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Harmonic maps and the topology
of complete submanifolds

By QIAOLING WANG (Braśılia)

Abstract. In this paper, we obtain several Liouville theorems for harmonic
maps and use them to study the topology of minimal submanifolds in a Euclidaen
space and open submanifolds in manifolds with non-negative bi-Ricci curvature.

1. Introduction

Harmonic maps are critical points of the energy functional defined on
the space of maps between two Riemannian manifolds. The Liouville type
properties for harmonic maps have been studied extensively in the past
years (cf. [Ch], [C], [EL1], [EL2], [ES], [H], [HJW], [J], [SY], [S], [Y1], etc.).
It has been shown by Schoen and Yau that a harmonic map of finite energy
from a stable minimal hypersurface in complete Riemannian manifolds
with non-negative sectional curvature to a complete manifold with non-
positive sectional curvature is constant [SY]. This Liouville theorem of
Schoen–Yau was used [SY] to show the important result which states
that any smooth map of finite energy from a stable minimal hypersurface
of complete manifolds with non-negative sectional curvature to a compact
manifold with non-positive sectional curvature is homotopic to constant on
each compact set. In this paper, we use the same idea of Schoen–Yau to
study the minimal submanifolds in Euclidean space and open submanifolds
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in manifolds with non-negative bi-Ricci curvature. In order to state our
results, let us firstly fix some notation.

Definition 1.1 ([W]). Let M be an n-dimensional complete minimal
immersed submanifold in Rm, the m-dimensional Euclidean space. Denote
by |A|2 the squared norm of the second fundamental form A of M in Rm.
M is said to be super stable if for all compactly supported ψ ∈ H2

1 (M), it
holds ∫

M
|∇ψ|2 ≥

∫
M

|A|2ψ2. (1.1)

From [Sp], we know that a super stable minimal immersed submanifold
in Rm is always stable. In the case that n = m− 1, the inequality (1.1) is
just the usual stability inequality for minimal hypersurface in Euclidean
space.

Definition 1.2 ([ShY], [T]). Let M be an m-dimensional complete Rie-
mannian manifold, and u, v be orthonormal tangent vectors. We set

b-Ric(u, v) = Ric(u, u) + Ric(v, v) −K(u, v),

and call it the bi-Ricci curvature in the directions u, v. Here Ric and K

denote the Ricci and sectional curvatures of M , respectively.

Some interesting results about stable minimal hypersurfaces in man-
ifolds with non-negative bi-Ricci curvature have been obtained, e.g. in
[ShY], [T].

Definition 1.3. Let M be a complete oriented hypersurface immersed
in an (n+ 1)-dimensional oriented Riemannian manifold M . Let ∇ be the
gradient operator of M and denote by |A|2 the squared norm of the second
fundamental form of M in M . We say that M is stable if∫

M
{|∇ψ|2 − (|A|2 + Ric(µ, µ))ψ2} ≥ 0 (1.2)

for all all compactly supported ψ ∈ H2
1 (M), where Ric(µ, µ) is the Ricci

curvature of M in the unit normal direction µ of M .

In the Definition 1.3 above, we do not assume that M is minimal or
have constant mean curvature. In the case that M is minimal in M , the
inequality (1.2) is the usual stability inequality for minimal hypersurfaces.
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Now we can state our results in this paper as follows.

Theorem 1.1. LetM be an n-dimensional complete super stable min-

imal submanifold immersed in Rn+p and let N be a complete Riemannian

manifold with non-positive sectional curvature. Then any harmonic map

from M to N with finite energy must be a constant.

It has been shown by Schoen–Yau [SY] that any smooth map of
finite energy from a complete Riemannian manifold to a compact manifold
with non-positive sectional curvature is homotopic to a constant on each
compact set. Thus Theorem 1.1 implies immediately the following

Corollary 1.1. Let M be an n-dimensional complete super stable

minimal submanifold immersed in Rn+p and let N be a complete Rie-

mannian manifold with non-positive sectional curvature. If f : M → N is

a smooth map with finite energy, then f is homotopic to constant on each

compact set.

