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On the maximal and minimal exponent
of the prime power divisors of integers

By I. KATAI (Budapest) and M. V. SUBBARAO (Edmonton)

Abstract. For some integer n and prime p let v,(n) be the largest non-
negative integer for which p”»(") is a divisor of n. Let h(n) = min,, v,(n),
H(n) = maxy, p(n). The mean value of h, H over some subsets of integers is
investigated.

1. Let P be the set of primes, and for a prime divisor p of n let vp(n)
be defined as p*»(™||n. Then

n=T]p".
p

As usual let 7(x, k,l) be the number of primes p < z in the arithmetical
progression = [ (mod k). Let

H(n):= n;ﬁx vp(n), h(n)= I;}‘inn vp(n).

NIVEN proved in [1] that

Zh(n) =z + Cé:zé?\/i—i-o(\/}) (x — o0), (1.1)

n<x
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and W. SCHWARZ and J. SPILKER in [2], that

S - M 0 (Mo (oVFEF)). 02
'rLzS:x Hgn) =M <%> x4+ O <x3/4 exp (_,Y 1ng)) ’ (1.3)

where v > 0 is a suitable constant.
D. SURYANARAYANA and SITA RAMACHANDRA RAO [8] proved that

Z H(n)=M(H)x+O (\/:Eexp (—fy(log 2)%/% (log log :c)_l/5)) . (1.4)

n<x

Furthermore they proved that

5 % = o+ 0 (Vaexp (—1(logz)* (loglogz) 7)), (1.5)

i<z

Z h(i) = 1z + cox? + e3x /3 + cqx't + 525+ O (:cl/6>

Z 1

W = dir + dle/Q + d3$1/3 + d4:c1/4 + d5:c1/5 + O (551/6> )
1

i<z

hold with suitable constants c, ¢;, d;.

Remark. Gu Tongxing and Cao Huizhong in their paper entitled “On
sums of exponents of factoring integers” published in Journal of Mathemat-
ical Research and Exposition 13(2), 1993 page 166 announced that they
can improve the error form in (1.4) to O(y/z exp(—c(log x)%/®(log log x)'/%)
by using some results of A. IviC and P. SHIU in Illinois J. Math., 26 (1982),
576-590.
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2. Let ((s) = >_1/n® be the Riemann zeta function, and

The following assertion (which is quoted now as Lemma 1) is an unpub-
lished result due to Michael Filaseta who communicated to JEAN-MARIE
DE KoONINCK and with the allowance of Dr. Filaseta his proof has been
written in the paper [9].

Lemma 1. Let k > 2 be an integer. Let g(x) be a function satisfying
1 < g(z) < logx for x sufficiently large, and set

1 3
h = x2k+1 g(:[;) .
Then the number of k-free integers in the interval (z,z + h] is
h h-logzx h
Do ( ) e <_> .
(k) g(x)? 9(x)

As a direct consequence we formulate the following

Corollary. Let Y = 2 log x. Using the abbreviation 7(s) defined
at the beginning of this section, we have

#ne oo+ Y] Hn)=r} =Y +1) —n(r) +0 <1§x> |

3. An asymptotic formula for the number of primes p with a fixed
value H(p+ 1) = r is given in

Theorem 1. Let € > 0 be fixed, Y = x%+5. Let » > 1. Then
Y Y
O
gz <<logx>2> |

1
H<1—7>, and for r > 2,
. pp—1)

(- 5=m) - G-

#{peP, pefr,z+Y]|Hp+1) =r}=e(r)
where

e(1)

e(r)
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Proor. We shall estimate

E.(2,Y)=#{pe€lz,2+Y], peP, Hp+1) <r}.

Let z = (logx)3. Let F be the number of those primes p in [z,z + Y],
for which ¢"*! | p 4+ 1 holds for some prime ¢ > 2. We deduce that

roo(L) "

We have F' < F| 4+ F5 + F3, where

Fy: Z (m(z+Y, ¢, -1) =7 (2,4, -1)),
:<:<q<YQ%j
qeP
Fy Z (m (:L‘—I—Y,qTH,—l) —W(x,qTH,—l))
Y1/27‘+2§q<y1/7‘+1
and
Fy =

S (e Vgt 1) - w (2, 1)),

1
valgq

By using the Brun—Titchmarsh inequality (see HALBERSTAM RICHERT [5],
Theorem 3.7, page 107) we can obtain that

cY

< 1/ <« ,  say.

log x ; / (log x)3
qeP
Furthermore
Y Y

B< ) ([q”“]) < oga)®

q'r+l>\/?

