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On finite nearly uniform groups

By IZABELA MALINOWSKA (Bia�lystok)

Abstract. Several classes of groups are characterized by their subgroup lat-
tices. As an example we can recall uniform groups, that is nontrivial groups G
such that for any nontrivial subgroups A, B ⊆ G we have A ∩B �= 1. The notion
mentioned above suggests the following one: a group G is nearly uniform if it is
not uniform and for any nontrivial subgroups A, B, C ⊆ G such that A ∩ B = 1
we have 〈A, B〉 ∩ C �= 1.

Finite uniform groups are those with just one minimal subgroup and they
are well-known. Recently, Z. Janko determined the structure of all finite 2-groups
with exactly three involutions. These groups are precisely finite nearly uniform
2-groups.

In this note we determine the structure of all finite nearly uniform groups,
which are not 2-groups.

1. Introduction

In this paper all groups are nontrivial finite and p is a prime number.
Using lattice approach to study properties of groups is still very fruit-

ful and interesting (see for example [15] and references there). In patricular
modular groups (groups with modular subgroup lattices) are very impor-
tant. It is well-known that a p-group G of order at most p3 is not modular
only if either p > 2 and G is nonabelian of exponent p, or G is the dihedral
group of order 8. The structure of modular groups is well-known (see [15]).
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Lemma 1.1 (Iwasawa). Let G be a p-group. The following conditions

are equivalent:

(1) G is modular,

(2) either G is a Hamiltonian 2-group, or G contains an abelian normal

subgroup A and an element b such that G = 〈A, b〉. Further, there

exists a positive integer s such that b−1ab = a1+ps
for all a ∈ A, with

s ≥ 2 in case p = 2,

(3) each section of G of order p3 is modular.

To give the precise structures of modular groups and their general-
ization let us agree, as in [11], that G is a P#-group if G is a semidirect
product of an elementary abelian normal p-subgroup A and a cyclic group
〈t〉 of prime power order such that t induces a power automorphism on A.
If under the notation given above t induces an automorphism of prime
order on A then G is said to be a P ∗-group (see [15]).

Theorem 1.2 (Iwasawa). A group is modular if and only if it is a

direct product of P ∗-groups and modular p-groups with relatively prime

orders.

For a generalization of the concept of modular group we will recall
some interesting types of groups, considered in several papers ([1], [11],
[12]).

Let G be a group and H ⊆ G a subgroup. Then:
• G is balanced over H if for any subgroups A,B,C ⊆ G such that

A ∩ B = H and 〈A,B〉 ∩ C = H we have 〈A,C〉 ∩ B = H;
• G is balanced if G is balanced over H = 1;
• G is strongly balanced if G is balanced over any subgroup H ⊆ G.

Strongly balanced groups, under another name, are completely de-
scribed in [1] by the following result

Theorem 1.3. A group is strongly balanced if and only if it is a direct

product of P#-groups and modular p-groups with relatively prime orders.

By Theorems 1.2 and 1.3 it is evident that modular groups are strongly
balanced and, by definition strongly balanced groups are balanced. It is
known that the inclusions given above are proper (see [1]).
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It is known that for balanced groups the uniform dimension can be
introduced ([12]). To remind this notion let us agree first that a sub-
group H ⊆ G is essential if H intersects nontrivially all nontrivial sub-
groups of G and a group G is uniform if G �= 1 and any nonidentity
subgroup of G is essential in G. Now, a balanced group G has the uni-
form dimension n if we have uniform subgroups A1, . . . , An ⊆ G such that
〈A1, . . . Ai−1, Ai+1, . . . , An〉 ∩ Ai = 1 for all 1 ≤ i ≤ n and the subgroup
〈A1, . . . An〉 is essential in G. It is known (see [12]) that for every balanced
group the number n does not depend on particular choice of uniform sub-
groups Ai. Balanced groups with uniform dimension one are exactly uni-
form groups so they are well-known (see also Theorem 2.2). The structure
of balanced groups with uniform dimension greater than one is described
only when they are strongly balanced ([12]).