As an application of this corollary, one has the following result the
proof of which is similiar to that of the corollary to Theorem 1 in [SY].

Corollary 1.2. Let M be as in Theorem 1.1 and let D be a compact

domain in M with smooth simply connected boundary. Then there exists

no non-trivial homomorphism from π1(D) into the fundamental group of

a compact manifold with non-positive sectional curvature.

Our next result is a Liouville theorem for harmonic maps from stable
hypersurfaces in manifolds with non-negative bi-Ricci curvature.

Theorem 1.2. Let M be an n(2 ≤ n ≤ 5)-dimensional complete non-

compact oriented stable hypersurface in a complete Riemannian manifold

M with non-negative bi-Ricci curvature. Assume that N is a complete

Riemannian manifold with non-positive sectional curvature. Then any

harmonic map from M to N with finite energy is constant.

Combining Theorem 1.2 and the Schoen–Yau’s work mentioned before,
one gets

Corollary 1.3. Let M be an n(2 ≤ n ≤ 5)-dimensional complete non-

compact oriented stable hypersurface in a complete Riemannian manifold

M with non-negative bi-Ricci curvature. Then any smooth map with
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finite energy from M to a compact manifold with non-positive sectional

curvature is homotopic to constant on each compact set.

Corollary 1.4. Let M be as in Theorem 1.2 and let D be a compact

domain in M with smooth simply connected boundary. Then there exists

no non-trivial homomorphism from π1(D) into the fundamental group of

a compact manifold with non-positive sectional curvature.

2. Preliminaries

Let M and N be complete Riemannian manifolds of dimensions n
and s, respectively. Let f : M → N be a harmonic map. Let {ei}n

i=1

and {eα}s
α=1 be local orthonormal frames of M and N , respectively. Sup-

pose {ωi}n
i=1 and {θα}s

α=1 are the dual coframes of {ei}n
i=1 and {eα}s

α=1,
respectively, and {ωij}n

i,j=1 and {θαβ}s
α,β=1 are the corresponding connec-

tion forms. Denote by Rijkl and Kαβγδ the curvature tensors of Mn and
N s, respectively. Then we have the structure equations:



dωi =

∑
j ωij ∧ ωj

ωij + ωji = 0

dωij =
∑

k ωik ∧ ωkj − 1
2
∑

k,lRijklωk ∧ ωl,



dθα =

∑
β θαβ ∧ θβ

θαβ + θβα = 0

dθαβ =
∑

γ θαγ ∧ θγβ − 1
2
∑

γ,δ Kαβγδθγθδ.

Define fαi, 1 ≤ α ≤ s, 1 ≤ i ≤ n by

f∗(θα) =
∑

i

fαiωi. (2.1)

The energy density e(f) of f is given by

e(f) =
∑
α,i

f2
αi.
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Taking the exterior differentiation of (2.1), we get

f∗(dθα) =
∑

i

(dfαi ∧ ωi + fαidωi) ,

which gives ∑
i

(
dfαi −

∑
j

fαjωij − f∗(θαβ)fβi

)
∧ ωi = 0. (2.2)

Define fαij by

dfαi +
∑
β

fβif
∗(θβα) +

∑
j

fαjωji =
∑

j

fαijωj. (2.3)

Then (2.2) and (2.3) imply that fαij = fαji and f is harmonic means∑
i

fαii = 0, ∀ α = 1, . . . , s.

Exterior differentiating (2.3), we have∑
l

(
dfαil +

∑
j

(fαijωjl + fαjlωji) +
∑
β

fβilf
∗(θβα)

)
∧ ωl

=
1
2

∑
j,k,l

Rijklfαjωk ∧ ωl +
1
2

∑
β,δ,γ,k,l

Kαβγδfβifγkfδlωk ∧ ωl.

(2.4)

Define∑
k

fαijkωk = dfαij +
∑

k

(fαikωkj + fαkjωki) +
∑
β

fβijf
∗(θαβ);

then (2.4) implies that

fαikl − fαilk =
∑

j

Rijlkfαj +
∑
β,γ,δ

Kαβγδfβifγlfδk.

