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Consecutive binomial coefficients satisfying
a quadratic relation

By FLORIAN LUCA (Morelia) and LÁSZLÓ SZALAY (Sopron)

Abstract. In this note, we study the diophantine equation A
(
n
k

)2+
B

(
n

k+1

)2 + C
(

n
k+2

)2 = 0 in positive integers (n, k), where A, B and C are fixed
integers.

1. Introduction

D. Singmaster (see [7]) found infinitely many positive integer solu-
tions (n, k) to the diophantine equation

(
n

k

)
=

(
n − 1
k + 1

)
. (1)

All such solutions arise in a natural way from the sequence of Fibonacci
numbers (Fm)m≥0 given by F0 = 0, F1= 1 and Fm+2= Fm+1+Fm for m≥ 0.
Goetgheluck (see [2]) extended the above result and found infinitely
many positive integer solutions (n, k) for the diophantine equation

2
(

n

k

)
=

(
n − 1
k + 1

)
.

These solutions arise in a natural way from the positive integer solutions
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of the Pell equation x2−3y2 = −2. The general linear diophantine equation

A

(
n

k

)
+ B

(
n

k + 1

)
+ C

(
n

k + 2

)
= 0 (2)

was treated in [5].

All the consecutive binomial coefficients satisfying the Pythagorean
relation (

n

k

)2

+
(

n

k + 1

)2

=
(

n

k + 2

)2

(3)

were determined in [4]. It turns out, that in searching for the integer
solutions (n, k) with 1 ≤ k < k+2 ≤ n−1 of equation (3), one is naturally
led to Fibonacci numbers which are a square or twice a square. The similar
looking diophantine equations

a

(
n

k

)2

+ b

(
n

k + 1

)2

=
(

n

k + 2

)2

, (4)

for (a, b) = (1, 2), (2, 1), as well as the diophantine equation
(

n

k

)2

+
(

n + 1
k

)2

=
(

n + 2
k

)2

,

were considered in [9]. Other diophantine equations involving binomial
coefficients appear in [8].

In this note, we fix three integers A, B, C, not all zero, and look at
the positive integer solutions (n, k) of the equation A

(n
k

)2 + B
( n
k+1

)2 +

C
( n
k+2

)2 = 0. To avoid degenerate cases, we shall assume that 1 ≤ k <

k + 2 ≤ n − 1. We assume that gcd(A,B,C) = 1. We shall also assume
that AC �= 0. Indeed, say if A = 0, then the above equation simplifies
to B(k + 2)2 + C(n − k − 1)2 = 0, which implies, up to changing signs,
that we may assume B = B2

0 , C = −C2
0 , where B0 and C0 are coprime

positive integers. Since both n and k are positive, we get that the given
equation implies that C0n = (C0 + B0)k + C0 + 2B0, and it is clear that
this last equation has infinitely many solutions, which are all effectively
computable.

We shall also assume that B �= 0. Indeed, if B = 0, then the only
case when equation (5) might have any integer solutions (n, k) with 1 ≤
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k < k + 2 ≤ n − 1 is when A = A2
0 and C = −C2

0 hold with some positive
integers A0 and C0. Equation (5) now leads to

A0

(
n

k

)
− C0

(
n

k + 2

)
= 0,

which is a particular case of the more general equation of the form (2).

2. Main result

It is clear that we may assume that gcd(A,B,C) = 1 and that A > 0.
Our main result is the following.

Theorem 1. Assume that A, B, and C are nonzero integers. Then

the diophantine equation

A

(
n

k

)2

+ B

(
n

k + 1

)2

+ C

(
n

k + 2

)2

= 0 (5)

has at most finitely many effectively computable integer solutions (n, k)
with 1 ≤ k < k + 2 ≤ n − 1.

3. Preliminary results

Before proceeding to the proof of Theorem 1, we recall a criterion due
to Legendre for the existence of a nonzero integer solution (x, y, z) to the
diophantine equation

ax2 + by2 + cz2 = 0, (6)

where a, b and c are nonzero integers. We may certainly assume, up to
relabelling the coefficients a, b, c and the variables x, y, z, that a > 0, b < 0
and c < 0. Furthermore, we may also assume that gcd(a, b, c) = 1 and that
a, b, c are squarefree (if a = d2a1 and (x, y, z) is a solution of equation (6),
then (dx, y, z) is a solution of equation (6) with a replaced by a1). We now
show that we may even assume that gcd(a, b) = gcd(b, c) = gcd(a, c) = 1.
Indeed assume that dab = gcd(a, b), dbc = gcd(b, c) and dac = gcd(a, c).
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Then a = dabdaca1, b = dabdbcb1, c = dacdbcc1 and equation (6) becomes

dabdaca1x
2 + dabdbcb1y

2 + dacdbcc1z
2 = 0.

