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On Stetkær type functional equations
and Hyers–Ulam stability

By BOUIKHALENE BELAID (Kenitra) and
ELQORACHI ELHOUCIEN (Agadir)

Abstract. Let G be a locally compact group, K a compact subgroup of
morphisms of G, χ : K −→ {z ∈ C | |z| = 1} a continuous homomorphism
and µ a K-invariant bounded measure on G. In this paper we study functional
equations of the form

∫
G

∫
K

f(xtk · y)χ(k)dkdµ(t) = g(x)h(y), x, y ∈ G,

in which f, g, h ∈ Cb(G) are unknown functions. These equations may be viewed
as a generalization of the functional equations considered by Stetkær in many of
his works. We show how the solutions g and h are closely related to the solutions of
Badora’s functional equation solved in [4] and [13]. We treat examples and we give
some applications. The case where G is a Lie group is considered. Furthermore,
we investigate the Hyers–Ulam stability problem of these functional equations.

1. Introduction

Let G be a locally compact group endowed with a left Haar measure dx,
and K a compact subgroup of morphisms of G i.e. of mappings k of G onto
itself that are either automorphisms and homeomorphisms (k ∈ K+), or
antiautomorphisms and homeomorphisms (k ∈ K−). The action of k ∈ K
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Key words and phrases: functional equation, Gelfand measure, spherical function,
Hyers–Ulam stability.



96 Bouikhalene Belaid and Elqorachi Elhoucien

on x ∈ G will be denoted by k·x. The mapping χ : K −→ {z ∈ C | |z| = 1}
is a continuous homomorphism. For µ a complex bounded measure on
G, µ̌ (resp. µ) will denote the measure defined by 〈µ̌, f〉 = 〈µ, f̌〉 (resp.
〈µ, f〉 = 〈µ, f〉), where f̌(x) = f(x−1), f(x) = f(x) for all continuous and
bounded functions f on G. C(G) (resp. Cb(G)) designates the space of
continuous (resp. continuous and bounded) complex valued functions. We
assume that K has a topology making it a compact Hausdorff group with
the property that the canonical map K×G −→ G sending each pair (k, x)
onto k · x is continuous. For any k ∈ K, and for any function f on G, we
put (k · f)(x) = f(k−1 · x), and we say that f is K-invariant if k · f = f

for all k ∈ K. The algebra of all regular and complex bounded measures
on G will be denoted by M(G). We recall that the convolution of M(G)
is given by

〈µ ∗ ν, f〉 =
∫

G

∫
G

f(ts)dµ(t)dν(s), for all f ∈ Cb(G).

For any µ ∈ M(G) and any k ∈ K, we put 〈k · µ, f〉 = 〈µ, k · f〉 for all
f ∈ Cb(G), and we say that µ is K-invariant if k · µ = µ for all k ∈ K. A
function f ∈ Cb(G) is bi-µ-invariant if fµ = f , where fµ is the continuous
and bounded function defined by

fµ(x) =
∫

G

∫
G

f(sxt)dµ(s)dµ(t), for all x ∈ G.

We notice that if µ∗µ = µ, then f is bi-µ-invariant if and only if it is both
left and right µ invariant, i.e.

∫
G f(tx)dµ(t) =

∫
G f(xt)dµ(t) = f(x) for all

x ∈ G.
Finally, L1(G, dx) designates the Banach algebra of all integrable func-

tions on G.

Definition 1.1 ([2]). Let µ ∈ M(G); µ is said to be a Gelfand measure
if µ̌ = µ ∗ µ = µ and the Banach algebra Lµ

1 (G) = µ ∗ L1(G) ∗ µ is
commutative under the convolution.

A non-zero function φ ∈ Cb(G) is a µ-spherical function if it satisfies
the functional equation

∫
G

φ(xty)dµ(t) = φ(x)φ(y), x, y ∈ G. (1.1)
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We will say that a function f ∈ Cb(G) satisfying
∫

G
f(xty)dµ(t) = f(x)φ(y), x, y ∈ G (1.2)

is associated to the µ-spherical function φ.

The µ-spherical functions and related notions have been introduced
by M. Akkouchi and A. Bakali [2]. When H is a compact subgroup
of G and dh is the normalized Haar measure of H, then dh is a Gelfand
measure on G if and only if (G,H) is a Gelfand pair [11]. A function
f ∈ Cb(G) satisfies a Kannappan type condition K(µ) [25], [12] if

∫
G

∫
G

f(zsxty)dµ(s)dµ(t) =
∫

G

∫
G

f(zsytx)dµ(s)dµ(t), x, y, z ∈ G.

In the series of papers [28]–[32], a number of results has been obtained by
Stetkær for functional equations of the form

∫
K

f(xk · y)χ(k)dk =
n∑

i=1

gi(x)hi(y), x, y ∈ G, (1.3)

where the functions f, g1, . . . , gn, h1, . . . , hn to be determined are contin-
uous complex-valued functions on a locally compact group G and K is a
compact subgroup of automorphisms of G.

In the present paper we study a generalization of the equation (1.3)
∫

G

∫
K

f(xtk · y)χ(k)dkdµ(t) = g(x)h(y), x, y ∈ G, (1.4)

where µ is a complex bounded measure on G and K is a compact subgroup
of morphisms of G, not just a compact subgroup of automorphisms of G.

