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The probability of generating the symmetric group
when one of the generators is random

By LÁSZLÓ BABAI (Chicago) and THOMAS P. HAYES (Berkeley)

To the memory of Edit Szabó

Abstract. A classical result of John Dixon (1969) asserts that a pair of
random permutations of a set of n elements almost surely generates either the
symmetric or the alternating group of degree n.

We answer the question, “For what permutation groups G ≤ Sn do G and a
random permutation σ ∈ Sn almost surely generate the symmetric or the alter-
nating group?” Extending Dixon’s result, we prove that this is the case if and
only if G fixes o(n) elements of the permutation domain.

The question arose in connection with the study of the diameter of Cayley
graphs of the symmetric group.

Our proof is based on a result by �Luczak and Pyber on the structure of
random permutations.

1. Introduction

By a random element of a nonempty finite set S we mean an element
chosen uniformly from S. A random permutation is a random element
of the symmetric group Sn. A random pair of permutations is a random
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element of the set Sn × Sn. Our permutations always act on a domain of
size n. We consider the asymptotic behavior of random permutations as
n → ∞.

Let {En} be a sequence of events. We say that En holds with high
probability if limn→∞ P (En) = 1. Synonymously, we say that En occurs
almost surely.

Dixon’s classical result states that with high probability, a random
pair of permutations generates either An or Sn [Di1] (cf. [BW], [Ba]).

We strengthen this result, showing that one random permutation is
enough as long as the other generators do not share more than o(n) fixed
points (i.e., the fraction of fixed points in the permutation domain tends
to zero). By a fixed point of a permutation group G ≤ Sn we mean an
element of the permutation domain fixed by all elements of G.

Theorem 1. Let G ≤ Sn be a given permutation group with o(n) fixed

points. Let σ ∈ Sn be chosen at random. Then with high probability, G

and σ generate either An or Sn.

Remark 2. As usual, the precise meaning of such an asymptotic state-
ment involving a o(n) bound is that for every ε > 0 there exists δ > 0 and
a threshold n0 such that for every n ≥ n0, if G ≤ Sn has fewer than δn

fixed points then the probability that G and a random σ ∈ Sn generate
An or Sn is at least 1 − ε.

Of course if G �≤ An then the result means that G and σ almost surely
generate Sn; and if G ≤ An then with probability approaching 1/2, the
group they generate is An, and also with probability approaching 1/2 they
generate Sn.

This question arose in connection with the study of the diameter of
Cayley graphs of the symmetric group [BH], [BBS], [BS]. It can also be
viewed as a contribution to the “statistical group theory” initiated by
Erdős and Turán in 1965 [ET].

We also observe that Theorem 1 is tight in the sense that the o(n)
bound on the number of fixed points is necessary.

Proposition 3. If G ≤ Sn has f fixed points then the probability that

the group generated by G and a random permutation has a fixed point is

≥ f/2n.
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2. Relation to Dixon’s Theorem

To see that Theorem 1 implies Dixon’s result, we only need to note
that with high probability, a random σ ∈ Sn has o(n) fixed points. In fact
much more is true: the number of fixed points is “almost bounded” in the
following sense:

Observation 4. If ωn → ∞ arbitrarily slowly, then with high probabil-
ity, a random σ ∈ Sn has at most ωn fixed points.

This follows from the fact that the probability that σ has ≥ k fixed
points is at most 1/k!. Indeed, let dn denote the probability that σ ∈ Sn

is fixed-point-free (σ is a “derangement”). It is well known that dn → 1/e.

Observation 5. The probability that a random permutation σ ∈ Sn

has exactly k fixed points is dn−k

k! ∼ 1
ek! . (The asymptotic equality holds

uniformly for all k as long as n − k goes to infinity.) �

In other words, the distribution of the number of fixed points of a
random permutation is asymptotically Poisson with expected value 1.

3. The fixed-point-free case

The proof of Theorem 1 will be based on the following powerful result
by �Luczak and Pyber.

Theorem 6 ([�LP]). Let σ ∈ Sn be a random permutation. Then with

high probability, σ does not belong to any transitive subgroup of Sn other

than An or Sn.

So to prove Theorem 1, we only need to show that G and σ generate
a transitive subgroup with high probability. This will be established in
Theorem 13 below. First we consider the case when G has no fixed point
(Corollary 9).

We recall some terminology. Let us consider the symmetric group
Sym(Ω) acting on the permutation domain Ω, where |Ω| = n. Let G ≤
Sym(Ω) be a permutation group acting on Ω. We say that x, y ∈ Ω belong
to the same orbit of G if xτ = y for some τ ∈ G. The equivalence classes
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of this relation are the orbits of G or G-orbits; they partition Ω. If A ⊆ Ω
is an orbit then |A| is called the length of this orbit. We say that G is
transitive if Ω is a single orbit (of length n). An element x ∈ G is a fixed
point of G if {x} is an orbit (of length 1). We denote the set of fixed points
of G by fix(G).

