), r] f(u)=0
\end{gathered}
$$

i.e.

$$
\begin{gathered}
6 \delta(u) f(u) w f(u) r f(u)-2 f(u) w d(f(u)) f(u) r f(u)- \\
-2 f(u) w f(u) d(f(u)) r f(u)+2 f(u) w f(u) r d(f(u)) f(u)=0
\end{gathered}
$$

i.e.

$$
8 \delta(u) f(u) w f(u) r f(u)=0 \quad \text { for all } w \in U, r \in R
$$

Now, if $\delta(u) \neq 0$ then $f(u) U f(u) R f(u)=0$ and so $f(u) U f(u)=0$, as $f(u) \neq 0$ and R is prime. Az $f(u) \neq 0$ then $u \notin Z$, so again by Lemma 4 of [3] $f(u)=0$, a contradiction. Thus $\delta(u)=0$. Therefore, $d(f(u)) f(u)=f(u) d(f(u))=0$. Hence from (20), we get

$$
\begin{gathered}
f(u) w\{d(f(u)) r f(u)+f(u) r d(f(u))\}+2 d(f(u) w f(u) r f(u)- \\
-4 f(u) d(w) f(u) r f(u)-2 f(u) w\{d(f(u)) r f(u)+ \\
\quad+f(u) d(r) f(u)\}=0 \quad \text { for } r \in R, w \in U
\end{gathered}
$$

In (2), let $u=f(u)$. Then we get
(22) $d(f(u)) v f(u)+f(u) v d(f(u))-2 f(u) d(v) f(u)=0 \quad$ for all $v \in U$.

Thus from (21), we get

$$
\begin{gathered}
\{2 d(f(u)) w f(u)-4 f(u) d(w) f(u)-2 f(u) w d(f(u)\} v f(u)=0 \\
\text { for all } v, w \in U
\end{gathered}
$$

Again, $f(u) \neq 0$ implies $u \notin Z$. Hence, by Lemma 4 of [3],
(23) $d(f(u)) w f(u)-f(u) w d(f(u))-2 f(u) d(w) f(u)=0 \quad$ for all $w \in U$.

In view of $(22) \&(23)$, we get $2 f(u) w d(f(u))=0$ for all $w \in U$. Then $f(u) U d(f(u))=0$. Thus $d(f(u))=0$, since $f(u) \neq 0$. So from (22), $f(u) d(v) f(u)=0$ for all $v \in U$. Hence from (21), $f(u) U f(u) d(r) f(u)=0$ for all $r \in R . \quad$ As $f(u) \neq 0$, we get $f(u) d(r) f(u)=0$ for all $r \in R$. Replace r by $r u$, then $0=f(u)\{d(r) u+r d(u)\} f(u)=f(u) r d(u) f(u)$, as $u f(u)=f(u) u$. Since R is prime and $f(u) \neq 0, d(u) f(u)=0$. Also $0=d[u, f(u)]=[d(u), f(u)]=f(u) d(u)$. Thus we conclude that if for some $u \in U, f(u) \neq 0$ then $f(u) d(u)=d(u) f(u)=0$. Hence

$$
f(u) d(u)=d(u) f(u)=0 \quad \text { for all } u \in U
$$

i.e,

$$
\begin{equation*}
[u, d(u)] d(u)=d(u)[u, d(u)]=0 \quad \text { for all } u \in U \tag{24}
\end{equation*}
$$

Linearizing (24) on u and using a similar approach as in the proof of (2) we get

$$
\begin{equation*}
[u, d(u)] d(v)+[u, d(v)] d(u)+[v, d(u)] d(u)=0 \quad \text { for all } u, v \in U \tag{25}
\end{equation*}
$$

Suppose now that $v, w \in U$ are such that $v w \in U$. By replacing v by $v w$ in (25), where $w \in U$, and using (25), after expansion we conclude

$$
\begin{gather*}
{[u, d(u)] d(v) w+[u, d(v)] w d(u)+d(v)[u, w] d(u)+} \\
+[u, v] d(w) d(u)+[v, d(u)] w d(u)+[[u, d(u)], v] d(w)=0 \tag{26}\\
\text { for } u, v, w \in U .
\end{gather*}
$$