Our approach is to consider µ = δe: The Dirac measure concentrated
at the identity element e as a complex bounded measure on G, and then
the functional equation (1.3) can be written in the form

∫
G

∫
K

f(xtk · y)χ(k)dkdδe(t) =
n∑

i=1

gi(x)hi(y), x, y ∈ G. (1.5)
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It is the same point of view as in [12] and [16] except that the compact
subgroup K of morphisms of G is new; it was {I, σ} in [12], [16] (σ is
a continuous involution of G), where Elqorachi and Akkouchi have
introduced and studied the functional equation

∫
G

f(xty)dµ(t) ∓
∫

G
f(xtσ(y))dµ(t) = 2

n∑
i=1

gi(x)hi(y). (1.6)

The class of equations (1.4) contains also the functional equation of spher-
ical functions ∫

K
f(xk · y)dk = f(x)f(y), x, y ∈ G, (1.7)

which has attracted the attention of many mathematicians. The first sig-
nificant results were obtained in [9], [4], [31] and [32] for bounded and
continuous solutions. For continuous solutions of (1.7), recently Shin’ya

[27] described the non-zero solutions in the following form:

f(x) =
∫

K
ϕ(k · x)dk for all x ∈ G,

where ϕ : G −→ C\{0} is a continuous homomorphism of the abelian group
G, (cf. [27] Corollary 3.12). Badora’s functional equation is considered
in [4]:

∫
G

∫
K

f(x + t + k · y)dkdµ(t) = f(x)f(y), x, y ∈ G. (1.8)

The non-zero essentially bounded solutions of equation (1.8) are of the
form

f(x) =
∫

K
(ϕ ∗ µk·x)(e)dk, x ∈ G, (1.9)

where ϕ is a character of G and e is the identity element of the abelian
group G (cf. [4]). For G non necessarily abelian and µ a K-invariant gen-
eralized Gelfand measure, the non-zero continuous and bounded solutions
of (1.8) are given by

f(x) =
∫

K
ϕ(k · x)dk, x ∈ G,
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where ϕ is a µ-spherical function on G (cf. [13]).
We shall notice here that the additional assumption that every closed

ideal of the commutative Banach algebra µ ∗ L1(G, dx) ∗ µ is contained
in some maximal ideal of µ ∗ L1(G, dx) ∗ µ, used in Section 3 of [13], is
superfluous, because the commutative Banach algebra µ ∗ L1(G, dx) ∗ µ

approximates the identity.

Equation (1.4) contains also the functional equation of µ-spherical
functions ∫

G
f(xty)dµ(t) = f(x)f(y), x, y ∈ G, (1.10)

which was studied in [2] and [3]. It should be motioned here that if µ ∈
M(G), then the continuous solutions of (1.10) are only given when G is
compact (cf. [3]). They are of the form

f(x) = 〈π(x)ξ, η〉, (1.11)

where (π,H) is an irreducible, continuous and unitary representation of G

such that π(µ) is of rank one, η ∈ H\{0} and ξ is a unit vector in �(π(µ)),
the range of the operator π(µ).

The classical examples of equation (1.4) with K = {I,−I} and χ = 1
are: D’Alembert’s equation [25], [7], [10]

f(x + y) + f(x − y) = 2f(x)f(y), x, y ∈ G, (1.12)

and Wilson’s equation [37], [38]

f(x + y) + f(x − y) = 2f(x)g(y), x, y ∈ G. (1.13)

Other references and informations on detailed discussions of classical equa-
tions can be found in the monographs by Aczél and Dhombres (cf. [1]).
An example of transformation groups K other than those two, and an ex-
ample of homomorphisms other than χ = 1 in connection with functional
equation (1.4) is K = Zn acting on G = C

1
n

n−1∑
j=1

f(x + ωjy) = f(x)f(y), x, y ∈ C, (1.14)
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where ω = exp(2πi/n). This functional equation occurs in Förg-Rob and
Schwaiger [18] and Stetkær [30].

Our discussion in the present paper is organized as follows. In Section 2
we establish some general properties of the solutions of (1.4). We show how
they are closely related to the solutions of Badora’s equation. This is an
extension of Stetkær’s results ([30], III, Theorem 1). The conclusion is
the same if we replace the functional equation of spherical functions in
[30] by Badora’s functional equation, but the assumptions are weaker.
K is not assumed to act by homomorphisms only, but by homomorphisms
and also antihomomorphisms, and f satisfies K(µ). In the case when K

is a compact subgroup of the group Aut(G) of all mappings of G onto G

that are simultaneously automorphisms and homeomorphisms and µ is a
Gelfand K-invariant measure, we prove that the solutions g and h of (1.4)
are associated to µ ⊗ dk-spherical functions on the semi-direct product
group K ∝ G. In Section 3 we treat examples. In Section 4 we study the
functional equation

∫
G

∫
K

f(xtk · y)χ(k)dkdµ(t) = g(x)f(y), x, y ∈ G, (1.15)

as a particular case of (1.4). In Section 5, G is a connected Lie group and
µ is a K-invariant idempotent measure with compact support. We show
that the solutions of (1.4) are the eigenfunctions of a system of operators
associated to left invariant differential operators on G. This extends the
previous results obtained by Stetkær for equation (1.4) ([30], II, Theo-
rem 2) and those of the authors in [13] to Badora’s equation. In the last
section we deal with the stability of Badora’s functional equation and of
the equation (1.15).