In this note we describe all balanced groups with uniform dimension
two. We will call them nearly uniform groups. It is evident that G is
nearly uniform if it is not uniform but for every nontrivial subgroups A,B

such that A ∩ B = 1 the subgroup 〈A,B〉 is essential in G.
In Section 2, after a few elementary observations, we give some families

of examples of nearly uniform groups (Lemmas 2.5 and 2.6).
In Section 3 we characterize nearly uniform p-groups. First we observe

that a p-group G is nearly uniform if and only if Ω1 (G) is elementary
abelian of order p2. In particular, a 2-group G is nearly uniform if and only
if G has exactly three involutions. Such groups are completely classified
by Z. Janko in [8]. Blackburn’s results ([3], [4]) allow us to classify
completely nearly uniform p-groups for p > 2.

In Section 4 we show that every nearly uniform group is either a p-
group or a pq-group. Using some classical results (for example [16], [17])
we give the complete list of nearly uniform groups, which are not p-groups
(Theorems 4.4 and 4.7).

In the last section we will consider relationships between modular
groups and (nearly) uniform groups.
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2. Preliminary results

A group G is said to have p-rank k (rp(G) = k) if its largest elementary
abelian p-subgroup has order pk. We also define the abelian rank r(G) and
the lower rank r(G) by

r(G) =
∑
p||G|

rp(G) and r(G) = max
p||G|

rp(G).

If G is a p-group then of course r(G) = r(G) = rp(G).
Groups of lower rank one have been extensively studied (see [16], [17]).

In [3], [8], [9], [10], [14] p-groups of p-rank two were discussed. In our
investigation we are going to use some ideas and results from the above
mentioned papers.

Of course, the intersection of any essential subgroups is essential.
Thus, in any group G there exists the smallest essential subgroup. This
subgroup is equal to Ω1(G), the subgroup of G generated by all elements of
prime order. This is an immediate consequence of the following elementary
result, which we will give for completeness

Lemma 2.1. Let H ⊆ G be a subgroup. Then H is essential in G if

and only if Ω1 (G) ⊆ H.

The following characterization of uniform groups is in fact well-known
(see [7], III.8.2).

Theorem 2.2. Let G be a group. Then the following conditions are

equivalent:

(1) G is a uniform group;

(2) G is a p-group of p-rank one;

(3) Ω1(G) = Cp for some p;

(4) G is either a cyclic p-group or a generalized quaternion group.

Obviously nontrivial subgroups of uniform groups are uniform groups
and are essential subgroups. For nearly uniform groups we have

Proposition 2.3. Let H be a nontrivial subgroup of G.

(1) If H is essential in G then G is nearly uniform if and only if H is

nearly uniform;



On finite nearly uniform groups 159

(2) If H is not essential in G but G is nearly uniform then H is uniform.

Proof. (1). Let H be an essential subgroup of G.
If G is nearly uniform, then H is nearly uniform because an essential

subgroup of G contained in H has to be essential in H.
Let H be nearly uniform and let A, B be nontrivial subgroups of G

such that A∩B = 1. Then, by assumption on H, A∩H �= 1 and B∩H �= 1.
So 〈A ∩ H,B ∩ H〉 is essential in H for H is nearly uniform. Since H is
essential in G, 〈A ∩ H,B ∩ H〉 is essential in G. Hence 〈A,B〉 is essential
in G, and G is nearly uniform.

(2). Now let H be not essential in G and assume that H is not uniform.
Hence we have nontrivial subgroups A,B of H such that A ∩ B = 1.
Then the subgroup 〈A,B〉 ⊆ H is not essential in G and G is not nearly
uniform. �

Proposition 2.4. Let A, B be nontrivial groups. Then the group

A × B is nearly uniform if and only if A,B are uniform.

Proof. Let G = A×B. Of course Ω1(G) = Ω1(A)×Ω1(B) is essential
in G by Lemma 2.1.

(⇐)Let A, B be uniform. Then, by Theorem 2.2, Ω1 (G) is abelian
of rank 2. Hence Ω1 (G) is nearly uniform. Then G is nearly uniform by
Lemma 2.1 and Proposition 2.3.

(⇒) Let G be nearly uniform. Since A and B are not essential in G,
then A, B are uniform by Proposition 2.3. �

From Theorem 2.2 and Proposition 2.4 we get a useful tool for obtain-
ing some examples of nearly uniform groups. In the lemmas below we give
some more examples.

Lemma 2.5. Let G= 〈a, x, b | a4= 1, b2= a2, x3m
= 1, ab= a−1, ax= ba,

bx = a〉, m ≥ 1.