The above equation shows that dab|z, dbc|x and dac|y, and writing x =
dbcx1, y = dacy1, z = dbcz1, we get the equation

a1dbcx
2
1 + b1dacy

2
1 + c1dabz

2
1 = 0,

which is an equation of the same type as (6) with the coefficients a, b, c

replaced by a1dbc, b1dac, c1dab, which are pairwise coprime because of the
definitions of dab, dac, dbc and the fact that all three numbers a, b and c

are squarefree.
Legendre’s Theorem asserts the following. (See, for example, [1], p. 62

and p. 73.)

Lemma 2. Let a, b, c be three squarefree integers, a > 0, b < 0, c < 0
which are pairwise coprime. Then there exists a nonzero integer solution

(x, y, z) to the diophantine equation (6) if and only if all three congruences

t2 ≡ −ab (mod c) t2 ≡ −ac (mod b) t2 ≡ −bc (mod a)

are solvable.

Knowing, via Lemma 2, that a certain equation of the form (6) has
infinitely many nonzero integer solutions (x, y, z), it is of interest to us
to know how to compute all of them. This is achieved in the following
lemma. (J. Kelemen [3] described the solutions of (6), but because of
relative unaccessibility of this paper and for the convenience of the reader
we give the proof.)

Lemma 3. Assume that (x0, y0, z0) is an integer solution of equation

(6) with z0 �= 0. Then, all integer solutions (x, y, z) with z �= 0 of equation

(6) are of the form

x = ±D

d

(−ax0s
2 − 2by0rs + bx0r

2
)
,

y = ±D

d

(
ay0s

2 − 2ax0rs − by0r
2
)
,

z = ±D

d

(
az0s

2 + bz0r
2
)
,

where r and s > 0 are coprime integers, D is a nonzero integer, and d is a

bounded positive integer.
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Proof. Let (x, y, z) be a nonzero integer solution of equation (6) with
z �= 0. Note that since we are assuming that gcd(a, b) = gcd(b, c) =
gcd(a, c) = 1 and all of them are squarefree, it follows that gcd(x, y) =
gcd(x, z) = gcd(y, z). We write D for this number. Write X = x/z,
Y = y/z, X0 = x0/z0, Y0 = y0/z0 and let t be such that Y −Y0 = t(X−X0).
Clearly, t is a rational number if (X,Y ) �= (X0, Y0). Let t = r/s with s > 0
and gcd(r, s) = 1. Equation (6) implies that

aX2 + bY 2 = −c, (7)

and
aX2

0 + bY 2
0 = −c. (8)

Replacing X by X0 + (X − X0) and Y by Y0 + t(X − X0) in equation (7)
and using equation (8), we get

−c = a(X0 + (X − X0))2 + b(Y0 + t(X − X0))2

= (aX2
0 + bY 2

0 ) + (X − X0)(2aX0 + 2bY0t) + (X − X0)2(a + bt2),

which leads to

0 = (X − X0)(2aX0 + 2bY0t + (X − X0)(a + bt2)).

If X �= X0, we get

X = X0 +
−2aX0 − 2bY0t

a + bt2
=

−aX0 − 2bY0t + bX0t
2

a + bt2
,

so

Y = Y0 + t(X − X0) = Y0 + t
−2aX0 − 2bY0t

a + bt2
=

aY0 − 2aX0t − bY0t
2

a + bt2
,

and replacing t by r/s we get

x

z
= X =

−ax0s
2 − 2by0rs + bx0r

2

az0s2 + bz0r2
,

y

z
= Y =

ay0s
2 − 2ax0rs − by0r

2

az0s2 + bz0r2
.

Since D = gcd(x, z) = gcd(y, z), it follows that the two fractions apearing
on the right hand sides of the two formulae above have the same denomi-
nator when written in simplified form. Let z0(as2 +br2)/d be this denomi-
nator. Then, d|az0s

2 + bz0r
2. Let d0 = gcd(d, z0). Thus, d0 ≤ z0. Now let
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d1 = d/d0. Then br2 ≡ −as2 (mod d1). Since also d|ay0s
2−2ax0rs−by0r

2,
it follows that d1|ay0s

2 − 2ax0rs + ay0s
2, so d1|2as(y0s − x0r). Let d2 =

gcd(d1, 2a), d3 = gcd(d1, s) and d4 = gcd(d1, y0s − x0r). Clearly, d2 ≤ 2a.
Now d3|s and d3|as2 + br2, therefore d3|br2, and since gcd(r, s) = 1, we
get that d3|b. Thus, d3 ≤ b. Finally, d4|y0s − x0r, therefore y2