The results obtained in this paper may be viewed as a continuation and
a generalization of Badora’s work [4], [5], Förg-Rob’s and Schwaiger’s
work [18], [19] and Stetkær’s work [30].
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2. On the second generalization of functional equations
of Stetkær type

In this section we study the properties of the functional equation
∫

G

∫
K

f(xtk · y)χ(k)dkdµ(t) = g(x)h(y), x, y ∈ G. (2.1)

The ideas are inspired by the Stetkær’s work [30] just mentioned.
By easy computation, we get the following

Proposition 2.1. Let µ be a K-invariant measure. Let f, g, h ∈
Cb(G) be a solution of (2.1) such that f satisfies the Kannappan type

condition K(µ), g 
= 0 and h 
= 0. Then, for all x, y ∈ G, we have

∫
G

h(xty)dµ(t) =
∫

G
h(ytx)dµ(t)

and g satisfies K(µ).

Theorem 2.2. Let µ be a K-invariant measure. Let f, g, h ∈ Cb(G)
be a solution of (2.1) such that f satisfies the Kannappan type condition

K(µ), g 
= 0 and h 
= 0. Then

i) h(k · x) = χ(k)h(x) for all k ∈ K, x ∈ G,

ii) there exists a function φ, solution of Badora’s functional equation,

such that∫
G

∫
K

g(xtk · y)dkdµ(t) = g(x)φ(y), x, y ∈ G (2.2)

and ∫
G

∫
K

ȟ(xtk · y)dkdµ̌(t) = ȟ(x)φ̌(y), x, y ∈ G. (2.3)

iii) If G is a unimodular group, K a compact subgroup of automorphisms

of G and µ a Gelfand K-invariant measure, then φ is a µ⊗ωK-spherical

function and g (resp. ȟ) is associated to φ (resp. φ̌).

Proof. Let x, y ∈ G and let k0 ∈ K, then we have

g(x)h(k0 · y) =
∫

G

∫
K

f(xtkk0 · y)χ(k)dkdµ(t)
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=
∫

K
f(xtk · y)χ(kk−1

0 )dkdµ(t) = χ(k0)g(x)h(y),

from which we deduce (i).
Let x0, y0 ∈ G such that g(x0) 
= 0 and h(y0) 
= 0, then by using K(µ),

the K-invariance of µ and equation (2.1), we get

h(y0)
∫

G

∫
K

g(x0tk · x)dkdµ(t)

=
∫

G

∫
K

∫
G

∫
K

f(x0tk · xsk1 · y0)χ(k1)dk1dµ(s)dkdµ(t)

=
∫

G

∫
K

∫
G

∫
K+

f(x0tk · xsk1 · y0)χ(k1)dk1dkdµ(s)dµ(t)

+
∫

G

∫
K

∫
G

∫
K−

f(x0tk1 · y0sk · x)χ(k1)dk1dkdµ(s)dµ(t)

=
∫

G

∫
K

∫
G

∫
K+

f(x0tk1 · [k−1
1 k · xsy0])χ(k1)dk1dµ(s)dkdµ(t)

+
∫

G

∫
K

∫
G

∫
K−

f(x0tk1 · [k−1
1 k · xsy0])χ(k1)dk1dkdµ(s)dµ(t)

=
∫

G

∫
K

∫
G

∫
K

f(x0tk1 · (k · xsy0))χ(k1)dk1dµ(t)dkdµ(s)

= g(x0)
∫

G

∫
K

h(k · xsy0)dkdµ(s).

Now, in view of Proposition 2.1 and the K-invariance of µ, we obtain

= g(x0)
∫

G

∫
K

h(k · xsy0)dkdµ(s)

= g(x0)
∫

G

∫
K+

h(k · (xtk−1 · y0))dkdµ(t)

+ g(x0)
∫

G

∫
K−

h(k · (k−1 · y0tx))dkdµ(t)

= g(x0)
∫

G

∫
K+

χ(k)h(xtk−1 · y0)dkdµ(t)

+ g(x0)
∫

G

∫
K−

χ(k)h(k−1 · y0tx)dkdµ(t)
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= g(x0)
∫

G

∫
K

χ(k)h(xtk−1 · y0)dkdµ(t)

= g(x0)
∫

G

∫
K

χ(k)h(xtk · y0)dkdµ(t),

from which we get
∫

G

∫
K

g(xtk · y)dkdµ(t) = g(x)φ(y), x, y ∈ G,

where φ is given by

φ(x) =
1

g(x0)

∫
G

∫
K

g(x0tk · x)dkdµ(t)

=
1

h(y0)

∫
G

∫
K

h(xtk · y0)χ(k)dkdµ(t).

Now, using Proposition 2.1 and the definition of φ, we show that φ is a
solution of Badora’s functional equation.

∫
G

∫
K

φ(xtk · y)dkdµ(t) = φ(x)φ(y), x, y ∈ G,

and h, φ satisfy the equation
∫

K

∫
G

ȟ(xtk · y)dkdµ̌(t) = ȟ(x)φ̆(y).

This proves (ii). For iii), let K be a compact subgroup of Aut(G), and let
K ∝ G be the semi-direct product group with the group law

(k1, x)(k2, y) = (k1k2, xk1 · y), k1, k2 ∈ K, x, y ∈ G.

