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On the maximal and minimal exponent
of the prime power divisors of integers

By I. KÁTAI (Budapest) and M. V. SUBBARAO (Edmonton)

Abstract. For some integer n and prime p let νp(n) be the largest non-
negative integer for which pνp(n) is a divisor of n. Let h(n) = minp|n νp(n),
H(n) = maxp|n νp(n). The mean value of h, H over some subsets of integers is
investigated.

1. Let P be the set of primes, and for a prime divisor p of n let νp(n)
be defined as pνp(n)‖n. Then

n =
∏
p

pνp(n).

As usual let π(x, k, l) be the number of primes p ≤ x in the arithmetical
progression ≡ l (mod k). Let

H(n) := max
p|n

νp(n), h(n) = min
p|n

νp(n).

Niven proved in [1] that

∑
n≤x

h(n) = x +
ζ(3/2)
ζ(3)

√
x + o

(√
x

)
(x → ∞), (1.1)
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and W. Schwarz and J. Spilker in [2], that

∑
n≤x

H(n) = M(H)x + O
(
x3/4 exp

(
−γ

√
log x

))
, (1.2)

∑
n≤x

1
H(n)

= M
(

1
H

)
x + O

(
x3/4 exp

(
−γ

√
log x

))
, (1.3)

where γ > 0 is a suitable constant.
D. Suryanarayana and Sita Ramachandra Rao [8] proved that

∑
n≤x

H(n) = M(H)x + O
(√

x exp
(
−γ(log x)3/5(log log x)−1/5

))
. (1.4)

Furthermore they proved that

∑
i≤x

1
H(i)

= cx + O
(√

x exp
(
−γ(log x)3/5(log log x)−1/5

))
, (1.5)

∑
i≤x

h(i) = c1x + c2x
1/2 + c3x

1/3 + c4x
1/4 + c5x

1/5 + O
(
x1/6

)

∑
i≤x

1
h(i)

= d1x + d2x
1/2 + d3x

1/3 + d4x
1/4 + d5x

1/5 + O
(
x1/6

)
,

(1.6)

hold with suitable constants c, cj , dj .

Remark. Gu Tongxing and Cao Huizhong in their paper entitled “On
sums of exponents of factoring integers” published in Journal of Mathemat-
ical Research and Exposition 13(2), 1993 page 166 announced that they
can improve the error form in (1.4) to O(

√
x exp(−c(log x)3/5(log log x)1/5)

by using some results of A. Ivič and P. Shiu in Illinois J. Math., 26 (1982),
576–590.
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2. Let ζ(s) =
∑

1/ns be the Riemann zeta function, and

η(s) :=
1

ζ(s)
− 1.

The following assertion (which is quoted now as Lemma 1) is an unpub-
lished result due to Michael Filaseta who communicated to Jean-Marie

De Koninck and with the allowance of Dr. Filaseta his proof has been
written in the paper [9].

Lemma 1. Let k ≥ 2 be an integer. Let g(x) be a function satisfying

1 ≤ g(x) ≤ log x for x sufficiently large, and set

h = x
1

2k+1 g(x)3.

Then the number of k-free integers in the interval (x, x + h] is

h

ζ(k)
+ O

(
h · log x

g(x)3

)
+ O

(
h

g(x)

)
.

As a direct consequence we formulate the following

Corollary. Let Y = x
1

2r+1 log x. Using the abbreviation η(s) defined

at the beginning of this section, we have

#{n ∈ [x, x + Y ] | H(n) = r} = Y (η(r + 1) − η(r)) + O

(
Y

log x

)
.

3. An asymptotic formula for the number of primes p with a fixed
value H(p + 1) = r is given in

Theorem 1. Let ε > 0 be fixed, Y = x
7
12

+ε. Let r ≥ 1. Then

#{p ∈ P, p ∈ [x, x + Y ] | H(p + 1) = r} = e(r)
Y

log x
+ O

(
Y

(log x)2

)
,

where

e(1) =
∏
p

(
1 − 1

p(p − 1)

)
, and for r ≥ 2,

e(r) =
∏
p

(
1 − 1

(p − 1)pr

)
−

∏
p

(
1 − 1

(p − 1)pr−1

)
.
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Proof. We shall estimate

Er(x, Y ) := #{p ∈ [x, x + Y ], p ∈ P, H(p + 1) ≤ r}.