Set e= e(f) and let ∆ be the Laplacian operator acting on functions onMn.
From the above formula, one can easily get the following Bochner type for-
mula for harmonic maps which was first derived by Eells–Sampson [ES].

1
2
∆e =

∑
α,i,j

f2
αij +

∑
α,i,j

Rijfαifαj −
∑

α,β,γ,δ,i,j

Kαβγδfαifβjfγifδj, (2.5)

where (Rij) is the Ricci tensor of M . It is known that (cf. [SY])∑
α,i,j

f2
αij ≥

(
1 +

1
2ns

)
|∇√

e|2. (2.6)
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3. Proofs of the theorems

Proof of Theorem 1.1. We use the methods in [SY]. Let A be the
second fundamental form of M in Rn+p which is defined by

A(X,Y ) = ∇XY −∇XY, ∀ X,Y ∈ TM,

where ∇ and ∇ are the Riemannian connections on Rn+p and M , re-
spectively. Let s = dimN and let e = e(f) be the energy density of f .
Replacing ψ in the stability inequality (1.1) by

√
eφ with φ ∈ C∞

0 (M), we
get ∫

M
eφ2|A|2 ≤

∫
M
e|∇φ|2 + 2

∫
M

√
eφ〈∇√

e,∇φ〉φ2 +
∫

M
φ2|∇√

e|2

=
∫

M
e|∇φ|2 − 1

2

∫
M
φ2∆e+

∫
M
φ2|∇√

e|2. (3.1)

Let e1, . . . , en, en+1, . . . , en+p be a local orthonormal frame on Rn+p such
that when restricted to M , e1, . . . , en are tangent to M . We will make the
following index conventions:

1 ≤ i, j, k, l ≤ n, n+ 1 ≤ a, b, c, d ≤ n+ p, 1 ≤ α, β, γ ≤ m.

Set
ha

ij = 〈A(ei, ej), ea〉, ∀ i, j, a;

then
|A|2 =

∑
a,i,j

(ha
ij)

2.

Since M is minimal, the Gauss equation implies that the Ricci curvature
tensor Ric of M satisfies

Rij ≡ Ric(ei, ej) = −
∑

k

〈A(ei, ek), A(ek , ej)〉 = −
∑
k,a

ha
ikh

a
kj . (3.2)

It follows from (2.5), (3.2), the non-positivity of the sectional curvature
of N and the Schwarz inequality that

1
2
∆e ≥

∑
α,i,j

f2
αij +

∑
α,i,j

Rijfαifαj
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=
∑
α,i,j

f2
αij −

∑
a,α,i,j,k

ha
ikh

a
kjfαifαj

=
∑
α,i,j

f2
αij −

∑
a,α,k

(∑
i

ha
ikfαi

)2

≥
∑
α,i,j

f2
αij −

∑
k,a,α

(∑
i

(ha
ik)

2

)(∑
i

f2
αi

)
=
∑
α,i,j

f2
αij − |A|2e.

Substituting the above inequality into (3.1), we obtain∫
M
e|∇φ|2 ≥

∫
M
φ2

(∑
α,i,j

f2
αij − |∇√

e|2
)
.

Thus we have from (2.6) that
1

2ns

∫
M
φ2|∇√

e|2 ≤
∫

M
e|∇φ|2. (3.3)

Fix a p ∈M and choose φ to be a cut-off function with the properties

φ =

{
1 on B(p, r)

0 on M \B(p, 3r)

and
|∇φ| ≤ 1

r
,

where B(p, r) denotes the geodesic ball of M of radius r with center p. It
then follows from (3.3) that∫

B(p,r)
|∇√

e|2 ≤ 2ns
r2

E(f).

Letting r → ∞, it follows that e is a constant.
On the other hand, we obtain by choosing the above function φ into

the inequality (1.1) that ∫
B(p,r)

|A|2 ≤ vol(M)
r2

. (3.4)

If vol(M) < ∞, then we conclude by letting → ∞ that M is totally
geodesic and so M is an affine n-plane. This is a contradiction. Therefore
vol(M) = ∞, which implies from E(f) < ∞ that e = 0. Consequently,
f is a constant. This completes the proof of Theorem 1.1. �
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Proof of Theorem 1.2. Set s = dimN and assume that f : M →
N is a harmonic map. Let e1, . . . , en, µ be a local orthonormal frame on M
such that e1, . . . , en when restricted to M form a local orthonormal frame.
Set

hij = 〈A(ei, ej), µ〉, i, j = 1, . . . , n.