(1) If m > 1, then G is nearly uniform;

(2) If m = 1, then G is not nearly uniform.

Proof. Certainly G is not uniform. First assume that m > 1. Then
〈a, b〉 � Q8 is a Sylow 2-subgroup of G and is normal in G; 〈x3〉 is central
in G. Hence 〈a, b, x3〉 � Q8×C3m−1 is nearly uniform by Theorem 2.2 and
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Proposition 2.4. Since the group Ω1(G) ⊆ 〈a, b, x3〉, then 〈a, b, x3〉 is essen-
tial in G by Lemma 2.1. Hence G is nearly uniform by Proposition 2.3(1).

Now assume that m = 1. We have 〈a2〉∩〈x〉 = 1 and 〈a2, x〉∩〈xa〉 = 1.
Thus G is not nearly uniform. �

Lemma 2.6. Let G = 〈x, y〉 with xqm
= ypn

= 1, xy = xr,

rpn ≡ 1 (mod qm), (p(r − 1), q) = 1, where p, q are primes and q > p,

n,m ≥ 1.

(1) If m = 1 then G is nearly uniform;

(2) If m > 1, then G is nearly uniform if and only if n ≥ 2 and

rpn−1 ≡ 1(mod qm).

Proof. Certainly G is not uniform, the subgroup 〈x〉 is a Sylow q-
subgroup of G and is normal in G.

(1) Let m = 1. Then Ω1(G) = 〈x, ypn−1〉 is of order pq. So by Lem-
ma 2.1 and Proposition 2.3 G is nearly uniform.

(2) Let m > 1.
Assume that n ≥ 2 and rpn−1 ≡ 1(mod qm). Then there exists a

unique subgroup of order p in G. Hence Ω1(G) is abelian of order pq. So
by Lemma 2.1 and Proposition 2.3 G is nearly uniform.

Now assume that rpn−1 �≡ 1(mod qm). Then 〈xqm−1〉 ∩ 〈ypn−1〉 = 1
and 〈xqm−1

, ypn−1〉 ∩ 〈ypn−1 · x〉 = 1. So G is not nearly uniform.
In the end let n = 1. Then 〈xqm−1〉∩〈y〉 = 1 and 〈xqm−1

, y〉∩〈yx〉 = 1.
So G is not nearly uniform. �

3. Nearly uniform p-groups

Now we will describe nearly uniform p-groups. In this case we have
the following result related to Theorem 2.2.

Theorem 3.1. Let G be a p-group. Then G is nearly uniform if and

only if Ω1 (G) is elementary abelian of order p2.

Proof. We know that Ω1 (G) is an essential subgroup of G. If Ω1 (G)
is elementary abelian of order p2, then it is nearly uniform by Theorem 2.2
and Proposition 2.4. Hence G is nearly uniform by Proposition 2.3(1).
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Now let G be nearly uniform. Then certainly the group Ω1 (G) is
noncyclic. Let x ∈ Ω1(G) ∩ Z(G) be of order p and let y ∈ G \ 〈x〉 be of
order p. Then the group 〈x, y〉 is elementary abelian of order p2. Hence,
by Proposition 2.3, the group 〈x, y〉 is essential in G and, by Lemma 2.1,
Ω1 (G) ⊆ 〈x, y〉. Thus Ω1 (G) = 〈x, y〉 is elementary abelian of order p2.

�

Certainly all nearly uniform p-groups are of rank two. However a full
analog of Theorem 2.2 cannot be proved, because we have the following
easy observation

Corollary 3.2. Let G be either dihedral of order 8 or the nonabelian

group of order p3 and of exponent p for odd p. Then r(G) = 2, but G is

not nearly uniform.

As an immediate special case of the above theorem, we have

Corollary 3.3. Let G be a 2-group. Then G is nearly uniform if and

only if G has exactly three involutions.

The complete classification of 2-groups as in the previous corollary is
given by Z. Janko in [8].

Now let p > 2. We will find presentations of all p-groups which are
nearly uniform. An important ingredient of our consideration is the fol-
lowing result, essentially due to Blackburn (see [3], Theorem 4.1 or [2],
Theorem 6.1)

Lemma 3.4. Let G be a p-group, p > 2. If r(G) = 2, then one of the

following assertions holds:

(1) G is metacyclic, but not cyclic;

(2) G is a 3-group of maximal class;

(3) G = EH, where E = Ω1(G) is nonabelian of order p3 and exponent p

and H is cyclic of index p2 in G.