A function F : K ∝ G −→ C that is bi-µ ⊗ dk-invariant can be regarded
as a function F (k, x) = f(x) on G such that f is both bi-µ-invariant and
K-invariant. Accordingly, we obtain the bijection

Lµ⊗dk
1 (K ∝ G) −→ Lµ

1 (G) ∩ LK
1 (G)

F −→ f,
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where LK
1 (G) = {f ∈ L1(G) : k · f = f, k ∈ K}, so that Lµ⊗dk

1 (K ∝
G) ∼= Lµ

1 (G) ∩ LK
1 (G) = µ ∗ LK

1 (G) ∗ µ = MK(µ ∗ L1(G) ∗ µ), where
MK(f)(x) =

∫
K f(k·x)dk, x ∈ G, and f ∈ L1(G). Then µ⊗dk is a Gelfand

measure on K ∝ G. Furthermore, by using ([13], Theorem 2.2), we get
that the µ ⊗ dk-spherical functions are solutions of Badora’s functional
equation. �

Remark 2.3. In Theorem 2.2 it is not necessary to assume that f

satisfies the condition K(µ) if K is a compact subgroup of homomorphisms
of G.

Corollary 2.4. Let G be a locally compact group and let H be a

compact subgroup of G such that H is K-invariant (i.e. K · H ⊂ H). Let

(f, g, l) ∈ Cb(G) be a solution of

∫
H

∫
K

f(xhk · y)χ(k)dkdh = g(x)l(y), x, y ∈ G, (2.4)

such that g 
= 0, l 
= 0 and f satisfies a Kannappan type condition

∫
H

∫
H

f(zh1xh2y)dh1dh2 =
∫

K

∫
K

f(zh1yh2x)dh1dh2, x, y, z ∈ G.

Then

i) l(k · x) = χ(k)l(x) for all k ∈ K, x ∈ G,

ii) there exists a function φ solution of the functional equation

∫
H

∫
K

φ(xhk · y)dkdh = φ(x)φ(y), x, y ∈ G, (2.5)

such that ∫
H

∫
K

g(xhk · y)dkdh = g(x)φ(y), x, y ∈ G, (2.6)

and ∫
H

∫
K

ľ(xhk · y)dkdh = ľ(x)φ̌(y), x, y ∈ G. (2.7)

iii) If G is a unimodular group and K a compact subgroup of Aut(G),
then φ is a K ∝ H-spherical function.
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Corollary 2.5. Let G be a locally compact group and H a compact

subgroup of G such that K.H ⊂ H. Let τ be a continuous, unitary and

irreducible representation of H and let χτ be a normalized character of τ

such that χτ ∗ χτ = χτ and µτ = χτdh. Moreover, let (f, g, l) ∈ Cb(G) be

a solution of ∫
H

∫
K

f(xhk · y)χ(k)χτ (h)dkdh = g(x)l(y) (2.8)

such that g 
= 0, h 
= 0 and f satisfies a Kannappan type condition

∫
H

∫
H

f(zh1xh2y)χτ (h1)χτ (h2)dh1dh2

=
∫

K

∫
K

f(zh1yh2x)χτ (h1)χτ (h2)dh1dh2.

Then

i) l(k · x) = χ(k)l(x) for all k ∈ K, x ∈ G,

ii) there exists a function φ, solution of the functional equation

∫
H

∫
K

φ(xhk · y)χτ (h)dkdh = φ(x)φ(y), x, y ∈ G, (2.9)

such that∫
H

∫
K

g(xhk · y)χτ (h)dkdh = g(x)φ(y), x, y ∈ G, (2.10)

and ∫
H

∫
K

ľ(xhk · y)χτ (h)dkdh = ľ(x)φ̌(y), x, y ∈ G. (2.11)

iii) If G is unimodular and K a compact subgroup of Aut(G), then φ is a

K ∝ H-spherical function of type τ .

Corollary 2.6. Let G be an unimodular group and µ a K-invariant

Gelfand measure on G. Then the corresponding µ⊗dk-spherical functions

have the form

φ(x) =
∫

K
ω(k · x)dk, x ∈ G,
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for some µ-spherical function ω. Furthermore, if φ is integrable or G is a

compact group, then φ has the form

φ(x) =
∫

K
〈π(µ)π(k · x)ξ, η〉dk, x ∈ G,

where (π,Hπ) is an irreducible, continuous and unitary representation

of G, such that π(µ) is a rank one operator and ξ, η ∈ Hπ .

Proof. By using [3] and [13], we derive the proof. �

3. Examples

The next examples extend those obtained by Stetkær in [30].

3.1. Let K be a compact subgroup of morphisms of G. Let µ be a K-
invariant measure, ω ∈ Cb(G) a solution of (1.1), and a ∈ C(G). Put

f(x) :=
∫

K
a(k)ω(k · x)χ(k)dk, x ∈ G,

g(x) :=
∫

K
a(k)ω(k · x)dk, x ∈ G,

h(x) :=
∫

K
ω(k · x)χ(k)dk, x ∈ G.

Then (f, g, h) is a solution of (2.1) and the corresponding function φ given
by Theorem 2.2 has the form φ(x) =

∫
K ω(k · x)dk, x ∈ G.

3.2. Let χ = 1 and let f 
= 0 be a right µ-invariant function which satisfies
the condition K(µ), and (f, g, h) ∈ Cb(G) a solution of (2.1). By putting
y = e in (2.1) we get f(x) = g(x)h(e). So h(e) 
= 0, and (2.1) becomes∫

G

∫
K

f(xtk · y)dkdµ(t) = 2
f(x)
h(e)

h(y) = 2f(x)φ(y), x, y ∈ G. (3.1)

By Theorem 2.2, φ = h
h(e) is a solution of Badora’s functional equation.

An example of (2.1) with K = {I, σ}, where σ is a continuous involution
of G, is∫

G
f(xty)dµ(t) +

∫
G

f(xtσ(y))dµ(t) = 2g(x)h(y), x, y ∈ G, (3.2)
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which reduces to the generalized form of Wilson’s functional equation
∫

G
f(xty)dµ(t) +

∫
G

f(xtσ(y))dµ(t) = 2f(x)φ(y), x, y ∈ G, (3.3)

where φ(y) = h(y)
h(e) , for all y ∈ G. The solutions of (3.3) and (3.2) are

described in [12] and [16].