Let z = (log x)3. Let F be the number of those primes p in [x, x + Y ],
for which qr+1 | p + 1 holds for some prime q > z. We deduce that

F = O

(
H

log x

)
. (3.1)

We have F ≤ F1 + F2 + F3, where

F1 : =
∑

z<q<Y
1

2r+2

q∈P

(
π

(
x + Y, qr+1,−1

) − π
(
x, qr+1,−1

))
,

F2 : =
∑

Y 1/2r+2≤q<Y 1/r+1

(
π

(
x + Y, qr+1,−1

) − π
(
x, qr+1,−1

))

and

F3 =
∑

Y
1

r+1≤q

(
π

(
x + Y, qr+1,−1

) − π
(
x, qr+1,−1

))
.

By using the Brun–Titchmarsh inequality (see Halberstam Richert [5],
Theorem 3.7, page 107) we can obtain that

F1 <
cY

log x

∑
q>z
q∈P

1/qr+1 	 Y

(log x)3
, say.

Furthermore

F2 	
∑

qr+1>
√

Y

([
Y

qr+1

])
	 Y

(log x)3
.

Let us estimate F3. If qr+1 > Y , qr+1 | p + 1, then p + 1 = qr+1ν,
ν < 2x

Y . For a fixed ν < 2x
Y the number of those primes q for which
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x ≤ qr+1ν ≤ x + Y is less than c(x
ν )1/r+1 · Y

x , and so

F3 	
∑

ν< 2x
Y

(x

ν

) 1
r+1 · Y

x

whence we can obtain that F3 	 Y
1

r+1 .
Let us observe that H(p + 1) ≤ r if and only if

∑
dr+1|p+1 µ(d) = 1.

From the argument used earlier we obtain that

Er(x, Y ) =
∑

p∈[x,x+Y ]

∑
dr+1|p+1
P (d)<z

µ(d) + O

(
Y

(log x)2

)
.

Here P (n) denotes the largest prime divisor of n.
If p + 1 is such a number for which there is a d > z2, such that

dr+1 | p+1, and P (d) < z, then there is a divisor δ of d such that δ ∈ [z, z2],
and so δr+1 | p + 1.

Since

∑
δ∈[z,z2]

(
π

(
x + Y, δr+1,−1

) − π
(
x, δr+1,−1

))

	 Y

log x

∑
z≤δ≤z2

1
ϕ(δr+1)

	 Y

(log x)2
,

therefore

Er(x, Y ) =
∑
d<z2

P (d)<z

µ(d)
(
π

(
x + Y, dr+1,−1

) − π
(
x, dr+1,−1

))

+ O

(
Y

(log x)2

)
,

and so by the prime number theorems for short intervals due to Huxley

[7] we obtain that

Er(x, Y ) =
Y

log x

∑
d<z2

P (d)≤z

µ(d)
ϕ(dr+1)

+ O

(
Y

(log x)2

)
.
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One can observe furthermore that∑
d<z2

P (d)≤z

µ(d)
ϕ(dr+1)

=
∏
p

(
1 − 1

(p − 1)pr

)
+ O

(
1

log x

)

say.
If r ≥ 2, then H(n) = r holds if and only if H(n) ≤ r, and H(n) ≤ r−1

does not hold, therefore

#{p ∈ [x, x + Y ],H(p + 1) = r} = Er(x, Y ) − Er−1(x, Y ).

Furthermore

#{p ∈ [x, x + Y ],H(p + 1) = 1} = E1(x, Y ),

thus our theorem immediately follows. �

4. Let 1 ≤ Y ≤ √
x. The number of those n ≤ x which have a divisor

p2 such that p > Y , is less than O( x
Y ). Hence, we can deduce easily that

x−1#{n ≤ x | H(n + j) = rj, j = 0, . . . , s}
= c(r0, r1, . . . , rs) + O

(
(log x)−2

)
,

(4.1)

say, with a constant c(r0, . . . , rs).
Similarly, one can get that

1
lix

#{p ≤ x | H(p + l) = rl, l = 1, . . . , s}
= d(r1, . . . , rs) + O

(
(log x)−2

)
.

(4.2)

The relations (4.1), (4.2) hold for every choice of r0, r1, . . . , rs ∈ N.