The squared norm of the second fundamental form of M is then given by

|A|2 =
∑
i,j

h2
ij .

Replacing ψ in the stability inequality (1.2) by
√
eφ with φ ∈ C∞

0 (M),
we get ∫

M
eφ2(|A|2 + Ric(µ, µ))

≤
∫

M
e|∇φ|2 + 2

∫
M

√
eφ〈∇√

e,∇φ〉φ2 +
∫

M
φ2|∇√

e|2

=
∫

M
e|∇φ|2 − 1

2

∫
M
φ2∆e+

∫
M
φ2|∇√

e|2. (3.5)

From Gauss equation, we know that the Ricci curvature tensor of M
is given by

Rij =
∑

k

(
R(ei, ek, ej , ek) + hkkhij − hikhjk

)
, (3.6)

where R is the curvature tensor of M . Set uα =
∑n

k=1 fαkek and let u′α
be the unit vector in the direction uα; it then follows from (2.5),(3.6) and
the non-positivity of the sectional curvature of N that

1
2
∆e ≥

∑
α,i,j

f2
αij +

∑
α,i,j,k

(
R(ei, ek, ej , ek) + hkkhij − hikhjk

)
fαifαj

=
∑
α,i,j

f2
αij +

∑
α,k

|uα|2R(uα′ , ek, uα′ , ek) +
∑

α,i,j,k

(hkkhij − hikhjk) fαifαj

=
∑
α,i,j

f2
αij +

∑
α,k

|uα|2
(
Ric(uα′ , uα′) −K(uα′ , µ)

)

+
∑

α,i,j,k

(hkkhij − hikhjk)fαifαj. (3.7)



Harmonic maps and the topology of complete submanifolds 427

We claim that
∑

α,i,j,k

(hkkhij − hikhjk) fαifαj ≥ −|A|2e.

In order to see this, let us take e1, . . . , en to be the orthonormal principal
directions corresponding to the principal curvatures λ1, . . . , λn. That is,

hij = λiδij , ∀ i, j.

Then we have

∑
α,i,j,k

(hkkhij − hikhjk) fαifαj =
∑
α,i,j

((∑
k

λk

)
δijλi − δijλiλj

)
fαifαj

=
(∑

k

λk

)(∑
α,i

λif
2
αi

)
−
∑
α,i

λ2
i f

2
αi

=
∑
α,i

(∑
k �=i

λk

)
λif

2
αi.

For any fixed i, set

Gi =
(∑

k �=i

λk

)
λi.

When n = 2, Gi ≥ −(λ2
1 + λ2

2) = −|A|2.
When n = 3,

G1 = (λ2 + λ3)λ1 ≥ −λ
2
1 + λ2

2

2
− λ2

1 + λ2
3

2
≥ −|A|2,

and similarly, Gi ≥ −|A|2, i = 2, 3.
When n = 4,

G1 = (λ2λ1 + λ3λ1 + λ4λ1)

≥ −λ
2
1

3
− 3λ2

2

4
− λ2

1

3
− 3λ2

3

4
− λ2

1

3
− 3λ2

4

4
≥ −|A|2,

and similarly, Gi ≥ −|A|2, i = 2, 3, 4.
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When n = 5,

G1 = (λ2λ1 + λ3λ1 + λ4λ1 + λ5λ1)

≥ −λ
2
1

4
− λ2

2 −
λ2

1

4
− λ2

3 −
λ2

1

4
− λ2

4 −
λ2

1

4
− λ2

2

= −|A|2,

and similarly, Gi ≥ −|A|2, i = 2, 3, 4, 5.
Hence, we obtain∑

α,i,j,k

(hkkhij − hikhjk) fαifαj =
∑
α,i

Gif
2
αi

≥ −|A|2
∑
α,i

f2
αi = −|A|2e.