3.3. By taking G an abelian locally compact group and µ = δe we may
derive other examples (see [1]).

4. On the first generalization of a functional equation
of Stetkær type

In this section we will study a functional equation of the form
∫

G

∫
K

f(xtk · y)χ(k)dkdµ(t) = g(x)f(y), x, y ∈ G. (4.1)

This equation is a special case of the equation (2.1) in which f = h. Using
Theorem 2.2, we deduce the following

Theorem 4.1. Let µ be a K-invariant measure. Let (f, g) ∈ Cb(G)
such that g 
= 0 and f satisfies K(µ). Then

(1) If (f, g) is a solution of (4.1) and f 
= 0 then g is a solution of (1.3).

(2) (f, g) is a solution of (4.1) if and only if

i) f(k · x) = χ(k)f(x) for all k ∈ K, x ∈ G, and

ii) ∫
G

∫
K

f̌(xtk · y)dkdµ̌(t) = f̌(x)ǧ(y), x, y ∈ G. (4.2)

Corollary 4.2 ([12]). Let σ be a continuous involution of G. Let µ

be a σ-invariant measure. Let (f, g) ∈ Cb(G) \ {0} such that f satisfies

K(µ). The solutions of the functional equation

∫
G

f(xty)dµ(t) +
∫

G
f(xtσ(y))dµ(t) = 2g(x)f(y), x, y ∈ G (4.3)

are given as follows:
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i) there exists a µ̌-spherical function ϕ such that g = ϕ+ϕ◦σ
2 ,

ii) if ϕ◦σ 
= ϕ, then there exist α, β ∈ C such that f = αϕ+ϕ◦σ
2 +β ϕ−ϕ◦σ

2 ,

iii) if ϕ ◦ σ = ϕ, then there exists γ ∈ C such that f = γϕ + l, where

l ◦ σ = −l and l is a solution of the functional equation∫
G

l(xty)dµ̌(t) = l(x)ϕ(y) + l(y)ϕ(x), x, y ∈ G. (4.4)

Proof. By taking χ = 1 in (4.1) and by using Theorem 4.1 and ([12],
Theorem 3.1), we get the proof. �

5. On generalized functional equations of Stetkær type
on Lie groups

In this section we characterize the solutions f, g ∈ C∞(G) of the func-
tional equation∫

G

∫
K

f(xtk · y)χ(k)dkdµ(t) = g(x)h(y), x, y ∈ G (5.1)

on a connected Lie group G as joint eigenfunctions of certain operators
associated to the left invariant differential operators, where in this case
K is a compact subgroup of the group Aut(G) of all mappings of G onto
G that are simultaneously automorphisms and homeomorphisms. This
extends the previous results obtained by Stetkær in [30] to equation
(1.7) and those of the authors in [13] to Badora’s functional equation.

To formulate our results, we need the following notations:
Let G be a connected Lie group and K a compact subgroup of the group
Aut(G) of all mappings of G onto G that are simultaneously automor-
phisms and homeomorphisms. D(G) denotes the algebra of the left invari-
ant differential operators on G, i.e. for all D ∈ D(G), a ∈ G, and for all
f ∈ C∞(G) we have (LaD)f = D(Laf), where (Laf)(x) = f(a−1x) for
all x ∈ G. We recall (see [30], Proposition II.3) that K has a Lie group
structure, the canonical map K ×G −→ G sending (k, x) onto k.x is C∞,
and if f ∈ C∞ then so does k · f for any k ∈ K, because continuous
homomorphisms between Lie groups automatically are C∞. Throughout
the rest of the present section, we assume that µ satisfies the following
conditions:
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i) µ is a K-invariant measure with compact support on G and

ii) µ ∗ µ = µ.

The symbol C∞
µ (G) = µ̌ ∗ C∞(G) ∗ ∆µ̌ will stand for all functions f ∈

C∞(G) which are µ-invariant on G. The subspace of C∞
µ (G) consisting

of the functions which are K-invariant will be denoted C∞
µ,K(G). For any

D ∈ C∞(G), we define the new operator DK
µ f by

(DK
µ f)(x) = D{MK(Lx−1f)µ}(e)

for all f ∈ C∞(G) and x ∈ G [13]. In view of ([13] Proposition 4.1 and
Proposition 4.2), DK

µ has the following properties:

Theorem 5.1. i) DK
µ is left invariant.

ii) k · DK
µ f = DK

µ k · f , for all k ∈ K and f ∈ C∞(G),

iii) (DK
µ f)(e) = D(MKfµ)(e). In particular if f is a bi-µ-invariant and

K-invariant function on G, then we have (DK
µ f)(e) = (Df)(e).

iv) g and h ∈ C∞(G).

v) If (f, g, h) is a solution of (5.1), such that g 
= 0, h 
= 0 and satisfying∫
G ȟ(xt)dµ̌(t) = ȟ(x) and

∫
G g(xt)dµ(t) = g(x), then DK

µ g = (Dφ)(e)g
and DK

µ̌ ǧ = (Dφ̌)(e)ǧ, where φ is a solution of the functional equation

(3.1). Consequently g and h are analytic.

vi) If D ∈ D(G), then for all f ∈ C∞
µ,K(G) we have

DK
µ f = MK(Df ∗ ∆µ̌).