Let us estimate F. If ¢"*' > Y, ¢ | p+ 1, then p +1 = ¢" v,
2z
v < Y-

For a fixed v < 27”3 the number of those primes ¢ for which
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r< ¢t <z+Y is less than ¢(2)/7+ . X and so

v T
1
T\ 71 Y
F <_) L
< ()7
l/<2z

whence we can obtain that F3 < Yr%l.
Let us observe that H(p+1) < r if and only if 3 jri1, 4 p(d) = 1.
From the argument used earlier we obtain that

BE@v)= Y Y u(d)+0<(b§7x)2>.

pE€lz,z+Y] d"H1|p+1
P(d)<z
Here P(n) denotes the largest prime divisor of n.

If p+ 1 is such a number for which there is a d > 22, such that
d™t!|p+1, and P(d) < z, then there is a divisor § of d such that § € [z, %],
and so 0" *1 | p+ 1.

Since

S (r (e Y0 1) = 7 (2,67, 1))

5€(z,22]

therefore

E.(z,Y)= Z wu(d) (7r (l‘—l— Y,d 1, —1) - (:L‘,dTH,—l))

and so by the prime number theorems for short intervals due to HUXLEY
[7] we obtain that

Y d Y
B V)= gy 2 %W(m)

P(d)<z
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One can observe furthermore that

> e 10 -57m) 0 (53)
P(d)<z

say.
If r > 2, then H(n) = r holds if and only if H(n) < r,and H(n) <r—1
does not hold, therefore

#{pe€r,z+Y],Hp+1)=r}=E(2,Y)— E._1(2,Y).
Furthermore
#{p € [ZL‘,{L‘—l—Y],H(p—I— 1) = 1} = El(l‘,Y),

thus our theorem immediately follows. ]

4. Let 1 <Y < /z. The number of those n < z which have a divisor
p? such that p > Y, is less than O(+ ). Hence, we can deduce easily that

e #n<z|Hn+j)=r) j=0,...,s} (4.1)
=c(ro,r1,...,75) + O ((logx)_Q) , .

say, with a constant c¢(rg,...,7s).
Similarly, one can get that

1
E#{pgx\ﬂ(p—i—l):n, l=1,...,s}
=d(r1,...,rs) + O ((logz)~?).

The relations (4.1), (4.2) hold for every choice of 9, r,...,7s € N.

(4.2)

(4.1) readily follows from the relation
e #n<z|Hn+j)<ry, j=0,...,s}
=d(ro,r1,...,75) + O ((logx)_2)

which is almost a direct consequence of the relation

> uld) =

dtim

{1 if H(m) <t,

0 otherwise.
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Hence

#{n<az|Hn+j) <rj j=0,..,5}

= > pldo)... pld)#{n <z n+j=0 (modd;7), j=0,...,s}
do,d1,...,ds

The right hand side can be evaluated simply, since we can drop all those
do, ..., ds for which maxd; > (logz)?, their contribution is O (z/(log z)?).

We can argue similarly, by the proof (4.2). Here we should use the
Siegel-Walfisz theorem also, which asserts that

iz
mz kD) = —2 (1 40 (e—cvlogﬂf»
D= o)
uniformly as (I,k) = 1, k < (log z)®, where ¢ > 0 is a suitable, and B > 0
is an arbitrary large constant (see [10], Theorem 8.3 Chapter IV).

Theorem 2. Let g € Zlx|, irreducible over Q, r = degg, r > 3.
Assume that g(n) € N for n > 0.

Then
1
—#{n < x| H(g(n)) < s} =clg,s) + O ((loglogz)™"),  (45)
if s >r—2, ¢(g,s) Iis a suitable constant, and
1
o #p <z | H(g(p) < s} =d(g,s) + O ((loglogz) "), (4.6)

if s >r—1,d(g,s) is a suitable constant

Remark. The proof is based upon an important theorem of C. HOOLEY
[4] which is quoted now as

Lemma 2. Let g be a polynomial satisfying the conditions of Theo-
rem 2. Let N”(x) be the number of those n < x for which ¢"~1 divides
g(n) for at least one q > élog x. Then

N'(z) < x- (logx)r%l_l.