Lemma 7. Let G ≤ Sn be a permutation group with t ≥ 2 orbits,

each of length ≥ k ≥ 2. Let σ ∈ Sn be chosen at random. Then the

probability that G and σ generate a transitive group is greater than

1 − t(n
k

) − δ(n, k, t), (1)

where

δ(n, k, t) =




0 if k > n/4;(t
2

)
(1 + O(1/n))( n

2k

) if k ≤ n/4.
(2)

Here the constant hidden in the O(1/n) term is absolute.

Proof. Let |Ω| = n and G ≤ Sym(Ω). Observe that k ≤ n/2 and
t ≤ n/k.

Let q(G) denote the probability that G and σ do not generate a tran-
sitive group.

Let Π = Π(G) = (A1, . . . , At) be the partition of Ω into G-orbits. We
refer to the Ai as the blocks of the partition Π.

Let B ⊂ Ω. Let pB denote the probability that B is invariant under σ.
Clearly, pB = 1

( n
|B|)

. Using the union bound,

q(G) ≤
t−1∑
r=1

∑
B∈Ir

pB , (3)

where Ir denotes the set of those unions B of r blocks of Π which satisfy
|B| ≤ n/2. So |Ir| ≤ (t

r

)
. Moreover, for B ∈ Ir, we have rk ≤ n/2.

Therefore

q(G) ≤
�n/2k�∑

r=1

(t
r

)( n
rk

) ≤ t(n
k

) + δ(n, k, t). (4)

The last inequality is vacuously true if k > n/6; the case k ≤ n/6 is the
content of the next proposition. �
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Proposition 8. Suppose 2 ≤ k ≤ n/6 and tk ≤ n. Then

�n/2k�∑
r=3

(t
r

)( n
rk

) = O

( (t
2

)
n
( n
2k

)
)

. (5)

Proof. Let ar =
(

t
r

)
and br =

(
n
rk

)
and let S(n, k, t) :=

∑�n/2k�
r=3 (b2ar)/

(a2br). Our claim is that nS(n, k, t) is bounded (for all n, k, t satisfying
the given constraints).

We observe that ((
t

r

))k

≤
(

tk

rk

)
≤
(

n

rk

)
. (6)

Further we observe that for r ≥ 64 and rk ≤ n/2 we have(
n

rk

)
>

((
n

2k

))4

. (7)

Indeed, (
n

64k

)
>
( n

64k

)64k
>
(en

2k

)8k
>

((
n

2k

))4

. (8)

Combining inequalities (6) and (7) we obtain, for r ≥ 64, that

b2ar

br
<

1
b2

≤ 1(n
4

) <
1
n2

. (9)

It follows that

S1(n, k, t) :=
�n/2k�∑
r=64

b2ar

a2br
<

1
n

. (10)

It remains to bound the sum

S2(n, k, t) :=
m∑

r=3

b2ar

a2br
, (11)

where m = min{63, 
n/2k�}.
Obviously,

S2(n, k, t) ≤
m∑

r=3

b2am

b3
<

n64b2

b3
. (12)
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Now
b2

b3
<

(
3k

n − 2k

)k

. (13)

Since k ≤ n/6, the right hand side is less than (3/4)k; so we obtain the
estimate S2(n, k, t) < n64/(3/4)k ≤ 1/n if k ≥ 65 log n/ log(4/3).

Assume now that k < 65 log n/ log(4/3). It follows that for large
enough n we have 3k/(n − 2k) < 1/

√
n and so S2(n, k, t) < n64b2/b3 <

n64n−k/2 ≤ 1/n assuming k ≥ 130.
Now let us assume k ≤ 129. Then

(b2ar)/(a2br) = Θ(tr−2/nk(r−2)) = O(n−(k−1)(r−2)) = O(1/n), (14)

proving that S2(n, k, t) = O(1/n). �

Corollary 9. Let G ≤ Sn be a permutation group with no fixed

points. Let σ ∈ Sn be chosen at random. Then the probability that G and

σ do not generate a transitive group is less than 1/n + O(1/n2).

4. Projections

Next we define a projection operator, introduced in [BH], a useful tool
for extending results about fixed-point-free groups to the general case.
While a direct proof of Theorem 1 would be somewhat shorter, we find
that separating the fixed-point-free case and then arriving at the general
conclusion via the projection machinery provides greater insight and a
general methodology.

We take a subset T of the permutation domain Ω and a permutation
σ ∈ Sym(Ω) and assign to it a permutation σT ∈ Sym(T ). Informally, σT

is obtained by deleting those orbits of σ which lie entirely outside T and
contracting those segments of the remaining orbits which lie outside T .
The formal definition follows.

Definition 10. For T ⊆ Ω, we define the projection prT : Sym(Ω) →
Sym(T ), as follows. Let σ ∈ Sym(Ω). We set σT = prT (σ) and define σT .
For i ∈ T , let k denote the smallest positive integer such that iσ

k ∈ T . Set
iσT = iσ

k
.
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We now observe two basic facts about projections.