For any $r \in R$, the elements $w=v r-r v$ satisfies the criterion that $v w \in U$, hence by the above equation, we get

$$
\begin{gather*}
\quad[u, d(u)] d(v)[v, r]+[u, d(v)][v, r] d(u)+d(v)[u,[v, r]] d(u)+ \\
+[u, v] d[v, r] d(u)+[v, d(u)][v, r] d(u)+[[u, d(u), v] d[v, r]=0 \tag{27}\\
\text { for all } r \in R \text { and } u, v \in U .
\end{gather*}
$$

Let $v=u$ in (27). Then, in view of (1) and (24), we get

$$
\begin{equation*}
2 f(u) I(r) d(u)+d(u) I^{2}(r) d(u)=0 \quad \text { for all } r \in R, u \in U \tag{28}
\end{equation*}
$$

Write $r=r s$ where $s \in R$ in (28). Then

$$
\begin{align*}
& 2 f(u)\{I(r) s+r I(s)\} d(u)+d(u)\left\{I^{2}(r) s+2 I(r) I(s)+\right. \tag{29}\\
& \left.\quad+r I^{2}(s)\right\} d(u)=0 \quad \text { for all } r, s \in R \text { and } u \in U
\end{align*}
$$

Replace r by u in (29). Then, as $I(u)=[u, u]=0$

$$
\begin{equation*}
2 f(u) u I(s) d(u)+d(u) u I^{2}(s) d(u)=0 \quad \text { for all } s \in R, u \in U \tag{30}
\end{equation*}
$$

As $u f(u)=f(u) u$, so from (28) and (30), we get

$$
\begin{equation*}
f(u) I^{2}(r) d(u)=0 \quad \text { for all } r \in R, u \in U \tag{31}
\end{equation*}
$$

Similarly as above, from $d(u)[u, d(u)]=0$ for all $u \in U$, we can conclude

$$
\begin{equation*}
d(u) I^{2}(r) f(u)=0 \quad \text { for all } r \in R, u \in U . \tag{32}
\end{equation*}
$$

Let $s=u$ in (29). Then $2 f(u) I(r) u d(u)+d(u) I^{2}(r) u d(u)=0$. But from (28), $2 f(u) I(r) d(u) u+d(u) I^{2}(r) d(u) u=0$. Thus, $2 f(u) I(r) f(u)+$ $d(u) I^{2}(r) f(u)=0$. Hence, in view of (32)

$$
\begin{equation*}
f(u) I(r) f(u)=0 \quad \text { for all } r \in R, u \in U \tag{33}
\end{equation*}
$$

Linearize (27) on v to get

$$
\begin{gather*}
{[u, d(u)] d(v)[w, r]+[u, d(v)][w, r] d(u)+d(v)[u,[w, r]] d(u)+} \\
+[u, v] d[w, r] d(u)+[v, d(u)][w, r] d(u)+[[u, d(u)], v] d[w, r]+ \\
+[u, d(u)] d(w)[v, r]+[u, d(w)][v, r] d(u)+d(w)[u,[v, r]] d(u)+ \tag{34}\\
+[u, w] d[v, r] d(u)+[w, d(u)][v, r] d(u)+[[u, d(u)], w] d[v, r]=0 \\
\text { for all } r \in R \text { and } u, v, w \in U .
\end{gather*}
$$

Write $v=u$ in (34). As $f(u) d(u)=0$ and $[f(u), u]=0$, we get

$$
\begin{gathered}
2 f(u)[w, r] d(u)+d(u)[u,[w, r]] d(u)+f(u) d(w)[u, r]+ \\
+[u, d(w)][u, r] d(u)+d(w)[u,[u, r]] d(u)+[u, w] d[u, r] d(u)+ \\
+[w, d(u)][u, r] d(u)+[f(u), w] d[u, r]=0 .
\end{gathered}
$$