Theorem 3.5. Let G be a p-group with p > 2. Then G is nearly

uniform if and only if G is one of the following groups:

(1) G is non-cyclic metacyclic,

(2) G = 〈s, s1 | si = [si−1, s] i = 2, . . . , n − 1, [s1, s2] = sn−1, [s1, si] = 1
i = 3, . . . , n− 1, s3 = sn−1, s3

i s
3
i+1si+2 = 1 i = 1, . . . , n− 1〉 for n ≥ 5;
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(3) G = 〈s, s1 | si = [si−1, s] i = 2, . . . , n − 1, [s1, si] = 1 i = 2, . . . , n − 1,
s3 = sn−1, s3

i s
3
i+1si+2 = 1 i = 1, 2, . . . , n − 1〉 for n ≥ 4.

Proof. (⇒) Let G be nearly uniform. By Theorem 3.1 r(G) = 2. By
Lemma 3.4, Proposition 2.3 and Corollary 3.2 G is either metacyclic but
not cyclic or a 3-group of maximal class and of order at least 34.

Let G be a 3-group of maximal class and of order at least 34. Then
by [4] G = 〈s, s1〉 and its defining relations are:
si = [si−1, s] (i= 2, . . . , n− 1), [s1, s2] = sα

n−2s
β
n−1, [s1, s3] = sα

n−1, [s1, si] = 1
(i = 4, . . . , n−1), s3 = sδ

n−1, s3
1s

3
2s3 = sγ

n−1, s3
i s

3
i+1si+2 = 1 (i= 2, . . . , n−1),

with

(a) α = γ = 0, β = 1 and δ = 0, 1, 2 for n ≥ 5;

(b) α = β = δ = 0, γ = 1, 2 or α = β = γ = 0, δ = 0, 1 for n-even, n ≥ 4;

(c) α = β = δ = 0, γ = 1 or α = β = γ = 0, δ = 0, 1 for n-odd, n ≥ 5.

We will show that if G does not belong to any of two families (2)–(3),
then there exists an element of order three, which is not in 〈sn−2, sn−1〉.
The result is obviously true when n = 4, so we can assume that n > 4.

Since by ([7], III.14.16) Ω1(〈s1, G
′〉) = 〈sn−2, sn−1〉, we have to con-

sider only elements in G \ 〈s1, G
′〉. Since G is metabelian ([7], III.14.17)

by Theorem 3.2 from [5], we should show that at least one of the elements
s, ss1, s2, s2s1, ss2

1, s2s2
1 has order three.

If δ = 0, then s3 = 1.
If G = 〈s, s1 | si = [si−1, s] (i = 2, 3, . . . , n − 1), [s1, s2] = sn−1,

[s1, si] = 1 (i= 3, . . . , n− 1), s3 = s2
n−1, s3

i s
3
i+1si+2= 1 (i = 1, 2, . . . , n−1)〉,

then (ss1)3 = 1.
So if G does not belong to any of two families (2)–(3), then G is not

nearly uniform by Theorem 3.1.
(⇐) Let G be non-cyclic metacyclic. Then G is regular, so it is easy

to see by Theorems 3.1 and 2.2 that G is nearly uniform.
For the 3-groups of maximal class we can use the method given above.

Now let
G = 〈s, s1 | si =[si−1, s] (i= 2, 3, . . . , n− 1), [s1, s2]= sn−1, [s1, si] = 1

(i = 3, . . . , n − 1), s3 = sn−1, s3
i s

3
i+1si+2 = 1 (i = 1, 2, . . . , n − 1〉. Since

s3 = sn−1 �= 1, s6 = s2
n−1 �= 1, (ss1)3 = s2

n−1 �= 1, (s2s1)3 = sn−1 �= 1,
(ss2

1)
3 = s2

n−1 �= 1, (s2s2
1)

3 = sn−1 �= 1, G is nearly uniform.
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Now let
G = 〈s, s1 | si = [si−1, s] (i = 2, 3, . . . , n−1), [s1, si] = 1, (i = 2, 3, . . . ,

n − 1), s3 = sn−1, s3
i s

3
i+1si+2 = 1 (i = 1, 2, . . . , n − 1)〉.