Observation 11. Let T ⊆ Ω. The projection map prT : Sym(Ω) →
Sym(T ) is uniform, i.e., for all τ ∈ Sym(T ), the size of pr−1

T (τ) is the same
(|Ω|!/|T |!).

Proof. Let τ ∈ Sym(T ). Let λ : Ω \ T → Ω be an injection. It is
easy to see that there is a unique σ ∈ Sym(Ω) such that σ|Ω\T = λ and
σT = τ . Indeed, if iτ = j then (a) if j is not in the range of λ then let
iσ = iτ ; (b) if j = �λ for some � ∈ Ω \ T then let k be the largest integer
such that j = mλk

for some m ∈ Ω \T and set iσ = m. These are the only
possible choices under the given constraints. We conclude that |pr−1(τ)|
is equal to the number of injections λ regardless of the choice of τ . �

Observation 12. Let σ ∈ Sym(Ω) and let T ⊆ Ω. Let G ≤ Sym(T )
where Sym(T ) is viewed as a subgroup of Sym(Ω). Then the orbits of the
subgroup of Sym(T ) generated by G and σT are precisely the intersection
of T with those orbits of the subgroup of Sym(Ω) generated by G and σ

which have non-empty intersection with T .

Proof. Clear. �

Theorem 13. Let G ≤ Sn be a given permutation group with f ≤ n/2
fixed points. Let σ ∈ Sn be chosen at random. Then the probability that G

and σ do not generate a transitive group is less than (f+1)(1/n+O(1/n2)).
In particular, if G has o(n) fixed points then G and σ generate a transitive

group with high probability.

Proof. Let A = fix(G); so |A| = f . The probability that a subset
B ⊆ A is invariant under σ is, as before, pB = 1/

( n
|B|
)
. Let i(A) denote the

probability that such an invariant nonempty subset exists. By the union
bound,

i(A) ≤
∑

∅�=B⊆A

pB =
f∑

r=1

(f
r

)(n
r

) =
f

n
+ O

((
f

n

)2
)

. (15)

Let now H denote the group generated by G and σ and let R = Ω \ A

(the domain where G actually acts). Let σR be the projection of σ to R

(see Definition 10). By Observation 12, two elements x, y ∈ R belong to
the same orbit under H if and only if they belong to the same orbit of
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the group generated by G and σR. Observing further that σR is uniformly
distributed in Sym(R) (Observation 11) we conclude, using Corollary 9,
that the probability that not all elements of R are in the same orbit under
H is ≤ 1/(n − f) + O(1/(n − f)2) = 1/n + O

(
(f + 1)/n2

)
.

Finally, the probability that H is not transitive is at most the sum of
this quantity and i(A), which in turn is (f + 1)/n + O

(
(f + 1)/n2

)
. �

5. Case: many fixed points

We now prove Proposition 3. Let A be a subset a size f of the permu-
tation domain of size n. Let σ be a random permutation. Let p(f) denote
the probability that σ fixes at least one element of A.

Claim 14.
p(f) ≥ f

2n
. (16)

Proof. The probability that a given point is fixed by σ is 1/n; the
probability that a given pair of points is fixed by σ is 1/n(n − 1). Hence,
by Bonferroni’s Inequalities (truncated Inclusion-Exclusion),

p(f) ≥ f

n
−

(f
2

)
n(n − 1)

=
f

n

(
1 − f − 1

2(n − 1)

)
≥ f

2n
. (17)

�

To prove Proposition 3, we apply the Claim to the set of fixed points
of G. �

6. Open problems

�Luczak and Pyber [�LP] do not provide an explicit bound on the
probability that a random permutation belongs to a transitive group other
than Sn or An (Theorem 6); this probability presumably goes to zero rather
slowly. The first problem we propose is to estimate this rate.

The second problem is to find a proof of Theorem 1 which is indepen-
dent of the �Luczak–Pyber Theorem and provides a faster rate of conver-
gence. Specifically, we propose the following
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Conjecture 15. There exists c > 0 such that for all permutation

groups G ≤ Sn if G has no fixed point then the probability that G together

with a random permutation does not generate An or Sn is O(n−c).

In this connection we should mention that the probability that a ran-
dom pair of permutations does not generate Sn or An is 1/n + O(1/n2)
[Ba]. The full asymptotic expansion of this probability was recently given
by Dixon [Di2].

It is a long standing conjecture that all Cayley graphs of Sn and An

have polynomially bounded diameters ([KMS], [BS]). In [BH], the authors
prove that for almost all pairs of permutations σ, τ ∈ Sn, the Cayley graph
of the group G generated by σ and τ has polynomially bounded (O(nc))
diameter. (Note that by Dixon’s result, G is almost surely Sn or An.) It
is our hope that Theorem 1 will help extend this result to the case when
only σ is random; τ is a given permutation with few fixed points.1
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