0s
2 ≡ x2

0r
2

(mod d4). Since as2 ≡ −br2 (mod d4), we also get that r2(ax2
0 + by2

0) ≡ 0
(mod d4). Let d5 = gcd(d4, r

2) and d6 = gcd(d4, cz
2
0). Since d5|r2 and

d5|as2 +br2, we get that d5|as2, and since r and s are coprime, we get that
d5|a. Thus, d5 ≤ a. Finally, d6|cz2

0 , therefore d6 ≤ cz2
0 . We now get that

d ≤ d0d2d3d5d6 ≤ 2a2bcz3
0 , which completes the proof of Lemma 3. �

Remark. The above Lemma 3 addresses only those solutions (x, y, z)
with z �= 0. However, if (x, y, z) is a nonzero solution with z = 0, then
x/y = ±√−b/a. On the other hand, this is impossible except for the case
x/y = 1, because gcd(a, b) = 1, and a, b are squarefree.

4. The proof of the theorem

We shall assume that A > 0 and B < 0, C < 0, for the remaining
cases can be dealt with in a similar way. Equation (5) can be rewritten as

(α + 1)2(Aα2 + Bβ2) = −Cβ2(β − 1)2, (9)

where α = k + 1 and β = n − k are positive integers. The above equation
shows that Aα2+Bβ2= −Cδ2 holds with the rational number δ = β(β−1)/
(α+ 1). Thus, there exists a positive integer C1 such that C2

1 |C, C1δ is an
integer, and Aα2 + Bβ2 = (−C/C2

1 )(C1δ)2. Let γ = C1δ. By arguments
similar to the ones employed before Lemma 2, there exist integers a, b,
c, u, v, w, which are easily obtained from A, B and C, where the three
integers a, b and c satisfy a > 0, b < 0, c < 0, are squarefree and coprime
any two, and u, v and w are positive, such that every integer solution
(α, β, γ) of the equation Aα2 + Bβ2 = (−C/C2

1 )γ2 has the property that
(x, y, z) = (uα, vβ,wγ) is a solution of

ax2 + by2 = −cz2.

In the coordinates (x, y), equation (9) can be rewritten as

ax2 + by2 = −c

(
C1wβ(β − 1)

(α + 1)

)2

= −c

(
C1uwy(y − v)

v2(x + u)

)2

.
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Thus,

z =
C1uwy(y − v)

v2(x + u)
,

or, equivalently,
v2(x + u)z = C1uwy(y − v). (10)

We now use Lemma 3, where we write x1 := x1(r, s) = |−ax0s
2−2by0rs+

bx0r
2|/d, y1 := y1(r, s) = |ay0s

2 − 2ax0rs − by0r
2|/d and z1 := z1(r, s) =

|az0s
2+bz0r

2|/d. With these notations, we have that x1, y1 and z1 positive
integers which are coprime any two. Moreover, by Lemma 3, we also have
that (x, y, z) = (Dx1,Dy1,Dz1). Here, we neglect the signs because our
unknowns x, y and z are positive. Equation (10) can be rewritten as

v2(Dx1 + u)z1 = C1uwy1(Dy1 − v),

and since z1 and y1 are coprime, we get that z1|C1uw(Dy1 − v). Thus,

v2(Dx1 + u)
y1

=
C1uw(Dy1 − v)

z1
= E,

where E is a positive integer. The above equation leads to the linear
system of two equations in the unknowns D and E, namely

(v2x1)D − Ey1 = −uv2, (C1uwy1)D − Ez1 = C1uvw.

Let ∆ = ∆(r, s) = (v2x1)(−z1) − (C1uwy1)(−y1) = −(v2x1z1 − C1uwy2
1)