Multiplying by $f(u)$ from the right, the last equation becomes

$$
f(u) d(w)[u, r] f(u)+[f(u), w] d[u, r] f(u)=0
$$

i.e,

$$
f(u) d(w)[u, r] f(u)+[f(u), w][d(u), r] f(u)+[f(u), w][u, d(r)] f(u)=0
$$

i.e,

$$
f(u) d(w)[u, r](u)+f(u) w d(u) r f(u)+[f(u), w][u, d(r)] f(u)=0
$$

Replace r by $d(u)$ in the last equation. As $f(u) f(u)=0$ and $d(u) f(u)=0$, we have $0=[f(u), w]\left[u, d^{2}(u)\right] f(u)=[f(u), w] d[u, d(u)] f(u)=$ $=[f(u), w] d(f(u)) f(u)$. Now $f(u) f(u)=0$ and so $f(u) d(f(u)) f(u)=0$. Hence $f(u) w d(f(u)) f(u)=0$ for all $u, w \in U$. Now if for some $u \in U$, $f(u) \neq 0$ then $u \notin Z$. Thus, by Lemma 4 of [3], $d(f(u)) f(u)=0$. By multiplying $f(u)$ from the right in (34), we have

$$
\begin{gathered}
f(u) d(v)[w, r] f(u)+[f(u), v]\{[d(w), r]+[w, d(r)]\} f(u)+ \\
+f(u) d(w)[v, r] f(u)+[f(u), w]\{[d(v), r]+[v, d(r)]\} f(u)=0 \\
\text { for all } r \in R \text { and } v, w \in U .
\end{gathered}
$$

Replace w by $[u, d(u)]=f(u)$. As $d(f(u)) f(u)=0, f(u) d(f(u))=0$ and $f(u) f(u)=0$, we get

$$
f(u) d(v) f(u) r f(u)+[f(u), v]\{[d(f(u)), r]+[f(u), d(r)]\} f(u)=0 .
$$

From (25) we have $f(u) d(v) f(u)=0$, since $d(u) f(u)=0$ by (24). Hence from the last equation, we get

$$
[f(u), v]\{d(f(u)) r f(u)+f(u) d(r) f(u)\}=0
$$

i.e.

$$
f(u) U\{d(f(u)) r f(u)+f(u) d(r) f(u)\}=0 \quad \text { for all } r \in R .
$$

As $f(u) \neq 0$ and so $u \notin Z$, by Lemma 4 of [3], $d(f(u)) r f(u)+f(u) d(r) \times$ $f(u)=0$ for all $r \in R$. In particular $d(f(u)) v f(u)+f(u) d(v) f(u)=0$ for all $v \in U$. As we have seen above, $f(u) d(v) f(u)=0$, so we conclude that $d(f(u)) v f(u)=0$ for all $v \in U$, i.e, $d(f(u)) U f(u)=0$. As $f(u) \neq 0$, so by Lemma 4 of [3] $d(f(u))=0$.

Replace v by $f(u)$ in (34). As $d(f(u))=0$ and keeping in view (1) and (24), we get

$$
\begin{align*}
& \quad f(u) d(w)[f(u), r]+[u, d(w)] f(u) r d(u)+ \\
& +d(w)[u,[f(u), r]] d(u)+[u, w][f(u), d(r)] d(u)+ \tag{35}\\
& +[w, d(u)] f(u) r d(u)+[f(u), w][f(u), d(r)]=0 \\
& \quad \text { for all } r \in R, w \in U .
\end{align*}
$$

Multiplying by $f(u)$ from the right in (35), as we have seen above $f(u) d(w)$ $f(u)=0$ for all $w \in U$, and we conclude that

$$
f(u) w f(u) d(r) f(u)=0 \quad \text { for all } w \in U, r \in R
$$

As $f(u) \neq 0$, again by Lemma 4 of [3], we have

$$
\begin{equation*}
f(u) d(r) f(u)=0 \text { for all } r \in R \tag{36}
\end{equation*}
$$

In view of (36), we conclude from (35) that

$$
\begin{gather*}
-f(u) d(w) r f(u)+[u, d(w)] f(u) r d(u)+d(w) f(u)[u, r] d(u)+ \\
+[u, w] f(u) d(r) d(u)+[w, d(u)] f(u) r d(u)+f(u) w f(u) d(r)- \tag{37}\\
-f(u) w d(r) f(u)=0 \quad \text { for all } r \in R, w \in U
\end{gather*}
$$

Replace r by $r u$ in (37) and use (37). As $u f(u)=f(u) u$ and $d(u) f(u)=0$, we get

$$
\begin{aligned}
& \quad[u, d(w)] f(u) r f(u)+d(w) f(u)[u, r] f(u)+[u, w] f(u) d(r) f(u)+ \\
& +[u, w] f(u) r d(u) d(u)+[w, d(u)] f(u) r f(u)+f(u) w f(u) r d(u)=0
\end{aligned}
$$

$$
\text { for all } r \in R, w \in U \text {. }
$$

In view of (33) and (36) the last equation yields

$$
\begin{align*}
{[u, d(w)] } & f(u) r f(u)+[u, w] f(u) r d(u) d(u)+[w, d(u)] f(u) r f(u)+ \tag{38}\\
& +f(u) w f(u) r d(u)=0 \quad \text { for all } r \in R, w \in U
\end{align*}
$$