In particular, the restriction of DK
µ to C∞

µ,K(G) is an endomorphism.

The next theorem extends the result obtained by the authors to Bado-
ra’s functional equation ([13]).

Theorem 5.2. Let µ ∈ M(G) be a K-invariant, idempotent measure

on G with compact support. If (f, g) ∈ C(G) \ {0}, then the following

statements are equivalent:

(1) (f, g) is a solution of

∫
G

∫
K

f(xtk · y)χ(k)dkdµ(t) = g(x)f(y), x, y ∈ G, (5.2)
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(2) a) f(k · y) = χ(k)f(y),

b) f and g ∈ C∞(G),

c) f and g are analytic,

d)
∫
G f̌(xt)dµ̌(t) = f̌(x) for all x ∈ G,

e) DK
µ̌ f̌ = (Dǧ)(e)f̌ for all D ∈ D(G).

Proof. (1) =⇒ (2) follows directly from Theorem 5.1. Conversely,
suppose that (a), (b), (c), (d) and (e) hold. For a fixed x ∈ G, we define
the function

F (y) =
∫

G

∫
K

f̌(xtk · y)dkdµ̌(t), y ∈ G.

It is easy to verify that F is K-invariant. Furthermore, since µ ∗ µ = µ,
µ is K-invariant and f̌ is right µ-invariant hence F is bi-µ-invariant. Now
F (y) can be written

F (y) =
∫

G

∫
K

(L(k−1.xt)
−1f̌)(y)χ(k)dkdµ̌(t).

Consequently, for all D ∈ D(G) we have

(DK
µ̌ F )(y) = D(ǧ)(e)F (y).

In particular, for y = e we have

(DK
µ̌ F )(e) = D(ǧ)(e)F (e).

Hence, by Theorem 5.1, it follows that

(DF )(e) = D(ǧ)(e)F (e)
i.e

D(F − F (e)ǧ)(e) = 0

for all D ∈ D(G). Since F −F (e)ǧ is an analytic function on the connected
Lie group G, by [21] we obtain

F − F (e)ǧ ≡ 0
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on G. We conclude that∫
G

∫
K

f̌(xtk · y)dkdµ̌(t) = f̌(x)ǧ(y), x, y ∈ G.

Finally, by using (a) we obtain∫
G

∫
K

f(xtk · y)χ(k)dkdµ(t) = g(x)f(y), x, y ∈ G.

This ends the proof of the theorem. �

6. Hyers–Ulam stability of generalized equations
of Stetkær type

In 1940 S. M. Ulam posed the following problem on the stability of
homomorphisms:

Given a group G1, a metric group (G2, d), and a positive number
ε, does there exist a λ > 0 such that if a mapping f : G1 −→ G2

satisfies the inequality

d(f(xy), f(x)f(y)) < ε

for all x, y ∈ G, then a homomorphism a : G1 −→ G2 exists with

d(f(x), a(x)) < λ for all x ∈ G?

See S. M. Ulam [35] or [36] for a discussion of such problems, as well as
D.H. Hyers [22], D.H. Hyers and S.M. Ulam [24], Th.M. Rassias

[26], D. H. Hyers, G. I. Isac and T. M. Rassias [23]. Later, the above
question became a source of stability theory in the Hyers–Ulam sense. The
first affirmative answer to Ulam’s question was given by D. H. Hyers in
[22], under the assumption that G1 and G2 are Banach spaces. The Hyers–
Ulam–Rassias stability was taken up by a number of mathematicians and
the study of this area has grown to be one of the central subjects in math-
ematical analysis. There is a strong stability phenomenon which is known
as superstability. An equation is called superstable if for any approximate
homomorphism, (i.e. d(f(xy), f(x)f(y)) ≤ δ), either f is bounded or f is a
true homomorphism. This property was first observed when the following
theorem was proved by J. Baker, J. Lawrence, and F. Zorzitto [8]:
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Theorem. Let V be a vector space. If a function f : V −→ R satisfies

the inequality

|f(x + y) − f(x)f(y)| ≤ ε

for some ε > 0 and for all x, y ∈ V , then either f is a bounded function or

f(x + y) = f(x)f(y), for all x, y ∈ V .

Later this result was generalized by J. Baker [7] and L. Székelyhidi

[33], [34].

The aim of the present section is to investigate the stability of the
following family of functional equations:

∫
K

∫
G

f(xtk · y)dkdµ(t) = f(x)g(y), x, y ∈ G, (6.1)

∫
K

∫
G

f(xtk · y)χ(k)dkdµ(t) = f(y)g(x), x, y ∈ G, (6.2)

where µ ∈ M(G) is a K-invariant measure with compact support on G.
Particular cases of (6.1) and (6.2) are

∫
K

f(x + k · y)dk = f(x)g(y), x, y ∈ G (6.3)

and ∫
K

f(x + k · y)χ(k)dk = f(y)g(x), x, y ∈ G, (6.4)

where G is a commutative group and µ = δe, the Dirac measure con-
centrated at the identity element of G. The stability properties of the
equations (6.3), (6.4) have been obtained by Badora [5]. For K-spherical
functions (i.e. (6.3) with f = g) with K finite this problem was solved by
W. Förg-Rob and J. Schwaiger in [19] and by R. Badora in [6], and
for K = {Id, −Id}, i.e. d’Alembert’s functional equation, by J. Baker [7].