Let S(x) be the number of those primes p < x for which there exists
a prime q > log x such that ¢"|g(p), then

liz
=0 itz
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PrROOF OF THEOREM 2. By using Lemma 2

Yo=Y 37 ud)+ o (),

n<x n<z dstl|g(n
H(g(n))<s o)

where d runs over those square free integers the largest prime factor of
which is smaller than élog x. Hence (4.5) can be deduced immediately.
(See [4], Chapter 4, Theorem 3) (4.6) can be proved similarly, by using
Lemma 2, the Siegel-Walfisz and the Bombieri—Vinogradov theorem. [

Theorem 3. Let ¢ > 0 be a constant, ¥ = z3te, Then, for every
s € N, and every fixed A > 0,

1 _

v Z 1 =a(s) + O((log z) A), (4.7)
ne€z,x+Y]
H(n2+1)=s

1 _

v g 1=10(s)+ O ((logz)™ ). (4.8)
p€lz,z+Y]
H(p2+1):s

Remark. In [6] we proved that the number of those n € [z,z + Y] for
which ¢?|n? + 1 holds for at least one ¢ > VY is O (a:2/ 31og a:) By using
this, and standard techniques we obtain (4.7). (4.8) follows similarly, by
using the Hoheisel-Tatuzawa theorem, the short interval version of the
Siegel-Walfisz theorem ([10], Theorem 3.2, Chapter IX).

5. Theorem 4. We have
(Z :) —#n<z|Hn) =1, h(n+1)>2}
~cviro(RE). o

log

PRrROOF OF THEOREM 4. If H(n) =1, h(n+1) > 2, then n+1 can be
uniquely written as am?, where a is cube-full, m is square-free and am? — 1
is square free.
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Let
S = Y (um)] lu(am? — 1) (5.2)
2<1
(m,a):l
Then

IESIDIEDIDDEDIDDIED DED D

a<x a<Y a>Y

Since ), < \/g, and summing over cube-full a >
obtain that 3> <« Y2 if Y = (log ).

log x>
To evaluate (5.2) for a fixed a, first we overestimate the number of

those m for which p > Z and either p?|m, or p?lam?® —1. Z = %log x. We

1
a>Y \/a

have
1
1<2 — 2 - | =
> 3 \fz <2({£) 5
m
m<VTrly
furthermore
1 r 1
< — <34/ = =
> OY sty Lenftl
m<\/7p\am -1 p>Y

Y<p<\/f
)SIED SENNEEENC R DI

m<y/Z plam?—1 VE<p<a(logz)°
VE<p<(Vz)(log z)°
<9 \/7 loglogfc.
a logx

For fixed integers a,b > 0 the number of solutions m,n, am? < x of
the equation am? — bn? = 1 is no more than O(logx). This follows from

the identity
@ _n\(fa . n\_ 1
b m b m/)  bm?’

whence one get that if n, m is a solution, then n/m is an approximant from
the continued fraction of \/% . As it is known, no more than O( log \/§ ) =
O(log x) such m, n pairs exist.
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Collecting our inequalities, we get that

Y= X (Shaeen)( X wew)

82|am2—1
log 1
rofieD) ({22
a a logx
x
“0 —c
+0<\£(0gw) )

where ¢ is an arbitrary fixed positive constant. The asterisk means that
we sum over those d1, do the largest prime factor of which is no larger than
%loga:. In this case §; < :c%“, 09 < 267, For fixed 01,02, (01,02) =1
we have to sum over those v < %\/% for which adfr? —1 = 0 (mod 63)
which is equivalent to 2 = a (mod 63) if (a,d2) = 1.

Let pq(D) be the number of solutions of v (mod D), for which v? = a
(mod D), if D is square free. It is clear that p, is multiplicative in D,
pa(p) =1+ (%) for p prime, p{ D, and so

4 {y < %\/% V2 =q (mod 55)} — p(52) <@\/§+ 0(1)> |

Thus

Z \/76126: M(S?(SQ (52)4—0(%:*%:*1).
it L

The error term is O (m1/3+25). For the fixed 02,

Z* f1(61) 1 1
52 H (1_1? +0 21/2
(61,62)=1 1 (p,02)=1

p<(logz)'/6

1 1 1
~qllize o ()
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Thus

_fr 1 1(92)p(53) 1 z _1
2= a (2 53 Hl—l/p2+0<\/; (logfc)3>’

(62,a)=1 p|o2

the sum on the right hand side

1(32)p(83) 1
Z 25% : H 1—1/p?

(82,a)=1

Summing ) over the cube-full a, we obtain (5.1) easily. O

One can prove similarly

Theorem 5. Let r, s be arbitrary positive integers. Then

#{n<z|Hn)<r hin+1)>s}

5.3
= c(r,s)z'/* + 0 (wl/s/log .CL‘) . (5:3)
The following two conjectures seem to be quite plausible.
Conjecture 1. We have
cxl/4
#{n<z|h(n)>2 hin+1)>2} > og 7 (5.4)
Conjecture 2. We have
#{p<z|h(p+1)>2} -0 (z— ). (5.5)
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