In (38), let $r=r u$, and use (38). As $u f(u)=f(u) u$, we get

$$
[u, w] f(u) r u d(u) d(u)+f(u) w f(u) r f(u)-[u, w] f(u) r d(u) d(u) u=0
$$

But from (24), $u d(u) d(u)=d(u) u d(u)=d(u) d(u) u$. Hence $f(u) w f(u) r f(u)=0$ for all $w \in U, r \in R$. Since $f(u) \neq 0$, by Lemma 4 of [3], $f(u) r f(u)=0$ for all $r \in R$. Since R is prime, we conclude that $f(u)=0$. Thus $f(u)=0$ for all $u \in U$. So, by Theorem 7 of [2] either $d=0$ or $U \subset Z$.
3. In this section our object is to provide the affirmative answer for a question raised by J. Vukman in [6]. J. Vukman [6, Theorem 2] proved that if R is a prime ring, char $R \neq 2,3$, and d is a derivation of R such that $[[d(x), x], x] \in Z$ for all $x \in R$, then either $d=0$ or R is commutative. We generalize this result in case char $R=3$ and prove the following:

Theorem 2. Let R be a prime ring of characteristic different from 2 , and let d be a derivation of R such that $[[d(x), x], x] \in Z$ for all $x \in R$. Then either $d=0$ or R is commutative.

Proof. Case I. If char $R \neq 2,3$, the result follows from Theorem 2 of [6].

Case II. Suppose now that $\operatorname{char} R=3$. Replace x by $x+y$ where $y \in R$ in the hypothesis, then by using a similar approach as in the proof of (2) we obtain

$$
\begin{equation*}
[[d(x), x], y]+[[d(x), y], x]+[[d(y), x], x] \in Z \quad \text { for all } x, y \in R \tag{39}
\end{equation*}
$$

Replace y by $y x$ in (39), as char $R=3$, and expand then

$$
\begin{align*}
& \{[[d(x), x], y]+[[d(x), y], x]+[[d(y), x], x]\} x+ \\
& \quad+[[y, x], x] d(x) \in Z \quad \text { for all } x, y \in R \tag{40}
\end{align*}
$$

Commuting (40) with x, in view of (39), we get

$$
[[y, x], x] d(x) x=x[[y, x], x] d(x) \quad \text { for all } x, y \in R .
$$

Replace y by $d(x)$, then $[[d(x), x], x][d(x), x]=0$, since $[[d(x), x], x] \in Z$. Hence $[f(x), x] R f(x)=0$ for all $x \in R$. If for some $x \in R,[f(x), x] \neq 0$ then $f(x)=0$ and so $[f(x), x]=0$, since R is prime. Thus $[f(x), x]=0$ for all $x \in R$. So by Theorem 1 of $[6]$ either $d=0$ or R is commutative.

References

[1] Ram Awtar, Lie and Jordan structure in prime rings with derivations, Proc. Amer. Math. Soc. 41 (1973), 67-74.
[2] Ram Awtar, Lie structure in prime rings with derivations, Publicationes Mathematicae (Debrecen) 31 (1984), 209-215.
[3] J. Bergen, I.N. Herstein and J. W. Kerr, Lie ideals and derivations of prime rings, J. Algebra 71 (1981), 259-267.
[4] I.N. Herstein, Rings with involution, University of chicago Press, Chicago, 1976.
[5] E. Posner, Derivations in prime rings, Proc. Amer. Math. Soc. 8 (1957), 1093-1100.
[6] J. Vukman, Commuting and centralizing mappings in prime rings, Proc. Amer. Math. Soc. 109 (1990), 47-52.

RAM AWTAR
DEPARTMENT OF MATHEMATICS
BIRLA INSTITUTE OF TECHNOLOGY AND SCIENCE
PILANI (RAJ.) - 333031,
INDIA
(Received January 3, 1992; revised June 16, 1992)