For the noncommutative case, some results for some particular equa-
tions of type (6.1) where obtained by Elqorachi and Akkouchi [14],
[15], [17]. The stability of the classical examples

f(x + y) = f(x)f(y), (6.5)
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f(x + y) + f(x − y) = 2f(x)f(y) (6.6)

of equations (6.1) and (6.2) has attracted the attention of many mathe-
maticians. The interested reader should refer to [23] for a thorough account
on the subject of stability of functional equations.

Throughout this section µ is assumed to be a compactly supported
measure on G which is K-invariant, and f satisfies the Kannappan condi-
tion K(µ).

Theorem 6.1. Let f, g : G −→ C be continuous functions. Assume

that there exists δ ≥ 0 such that

∣∣∣
∫

K

∫
G

f(xtk · y)dkdµ(t) − f(x)g(y)
∣∣∣ ≤ δ, x, y ∈ G, (6.7)

and f fulfills K(µ). Then either

i) f , g are bounded or

ii) f is unbounded and g satisfies Badora’s equation

∫
K

∫
G

g(xtk · y)dkdµ(t) = g(x)g(y), x, y ∈ G, (6.8)

or

iii) g is unbounded and f satisfies the equation (6.1) (if f 
= 0, then g

satisfies (6.8)).

Proof. The proof of the theorem is related to the one in [15], (see
Theorem 3.1), where K = {Id, σ} and σ is a continuous involution of G.
If f is unbounded, then by using the inequality (6.7), we get

|f(z)|
∣∣∣
∫

K

∫
G

g(xtk · y)dkdµ(t) − g(x)g(y)
∣∣∣

≤
∣∣∣f(z)

∫
K

∫
G

g(xtk · y)dkdµ(t) − g(y)
∫

K

∫
G

f(ztk · x)dkdµ(t)
∣∣∣

+ |g(y)|
∣∣∣
∫

K

∫
G

f(ztk · x)dkdµ(t) − f(z)g(x)
∣∣∣

≤
∣∣∣f(z)

∫
K

∫
G
g(xtk · y)dkdµ(t) − g(y)

∫
K

∫
G
f(ztk · x)dkdµ(t)

∣∣∣ + |g(y)|δ,
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for all x, y, z ∈ G. Since

∣∣∣
∫

K

∫
K

∫
G

∫
G

f(ztk · xsk′ · y)dkdk′dµ(t)dµ(s)

−
∫

K

∫
G

f(ztk · x)dkdµ(t)g(y)
∣∣∣

≤
∫

K

∫
G

∣∣∣
∫

K

∫
G

f(ztk · xsk′ · y)dk′dµ(s) − f(ztk · x)g(y)
∣∣∣dkd|µ|(t)

≤ δ‖µ‖dk(K) = δ‖µ‖,
∣∣∣
∫

K

∫
K

∫
G

∫
G

f(ztk · (xsk′ · y))dkdk′dµ(t)dµ(s)

− f(z)
∫

K

∫
G

g(xsk′ · y)dk′dµ(t)dµ(s)
∣∣∣

≤
∫

K

∫
G

∣∣∣
∫

K

∫
G

f(ztk · (xsk′ · y))dkdµ(t) − f(z)g(xsk′ · y)
∣∣∣dk′d|µ|(s)

≤ δ‖µ‖,

and from the relation
∫

K

∫
K

∫
G

∫
G

f(ztk · (xsk′ · y))dkdk′dµ(t)dµ(s)

=
∫

K

∫
K+

∫
G

∫
G

f(ztk · xk · s(kk′) · y)dkdk′dµ(t)dµ(s)

+
∫

K

∫
K−

∫
G

∫
G

f(zt(kk′) · yk · sk · x)dkdk′dµ(t)dµ(s)

=
∫

K

∫
K+

∫
G

∫
G

f(ztk · xs(kk′) · y)dkdk′dµ(t)dµ(s)

+
∫

K

∫
K−

∫
G

∫
G

f(ztk · xs(kk′) · y)dkdk′dµ(t)dµ(s)

=
∫

K

∫
K

∫
G

∫
G

f(ztk · xs(kk′) · y)dkdk′dµ(t)dµ(s)

=
∫

K

∫
G

∫
G

f(ztk · xsk′ · y)dkdk′dµ(t)dµ(s)
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we obtain
∣∣∣f(z)

∫
K

∫
G

g(xtk · y)dkdµ(t) − g(y)
∫

K

∫
G

f(ztk · x)dkdµ(t)
∣∣∣ ≤ 2δ‖µ‖,

and finally

|f(z)|
∣∣∣
∫

K

∫
G

g(xtk · y)dkdµ(t) − g(x)g(y)
∣∣∣ ≤ 2δ‖µ‖ + |g(y)|δ.

Since f is unbounded, it follows that
∫

K

∫
G

g(xtk · y)dkdµ(t) = g(x)g(y), for all x, y ∈ G,

which ends the proof in this case.
If g is unbounded, equation (6.1) holds if f = 0. Let us assume now

that f 
= 0. Then there exists z ∈ G such that f(z) 
= 0. From inequality
(6.7), we obtain

∣∣∣∣
∫
K

∫
G f(ztk · x)dkdµ(t)

f(z)
− g(x)

∣∣∣∣ ≤ δ

|f(z)| , for all x ∈ G.