be the discriminant of the above system. We first note that ∆ is an ho-
mogeneous form of degree 4 in the variables r and s. Moreover, since
both D and E are integers, we get, by Cramer’s rule, that ∆ divides both
(−uv2)(−z1) − (C1uvw)(−y1) = uv(vz1 + C1wy1) and (v2x1)(C1uvw) −
(C1uwy1)(−uv2) = C1uv2w(vx1 + uy1). It now follows easily that ∆ �= 0.
Indeed, if ∆ = 0, then we must have uvw(ux1 + vy1) = 0, which is im-
possible because all of u, v,w, x1 and y1 are positive integers. We now let
∆1 = gcd(∆, uv), ∆2 = gcd(∆, C1uv2w) and ∆3 = ∆/lcm[∆1,∆2]. Then
∆1 ≤ uv, ∆2 ≤ C1uv2w and ∆3 divides both F (r, s) = vz1 + C1wy1 and
G(r, s) = vx1 + uy1. Note that both F (r, s) and G(r, s) are homogenous
forms of degree 2. From now on, we proceed as follows. We first prove
that the two homogeneous forms F (r, s) and G(r, s) have at most one lin-
ear form in common with multiplicity 1 (or none). This will show that
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either |∆3| is bounded, or that ∆3 divides a linear form in r and s. In
the first case, |∆| is bounded. In the second case, ∆3 is a linear form
and (∆/∆3)(r, s) is a homogeneous form of degree 3, which then must be
bounded in absolute value. This argument therefore shows that there ex-
ists a constant K (obviously, effectively computable), and an homogeneous
factor of ∆, let’s call it ∆′, of degree either 3 or 4, such that |∆′(r, s)| < K.
We shall then show that ∆ has no multiple roots. In particular, each one of
the above inequalities will then be a Thue inequality, and it is well-known
that such inequalities have at most finitely many integers solutions (r, s),
which furthermore are effectively computable by using the theory of linear
forms in logarithms (see [6]). This will conclude the proof of Theorem 1.

The polynomials F and G. Suppose that F and G have more then
one root in common. Since they are quadratic, it follows that they differ
by a scalar multiple. Thus, we may assume that λF + µG = 0 holds
with some coefficients λ and µ, not both zero. Note now that F (r, s) =
C1vw((z1/C1w)+(y1/v)), and G(r, s) = uv((y1/v)+(x1/u)), and it is now
easy to see (X(r, s), Y (r, s), Z(r, s)) = (x1/u, y1/v, z1/(C1w)) is simply a
parametrization of all (but finitely many) nonzero rational points on the
quadratic curve

AX2 + BY 2 = −CZ2. (11)

Since λF + µG = 0, we get, with λ1 = C1vwλ and µ1 = uvµ, that
λ1(Z + Y ) + µ1(Y + X) = 0, or µ1X + (λ1 + µ1)Y + λ1Z = 0. Since λ

and µ are not both zero, the above relation is nontrivial. We thus get that
all rational points (X,Y,Z) on the curve (11) (except for finitely may of
them) lie on a line, which is certainly impossible. Thus, F and G can have
at most one root in common.

The roots of ∆. Here, we show that all the rots of ∆ are simple.
With the previous notations, we recognize that

∆ = −C1uv2w

((x1

u

)(
z1

C1w

)
−

(y1

v

)2
)

= −C1uv2w(XZ − Y 2).

Assume that XZ − Y 2 has a double root. We now set up s = 1 and let
U1 = U1(r) = X(r, 1)/Z(r, 1) and V1 = V1(r) = Y (r, 1)/Z(r, 1) be rational
functions. If XZ − Y 2 has a double root, it follows that the rational
function U1 − V 2

1 = (XZ − Y 2)/Z2 also has a double root (note that Z
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and Y are coprime, so any root of ∆ is not a root of Z). Equation (11)
shows that

AU2
1 + BV 2

1 = −C.

Taking derivatives in the above relation (with respect to r), we get

2AU1U
′
1 + 2BV1V

′
1 = 0. (12)

Now let r0 be the double root of U1 − V 2
1 . We then have that U1(r0) =

V1(r0)2 and by taking derivatives we also have U1(r0)′ = 2V1(r0)V1(r0)′.
Evaluating the above relation (12) in r0, we get the relation

2AU1(r0)U1(r0)′ = −2BV1(r0)V1(r0)′ = −2BU1(r0)′,

therefore
U1(r0)′(AU1(r0) + B) = 0.

If U1(r0)′ = 0, then, since U1(r0)′ = V1(r0)V ′
1(r0), we either get V1(r0)′ = 0

(which is impossible because (U1(r), V1(r)) is nonsingular), or V1(r0) = 0.
In this later case, since U1(r0) = V1(r0)2, we get that U1(r0) = 0, therefore
X(r0, 1) = Y (r0, 1) = 0, which is again impossible. Thus, U1(r0)′ �= 0 and
we are therefore left with the situation U1(r0) = −B/A. Since U1(r0) =
V1(r0)2, we get that V1(r0)2 = −B/A. Thus,

−C = AU1(r0)2 + BV1(r0)2 = A

(
−B

A

)2

+ B

(
−B

A

)
= 0,

which is again impossible. Thus, ∆ has only simple roots. Of course,
this argument is valid only if r0 is not at infinity. In this last case, we
interchange the roles of r and s (i.e., we set U1 = U1(s) = X(1, s)/Z(1, s)
and V1 = V1(s) = Y (1, s)/Z(1, s)) and we apply the same argument.

This completes the proof of Theorem 1.
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