Thus, our claim is true and so we have

1
2
∆e ≥

∑
α,i,j

f2
αij +

∑
α

|uα|2
(
Ric(u′α, u

′
α) −K(u′α, µ)

)− |A|2e. (3.8)

Substituting (3.8) into (3.5), we obtain
∫

M
e|∇φ|2 ≥

∫
M
φ2

(
eRic(µ, µ) +

∑
α

|uα|2
(
Ric(u′α, u

′
α) −K(u′α, µ)

) )

+
∫

M
φ2

(∑
α,i,j

f2
αij − |∇√

e|2
)
. (3.9)

It follows from the non-negativity of the bi-Ricci curvature of M that

eRic(µ, µ) +
∑
α

|uα|2
(
Ric(u′α, u

′
α) −K(u′α, µ)

)
=
∑
α

{|uα|2
(
Ric(µ, µ) + Ric(u′α, u

′
α) −K(u′α, µ)

)} ≥ 0. (3.10)

Therefore ∫
M
e|∇φ|2 ≥

∫
M
φ2

(∑
α,i,j

f2
αij − |∇√

e|2
)
. (3.11)
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Thus we know from (2.6) that

1
2ns

∫
M
φ2|∇√

e|2 ≤
∫

M
e|∇φ|2. (3.12)

Fix a p ∈M and choose φ to be a cut-off function with the properties

φ =

{
1 on B(p, r)

0 on Mn \B(p, 3r)

and
|∇φ| ≤ 1

r
.

Substituting the above φ into (3.12), we get∫
B(p,r)

|∇√
e|2 ≤ 2ns

r2
E(f).

Letting r → ∞, one finds that e is constant.
Introducing the above φ into (3.11), taking r → ∞ and noticing that

e is constant, we conclude that

fαij ≡ 0, ∀ α, i, j,

which in turn implies from (3.8) that∑
α

|uα|2
(
Ric(u′α, u

′
α) −K(u′α, µ)

)− |A|2e ≤ 0.

Also, it follows by introducing the above φ into (3.9) and using (3.10) that

eRic(µ, µ) +
∑
α

|uα|2
(
Ric(u′α, u

′
α) −K(u′α, µ)

)
= 0.

Therefore
e
(
Ric(µ, µ) + |A|2) ≥ 0.

On the other hand, substituting the above φ into (3.5) and taking r → ∞,
one has ∫

M
e
(|A|2 + Ric(µ, µ)

) ≤ 0.
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Hence
e
(|A|2 + Ric(µ, µ)

)
= 0 (3.13)

holds on M .
Let v be an arbitrary unit vector tangent to M . From the non-

negativity of the bi-Ricci curvature of M for the orthonormal pair {v, µ},
it follows that

Ric(v, v) + Ric(µ, µ) −K(v, µ) ≥ 0. (3.14)

Set
v =

∑
i

aiei,
∑

i

a2
i = 1;

then (3.6) implies that the Ricci curvature of M in the direction v satisfies

Ric(v, v) =
∑
i,j

aiajRij

=
∑
i,j,k

aiajR(ei, ek, ej , ek) +
∑
i,j,k

(hkkhij − hikhjk)aiaj

= Ric(v, v) −K(v, µ) +
∑
i,j,k

(hkkhij − hikhjk)aiaj .

Using the same arguments as in the proof of the claim above, one deduces
that ∑

i,j,k

(hkkhij − hikhjk)aiaj ≥ −|A|2
∑

i

a2
i = −|A|2.

Therefore,
Ric(v, v) ≥ Ric(v, v) −K(v, µ) − |A|2. (3.15)

If e 
= 0, we get from (3.13)–(3.15) that

Ric(v, v) ≥ −Ric(µ, µ) − |A|2 = 0.

That is, M has non-negative Ricci curvature and so it has infinite volume
since it is non-compact [Y2]. But this contradicts to the fact that E(f)
is finite. Consequently, we conclude that e ≡ 0 and f is constant. This
completes the proof of Theorem 1.2. �
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