(4.1) readily follows from the relation

x−1#{n ≤ x | H(n + j) ≤ rj, j = 0, . . . , s}
= d(r0, r1, . . . , rs) + O

(
(log x)−2

) (4.3)

which is almost a direct consequence of the relation

∑
dt|m

µ(d) =

{
1 if H(m) < t,

0 otherwise.
(4.4)
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Hence

#{n ≤ x | H(n + j) ≤ rj , j = 0, . . . , s}

=
∑

d0,d1,...,ds

µ(d0) . . . µ(ds)#{n ≤ x | n + j ≡ 0 (mod dr+j
j ), j = 0, . . . , s}

The right hand side can be evaluated simply, since we can drop all those
d0, . . . , ds for which max dj ≥ (log x)2, their contribution is O

(
x/(log x)2

)
.

We can argue similarly, by the proof (4.2). Here we should use the
Siegel–Walfisz theorem also, which asserts that

π(x, k, l) =
li x

ϕ(k)

(
1 + O

(
e−c

√
log x

))
uniformly as (l, k) = 1, k ≤ (log x)B , where c > 0 is a suitable, and B > 0
is an arbitrary large constant (see [10], Theorem 8.3 Chapter IV).

Theorem 2. Let g ∈ Z[x], irreducible over Q, r = deg g, r ≥ 3.
Assume that g(n) ∈ N for n > 0.

Then

1
x

#{n ≤ x | H(g(n)) ≤ s} = c(g, s) + O
(
(log log x)−1

)
, (4.5)

if s ≥ r − 2, c(g, s) is a suitable constant, and

1
li x

#{p ≤ x | H(g(p)) ≤ s} = d(g, s) + O
(
(log log x)−1

)
, (4.6)

if s ≥ r − 1, d(g, s) is a suitable constant

Remark. The proof is based upon an important theorem of C. Hooley

[4] which is quoted now as

Lemma 2. Let g be a polynomial satisfying the conditions of Theo-

rem 2. Let N”(x) be the number of those n ≤ x for which qr−1 divides

g(n) for at least one q ≥ 1
6 log x. Then

N”(x) 	 x · (log x)
2

r+1
−1.

Let S(x) be the number of those primes p ≤ x for which there exists

a prime q > log x such that qr|g(p), then

S(x) = O

(
li x

log log x

)
.
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Proof of Theorem 2. By using Lemma 2

∑
n≤x

H(g(n))≤s

1 =
∑
n≤x

∑∗

ds+1|g(n)

µ(d) + O(N”(x)),

where d runs over those square free integers the largest prime factor of
which is smaller than 1

6 log x. Hence (4.5) can be deduced immediately.
(See [4], Chapter 4, Theorem 3) (4.6) can be proved similarly, by using
Lemma 2, the Siegel–Walfisz and the Bombieri–Vinogradov theorem. �

Theorem 3. Let ε > 0 be a constant, Y = x
2
3
+ε. Then, for every

s ∈ N, and every fixed A > 0,

1
Y

∑
n∈[x,x+Y ]
H(n2+1)=s

1 = a(s) + O
(
(log x)−A

)
, (4.7)

1
Y

∑
p∈[x,x+Y ]
H(p2+1)=s

1 = b(s) + O
(
(log x)−A

)
. (4.8)

Remark. In [6] we proved that the number of those n ∈ [x, x + Y ] for
which q2|n2 + 1 holds for at least one q ≥ √

Y is O
(
x2/3 log x

)
. By using

this, and standard techniques we obtain (4.7). (4.8) follows similarly, by
using the Hoheisel–Tatuzawa theorem, the short interval version of the
Siegel–Walfisz theorem ([10], Theorem 3.2, Chapter IX).

5. Theorem 4. We have(∑
:
)

= #{n ≤ x | H(n) = 1, h(n + 1) ≥ 2}

= C
√

x + O

( √
x

log x

)
.

(5.1)

Proof of Theorem 4. If H(n) = 1, h(n+1) ≥ 2, then n+1 can be
uniquely written as am2, where a is cube-full, m is square-free and am2−1
is square free.
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Let ∑
a

:=
∑

m2≤x
a

(m,a)=1

|µ(m)| |µ(am2 − 1)|. (5.2)

Then ∑
=

∑
a<x

∑
a

=
∑
a<Y

∑
a
+

∑
a≥Y

∑
a

=
∑(1)

+
∑(2)

.