Since s3 = sn−1 �= 1, s6 = s2
n−1 �= 1, (ss1)3 = sn−1 �= 1, (s2s1)3 =

s2
n−1 �= 1, (ss2

1)
3 = sn−1 �= 1, (s2s2

1)
3 = s2

n−1 �= 1, G is nearly uniform. �

4. Nearly uniform groups which are not p-groups

Let G be not a p-group. Then G is called a Z-group ([16]) if all Sylow
subgroups of G are cyclic, and we call G a Z∗-group if all Sylow subgroups
of odd order in G are cyclic and Sylow 2-subgroups of G are generalized
quaternion groups.

As an immediate consequence of Propostion 2.3 and Theorem 2.2 and
the above definiton we have

Proposition 4.1. Let G be a group, but not a p-group. If G is nearly

uniform then r(G) = 1. Thus G is either a Z-group or a Z∗-group.

For further investigation of nearly uniform groups we will use some
classical results.

Lemma 4.2 (Zassenhaus, [17], Satz 6). Let s be an integer greater

than 1 and let G be a solvable group with an element of order 2s−1 but

with the order which is not divisible by 2s+1. Then G possesses a normal

subgroup G1 with a cyclic Sylow 2-subgroup such that the quotient group

G/G1:

(i) is of order 2 or

(ii) is isomorphic to A4 or

(iii) is isomorphic to S4.

By direct calculation it can be seen a special case of the result of
Hölder, Burnside, Zassenhaus (10.1.10 in [13], see also [17]).

Lemma 4.3. Let G be a {p, q}-group, where p, q are primes and

q > p. Then G is a Z-group if and only if G has one of the presentations:

(1) G = 〈x, y〉 with xqm
= ypn

= 1, xy = x;
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(2) G = 〈x, y〉 with xqm
= ypn

= 1, xy = xr, rpn ≡ 1(mod qm),
(p(r − 1), q) = 1;

where n,m ≥ 1.

Theorem 4.4. Let G be a group, but not a p-group. Then G is a

nearly uniform Z-group if and only if G is one of the following groups:

(1) G = 〈x, y | xqm
= ypn

= 1, xy = x〉 n,m ≥ 1;

(2) G = 〈x, y | xqm
= ypn

= 1, xy = xr, rpn−1 ≡ 1(mod qm),
(p(r − 1), q) = 1〉, m ≥ 1, n ≥ 2;

(3) G = 〈x, y | xq = ypn
= 1, xy = xr, rpn ≡ 1(mod q),

rpn−1 �≡ 1(mod q), (p(r − 1), q) = 1〉, n ≥ 1

where p, q are primes and q > p.

Proof. Assume that G is a nearly uniform Z-group. Let p be the
smallest prime divisor of the order of G and let H be a nonidentity p-
subgroup of G. Then, from the assumption it follows, that H is cyclic of
order pk for some k ≥ 1. Hence NG(H)/CG(H) is isomorphic to a subgroup
of Aut H and the order of NG(H)/CG(H) divides ϕ(pk) = pk−1(p − 1).
Then NG(H)/CG(H) is a p-group, by the choice of p. Thus, by Frobenius’
theorem ([6]; 7.4.5) G has a normal p-complement, say A, to a Sylow p-
subgroup, say P . Since A is not essential in G, by Proposition 2.3 A is
uniform. So A is a Sylow q-subgroup of G with q > p. The subgroups
A and P are cyclic by the assumption. So G is a metacyclic {p, q}-group
and is one of the groups from Lemma 4.3. If G has the presentation from
Lemma 4.3(2) with m > 1 and either rpn−1 �≡ 1(mod qm) (n ≥ 2) or
n = 1, then G is not nearly uniform by Lemma 2.6 in contradiction to the
assumption. So G is one of the groups (1)–(3).

Conversely, by Lemma 2.6 all groups from (2)–(3) are nearly uniform
Z-groups and if G has the presentation (1), then by Theorem 2.2 and
Proposition 2.4 G is nearly uniform. �

Similarly as in [17] presentations of a specific case of Z∗-groups can
be found.