Since g is unbounded, the function defined by

h(x) =

∫
K

∫
G f(ztk · x)dkdµ(t)

f(z)

is also unbounded.
On the other hand h satisfies the following inequality:

∣∣∣
∫

K

∫
G

h(xtk · y)dkdµ(t) − h(x)g(y)
∣∣∣ ≤ δ‖µ‖

|f(z)| , for all x, y ∈ G. (6.9)

Now, by the preceding discussion, we conclude that g satisfies the equation
(6.8). To see that f , g satisfy (6.1), let x, y, z ∈ G. Using inequality (6.7)
and the fact that g satisfies the equation (6.8), we get

|g(z)|
∣∣∣
∫

K

∫
G

f(xtk · y)dkdµ(t) − f(x)g(y)
∣∣∣

≤
∣∣∣
∫

K

∫
K

∫
G

∫
G

f(xtk · ysk′ · z)dkdk′dµ(t)dµ(s)
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− g(z)
∫

K

∫
G

f(xtk · y)dkdµ(t)
∣∣∣

+
∣∣∣
∫

K

∫
K

∫
G

∫
G

f(xtk · ysk′ · z)dkdk′dµ(s)dµ(t)

− f(x)
∫

K

∫
G

g(ysk′ · z)dk′dµ(t)
∣∣∣ ≤ 2δ‖µ‖.

Hence f , g satisfy the equation (6.1) and the proof of the theorem is
complete. �

As a consequence, we have the superstability of the equation (6.8).

Corollary 6.2 ([17] Theorem 2.1). Let f : G −→ C be a continuous

function. Assume that there exists δ ≥ 0 such that∣∣∣
∫

K

∫
G

f(xtk · y)dkdµ(t) − f(x)f(y)
∣∣∣ ≤ δ, x, y ∈ G. (6.10)

Then either

|f(x)| ≤ ‖µ‖ +
√‖µ‖2 + 4δ

2
, x ∈ G, (6.11)

or f is a solution of the equation (6.8).

Remark 6.3. In Theorem 6.1 it is not necessary to assume that f

satisfies the condition K(µ) if K is a compact subgroup of homomorphisms
of G.

In the following theorem we shall investigate the stability of the func-
tional equation (6.2), under the additional condition that f satisfies the
Kannappan type condition K1(µ):



∫
G

∫
G

f(ztxsy)dµ(t)dµ(s) =
∫

G

∫
G

f(ztysx)dµ(t)dµ(s),

∫
G

f(xsy)dµ(s) =
∫

G
f(ysx)dµ(s), for all x, y, z ∈ G.

Theorem 6.4. Let f, g : G −→ C be continuous functions. Assume

that there exists δ ≥ 0 such that∣∣∣
∫

K

∫
G

f(xtk · y)χ(k)dkdµ(t) − f(y)g(x)
∣∣∣ ≤ δ, x, y ∈ G, (6.12)

and f fulfills K1(µ). Then either
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i) f , g are bounded or

ii) f is unbounded and g satisfies

∫
K

∫
G

ǧ(xtk · y)dkdµ̌(t) = ǧ(x)ǧ(y), x, y ∈ G, (6.13)

or

iii) g is unbounded and f , g satisfy the equation (6.2).

Proof. In the proof, we use ideas and methods that are analogous to
those used in [5].

In order to apply Theorem 6.1, we recall the following formula proved
for µ = δe by Badora (see [5]).

χ(k)
∫

K

∫
G

f(xsk′ · y)χ(k′)dk′dµ(s) − χ(k)f(y)g(x)

−
∫

K

∫
G

f(xsk′ · (k · y))χ(k′)dk′dµ(s) + g(x)f(k · y)

= g(x)(f(k · y) − χ(k)f(y)), (6.14)

for all x, y ∈ G.
On the other hand, by using the condition K1(µ), the K-invariance of

µ and some computations used in [5], we prove that

g(z)
[ ∫

K

∫
G

f(ytk · x)χ(k)dkdµ(t) − g(y)f(x)
]

+
∫

K

[ ∫
K

∫
G

∫
G

f(zsk′ · (ytk · x))χ(k′)dk′dµ(t)dµ(s)

− f(z)
∫

G
g(ytk · x)dµ(t)

]
χ(k)dk

−
∫

K

[ ∫
K

∫
G

∫
G

f(zsk′ · (k−1 · ytx))χ(k′)dk′dµ(t)dµ(s)

− f(z)
∫

G
g(k−1 · ytx)dµ(t)

]
dk

= g(z)
[ ∫

K

∫
G

f(k−1 · ytx)dkdµ(t) − g(y)f(x)
]
. (6.15)
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Now we are ready to prove the theorem. If f is unbounded, f = 0 satisfies
the equation (6.13). If g 
= 0, then in view of (6.15), there exists some
constant δ′ ≥ 0 such that

∣∣∣
∫

K

∫
G

f(k−1 · ytx)dkdµ(t) − g(y)f(x)
∣∣∣ ≤ δ′, x, y ∈ G, (6.16)

which can be written
∣∣∣
∫

K

∫
G

f̌(xtk · y)dkdµ̌(t) − f̌(x)ǧ(y)
∣∣∣ ≤ δ′, x, y ∈ G. (6.17)

It follows from Theorem 6.1, that g satisfies the equation (6.13). If g is
unbounded, then by (6.14)

f(k · x) = χ(k)f(x), for all x ∈ G. (6.18)

By using the equation (6.15), we obtain that f , g satisfy some inequality
like (6.17) and hence by Theorem 6.1 we deduce that f , g are solutions of
the equation

∫
K

∫
G

f̌(xtk · y)dkdµ̌(t) = f̌(x)ǧ(y), x, y ∈ G. (6.19)

Now from Theorem 4.1 of the section 4, we deduce that f , g are solutions
of (6.2) and the proof is completes. �
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