Since
∑

a ≤ √
x
a , and summing over cube-full a

∑
a≥Y

1√
a
	 1

Y 1/6 , we

obtain that
∑(2) 	

√
x

log x , if Y = (log x)6.
To evaluate (5.2) for a fixed a, first we overestimate the number of

those m for which p > Z and either p2|m, or p2|am2 − 1. Z = 1
6 log x. We

have ∑
m<

√
x
a

∑
p2|m
p>Z

1 ≤ 2
√

x

a

∑
p>Z

1
p2

	 2
(√

x

a

)
1
Z

,

furthermore ∑
m<

√
x
a

∑
p2|am2−1

Y <p<
√

x
a

1 ≤ 2
√

x

a

∑
p>Y

1
p2

≤ 3
√

x

a
· 1
Y

,

∑
m<

√
x
a

∑
p|am2−1√

x
a
≤p<(

√
x)(log x)c

1 ≤ 2
√

x

a

∑
√

x
a
≤p<

√
x·(log x)c

1
p

≤ 2
√

x

a

log log x

log x
.

For fixed integers a, b > 0 the number of solutions m,n, am2 ≤ x of
the equation am2 − bn2 = 1 is no more than O(log x). This follows from
the identity (√

a

b
− n

m

)(√
a

b
+

n

m

)
=

1
bm2

,

whence one get that if n,m is a solution, then n/m is an approximant from
the continued fraction of

√
a
b . As it is known, no more than O

(
log

√
x
a

)
=

O(log x) such m, n pairs exist.
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Collecting our inequalities, we get that

∑
a

=
∑

m<
√

x
a

(∑∗
δ2
1 |m

µ(δ1)
)( ∑∗

δ2
2 |am2−1

µ(δ2)
)

+ O

(
x−1

1

√
x

a

)
+ O

(√
x

a

log log x

log x

)

+ O

(√
x

a
(log x)−c

)
,

where c is an arbitrary fixed positive constant. The asterisk means that
we sum over those δ1, δ2 the largest prime factor of which is no larger than
1
6 log x. In this case δ1 ≤ x

1
6
+ε, δ2 ≤ x

1
6
+ε. For fixed δ1, δ2, (δ1, δ2) = 1

we have to sum over those ν ≤ 1
δ2
1

√
x
a for which aδ4

1ν
2 − 1 ≡ 0 (mod δ2

2)

which is equivalent to ν2 ≡ a (mod δ2
2) if (a, δ2) = 1.

Let ρa(D) be the number of solutions of ν (mod D), for which ν2 ≡ a

(mod D), if D is square free. It is clear that ρa is multiplicative in D,
ρa(p) = 1 +

(
a
p

)
for p prime, p � D, and so

#
{

ν ≤ 1
δ2
1

√
x

a
, ν2 ≡ a (mod δ2

2)
}

= ρ(δ2
2)

(
1

δ2
1δ

2
2

√
x

a
+ O(1)

)
.

Thus

∑
a

=
√

x

a

∑∗

(δ1,δ2)=1
(a,δ2)=1

µ(δ1)µ(δ2)
δ2
1δ

2
2

ρ(δ2
2) + O

(∑∗

δ1

∑∗

δ2

1
)

.

The error term is O
(
x1/3+2ε

)
. For the fixed δ2,

∑∗

(δ1,δ2)=1

µ(δ1)
δ2
1

=
∏

(p,δ2)=1

p<(log x)1/6

(
1 − 1

p2

)
+ O

(
1

x1/2

)

=
1

ζ(2)

∏
p|δ2

1
1 − 1/p2

+ O

(
1

(log x)6

)
.
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Thus

∑
a

=
√

x

a
· 1
ζ(2)

∑
(δ2,a)=1

µ(δ2)ρ(δ2
2)

δ2
2

∏
p|δ2

1
1 − 1/p2

+ O

(√
x

a
· 1
(log x)3

)
,

the sum on the right hand side

∑
(δ2,a)=1

µ(δ2)ρ(δ2
2)

δ2
2

∏
p|δ

1
1 − 1/p2

=
∏
p�a

{
1 − ρ(p2)

p2
· 1
1 − 1/p2

}
=

∏
p�a

(
1 − ρ(p2)

p2 − 1

)
.

Summing
∑

a over the cube-full a, we obtain (5.1) easily. �

One can prove similarly

Theorem 5. Let r, s be arbitrary positive integers. Then

#{n ≤ x | H(n) ≤ r, h(n + 1) ≥ s}
= c(r, s)x1/s + O

(
x1/s/ log x

)
.

(5.3)

The following two conjectures seem to be quite plausible.

Conjecture 1. We have

#{n ≤ x | h(n) ≥ 2, h(n + 1) ≥ 2} ≥ cx1/4

log x
. (5.4)

Conjecture 2. We have

#{p ≤ x | h(p + 1) ≥ 2} → ∞ (x → ∞). (5.5)
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