Lemma 4.5. Let G be a {2, p}-group, where p is an odd prime. Then

G is a Z∗-group if and only if G has one of the presentations:

(1) 〈a, x, y | xpm
= y2n

= 1, a2 = y2n−1
, xy = x, ya = y−1, xa = x〉;
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(2) 〈a, x, y | xpm
= y2n

= 1, a2 = y2n−1
, xy = x, ya = y−1, xa = x−1〉;

(3) 〈a, x, y | xpm
= y2n

= 1, xy = x−1, a2 = y2n−1
, ya = y−1, xa = x〉;

(4) 〈a, x, b | a4 = 1, b2 = a2, x3m
= 1, ab = a−1, ax = ba, bx = a〉;

where m ≥ 1, n ≥ 2 and p is an odd prime.

Proof. Let G be a Z∗-group and a {2, p}-group for some odd prime p.
By Lemmas 4.2 and 4.3 G possesses a normal subgroup G1 isomorphic to
one of the following groups:

(i) 〈x, y | xpm
= y2n

= 1, xy = x〉;
(ii) 〈x, y | xpm

= y2n
= 1, xy = x−1〉;

(iii) 〈y | y2n
= 1〉;

where n,m ≥ 1, and the quotient group G/G1:

(a) is of order 2 or

(b) is isomorphic to A4 or

(c) is isomorphic to S4.

First let |G/G1| = 2. Let B be a Sylow 2-subgroup such that 〈y〉 ⊆ B.
Certainly |B : 〈y〉| = 2. Then B = 〈a, y | y2n

= 1, a2 = y2n−1
, ya = y−1〉,

n ≥ 2 and a ∈ G\G1. Since G is a cyclic extension of G1 by a cyclic group
of order 2 and 〈x〉 , 〈y〉 are normalized by a, we get that G is one of the
groups (1)–(3).

Now let G/G1 � A4 or G/G1 � S4. Since G is a {2, p}-group, we
obtain that p = 3.

First let G/G1 � A4. Since 〈x〉 is characteristic in G1, 〈x〉 is normal
in G. There exists a normal subgroup of index 3 in G/〈x〉, which is iso-
morphic to a Sylow 2-subgroup of G. Since in G/G1 all elements of order 2
are permuted by an element of order 3, a Sylow 2-subgroup of G is the
quaternion group.

Let A be a Sylow 3-subgroup of G. Since in G/G1 all elements of
order 2 are permuted by an element of order 3, NG(A) = CG(A). So
for any non-trivial 3-subgroup H of G, NG(H)/CG(H) is a 3-group and
by Frobenius’ theorem ([6]; 7.4.5) G has a normal 3-complement, say B.
Then G/B � A is a cyclic 3-group and B is the quaternion group. So G =
〈a, x, b | a4 = 1, b2 = a2, x3m

= 1, ab = a−1, ax = ba, bx = a〉, m ≥ 1.
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Let G/G1 � S4. Then G has a subgroup of index 2 isomorphic to
N = 〈a, x, b | a4 = 1, b2 = a2, x3m

= 1, ab = a−1, ax = ba, bx = a〉 and
m ≥ 1. Since a Sylow 2-subgroup of N is normal in the Z∗-group G and
there is no automorphism ϕ of N satisfying the conditions:

(a) ϕ2 is a conjugation by the element g ∈ N of order 4;

(b) ϕ fixes g,

there is no cyclic extension of N by C2 – so G/G1 �� S4.
Conversely, of course all groups from (1)–(5) are Z∗-groups. �

In order to make the proof of Theorem 4.7 less unwieldy, a portion of
it will be seperated out in the form of a lemma.

Lemma 4.6. For p > 2 the group SL(2, p) is not nearly uniform.

Proof. This follows from the definition of nearly uniform groups since
p − 1 �= 1 and we have

〈[
1 1
0 1

]〉
∩

〈[
p − 1 0

0 p − 1

]〉
= 1 and

〈[
1 1
0 1

]
,

[
p − 1 0

0 p − 1

]〉
∩

〈[
1 0
1 1

]〉
= 1. �

Theorem 4.7. Let G be a group but not a p-group. G is a nearly

uniform Z∗-group if and only if G is one of the following groups:

(1) 〈a, x, y | xpm
= y2n

= 1, a2 = y2n−1
, xy = x, ya = y−1, xa = x〉,

m ≥ 1, n ≥ 2;

(2) 〈a, x, y | xpm
= y2n

= 1, a2 = y2n−1
, xy = x, ya = y−1, xa = x−1〉,

m ≥ 1, n ≥ 2;

(3) 〈a, x, y | xpm
= y2n

= 1, xy = x−1, a2 = y2n−1
, ya = y−1, xa = x〉,

m ≥ 1, n ≥ 2;

(4) 〈a, x, b | a4 = 1, b2 = a2, x3m
= 1, ab = a−1, ax = ba, bx = a〉,

m ≥ 2;

where p is an odd prime.

Proof. (⇒) Let G be a nearly uniform Z∗-group. If G would be
nonsolvable then, by Theorem C from [16], G would contain a subgroup
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isomorphic to SL(2, p) for some p > 3, a contradiction to Lemma 4.6.
Hence we can assume that G is solvable.

By Lemma 4.2 G possesses a normal subgroup G1 such that the quo-
tient group G/G1:

(a) is of order 2 or

(b) is isomorphic to A4 or

(c) is isomorphic to S4

and G1 is either a nearly uniform {2, p}-group and Z-group for some odd
prime p or a cyclic 2-group.

Now let G/G1 � A4 or G/G1 � S4. If G1 is a {2, p}-group and p > 3,
then for any Sylow 3-subgroup of G, say A, any Sylow 2-subgroup of G1,
say B, any Sylow p-subgroup of G1, say C, B∩C = 1 and 〈B,C〉∩A = 1,
contrary to the assumption. So p = 3 and G is a {2, 3}-group.

Hence G is a {2, p}-group for some odd prime p and is one of the
groups from Lemma 4.5.

If G has the presentation from Lemma 4.5(4) with m = 1, then G is
not nearly uniform by Lemma 2.5(2).

(⇐) If G is a group from (1)–(3), then Ω1(G) ⊆ 〈x, y〉, 〈x, y〉 is
nearly uniform by Theorem 4.4, so G is nearly uniform by Lemma 2.1
and Proposition 2.3. If G is the group from (4), then G is nearly uniform
by Lemma 2.5(1). �

By Proposition 4.1, we have that if G is a group but not a p-group, then
G is nearly uniform if and only if G is one of the groups from Theorems 4.4
or 4.7.

5. Final remarks

From Theorem 2.2 and Lemma 1.1 it follows that the only uniform
groups which are not modular, are the generalized quaternion groups Q2n

for n > 3, because they have the dihedral group of order 8 as a homomorpic
image.

Now we consider nearly uniform groups. For any n > 3 the 3-groups G

of order 3n from Theorem 3.5 (2)–(3) are nearly uniform but not modular,
because they have the nonabelian group of order 33 and of exponent 3 as a
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homomorphic image. These observations show that a homomorphic image
of a (nearly) uniform group need not be (nearly) uniform.

By [1] a p-group is modular if and only if it is strongly balanced (see
Theorem 1.3), so the above-mentioned 3-groups are new examples of bal-
anced p-groups which are not strongly balanced. By Theorem 3.5 and
Lemma 1.1 we have that if a nearly uniform p-group is modular and p > 2,
then it is non-cyclic metacyclic. In particular, if p > 3 and G is a nearly
uniform p-group then G is modular, hence balanced.

Now we give examples of nearly uniform 2-groups, which are modular
and ones which are not modular. Let G be a non-cyclic 2-group containing
a cyclic normal subgroup A with cyclic factor group G/A; further there
exists an element b ∈ G with G = A 〈b〉 and a positive integer s such that
b−1ab = a1+2s

for all a ∈ A with s ≥ 2. Then G is nearly uniform and
modular by ([9], Proposition 1.9), Proposition 3.1 and Lemma 1.1. But
for all n > 4 G = 〈x, y | x2n−2

= 1, y4 = 1, [x, y] = x−2+2n−3〉 is nearly
uniform but not modular by the same results.

As a consequence of Theorems 1.2, 4.4 and 4.7. we obtain that nearly
uniform Z∗-groups are not modular and if a nearly uniform Z-group is
modular, then it is a direct product of a cyclic p-group and a cyclic q-
group, where p �= q.

All nearly uniform groups are solvable with derived length at most
two. Of course there exist p-groups, Z-groups and Z∗-groups which are
not nearly uniform, since by Theorem 3.1 p-groups G with |Ω1(G)| ≥ p3

are not nearly uniform, so are Z-groups (Z∗-groups) G for which distinct
primes p, q, r divides the order of G.
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