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On some symmetrizable topology on ϕ(`) space

By DANUTA STACHOWIAK–GNIÃLKA (Poznań)

Abstract. In the present paper we examine properties of a class ϕ(`) endowed
with some symmetrizable topology. We give the necessary and sufficient conditions
under which this space is metrizable and normable. Also, the connections between
this topology and any other topologies defined on ϕ(`) are examined. The problem
of compactness of subsets of the space ϕ(`) is solved. Our investigations about the
normability of ϕ(`) are closely related to those in [2].

1. Let Φ be the class of the non-negative real valued functions ϕ
defined for all reals, which are even on (−∞,∞), non-decreasing on 〈0,∞)
and satisfy the condition ϕ(0) = 0. By ϕ(`) we denote the class of all
sequences (ξk)k≥1 for which

∞∑

k=1

ϕ(ξk) < ∞ ,

and by RN the class of all sequences of reals. In the sequel we denote by
x, y, z, . . . the sequences (ξk)k≥1, (ηk)k≥1, (ζk)k≥1, . . . , respectively and by
xn for n ≥ 1 the sequences (ξn

k )k≥1, n ≥ 1.
If x, y ∈ RN, then

dϕ(x, y) =
∞∑

k=1

ϕ(ξk − ηk)

is called the ϕ–distance between x and y.
Let x ∈ ϕ(`) be arbitrarily chosen. For each ε > 0 we denote the

ε–neighbourhood of x in the sense of the ϕ–distance as follows:

Aϕ(x, ε) ≡ {y ∈ ϕ(`) : dϕ(x, y) < ε} .

We say that a sequence (xn)n≥1, xn ∈ ϕ(`) for n ≥ 1, is convergent
to x ∈ ϕ(`) in the sense of the ϕ–distance if and only if for every ε > 0
there exists a natural number N(ε) such that dϕ(xn, x) < ε for n > N(ε).
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Remark 1.1. Observe that if ϕ ∈ Φ, ϕ(u) > 0 for u > 0 and x, y, xn ∈
RN for n ≥ 1 with dϕ(xn, x)+dϕ(xn, y) → 0 as n →∞, then clearly x = y.

The functions ϕ,ψ ∈ Φ are said to be equivalent if there exist con-
stants m,M > 0, v0 > 0 such that mϕ(u) ≤ ψ(u) ≤ Mϕ(u) for 0 < u ≤
v0.

We say that a function ϕ ∈ Φ satisfies the condition (∆2), if there
exist constants C > 0, u0 > 0 such that ϕ(2u) ≤ Cϕ(u) for 0 < u ≤ u0.

An obvious corollary of the condition (∆2) is the following

Remark 1.2. If ϕ ∈ Φ, ϕ(u) > 0 for u > 0 and ϕ satisfies the condition
(∆2), then for x, y, z ∈ RN with dϕ(x, y) < ϕ(u0) and dϕ(y, z) < ϕ(u0) we
have dϕ(x, z) ≤ C(dϕ(x, y) + dϕ(y, z)).

Theorem 1.1. If ϕ ∈ Φ, then ϕ(`) is a linear subset of RN if and only
if one the following conditions is satisfied:

(a) ϕ(u) = 0 for every u > 0,
(b) ϕ(+0) > 0,
(c) ϕ(+0) = 0, ϕ(u) > 0 for u > 0 and ϕ satisfies the condition (∆2).

Proof. Sufficiency. If ϕ(u) = 0 for every u > 0, then ϕ(`) = RN (see
[2], 1.3(b)). If ϕ(+0) > 0, then ϕ(`) is the class of all sequences (ξk)k≥1

for which ξk = 0 for almost all k (see [2], 1.3(c)). If ϕ(u) > 0 for u > 0
and ϕ satisfies the condition (∆2), then the linearity of ϕ(`) follows from
Remark 1.2.

Necessity. Suppose ϕ(`) is a linear subset of RN, ϕ(a) > 0 for some
real a > 0 and ϕ(+0) = 0. First it is easily seen that ϕ(u) > 0 for
u > 0. Now let ϕ do not satisfy the condition (∆2). Then there clearly
exists an x ∈ ϕ(`) such that 2x /∈ ϕ(`) (cf. [5] Lemma 1.2). This gives a
contradiction. We conclude that ϕ satisfies the condition (∆2).

We denote by W the class of all sequences (ξk)k≥1 for which the ξk–s
are rationals and ξk = 0 for almost all k.

Let ϕ ∈ Φ. Let Tdϕ be the system of subsets of ϕ(`) defined by the
property: U ∈ Tdϕ if and only if for every x ∈ U there is an ε > 0 such
that Aϕ(x, ε) ⊂ U .

Tdϕ is clearly a topology on ϕ(`). The topological space ϕ(`) with this
topology is denoted by (ϕ(`), Tdϕ).

Now we define the operator p. If ϕ ∈ Φ, then for every A ⊂ ϕ(`) we
write

p(A) ≡ {x ∈ ϕ(`) : Aϕ(x, ε) ∩A 6= ∅ for every ε > 0} .

One can easily prove the following
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Theorem 1.2. Let ϕ ∈ Φ. The operator p has the following proper-
ties:

1◦ p(∅) = ∅,
2◦ A ⊂ p(A) for every A ⊂ ϕ(`),
3◦ p(A ∪B) = p(A) ∪ p(B) for all A,B ⊂ ϕ(`).

It is easy to prove that for ϕ ∈ Φ a subset U of ϕ(`) is open in the
topology Tdϕ

if and only if ϕ(`) \ U = p(ϕ(`) \ U).
In the sequel we shall denote by Ā the closure of a set A in the topology

Tdϕ
.

Remark 1.3. Let ϕ ∈ Φ and let A ⊂ ϕ(`) be arbitrarily chosen. Then

(a) p(A) ⊂ Ā,
(b) A = Ā if and only if A = p(A).

Theorem 1.3. Let ϕ ∈ Φ. The topological space (ϕ(`), Tdϕ) is discrete
if and only if ϕ(+0) > 0.

Proof. Sufficiency. Let ϕ(+0) > 0. We then clearly have A = p(A)
for all A ⊂ ϕ(`) and thus (ϕ(`), Tdϕ) is discrete.

Necessity. Suppose the space (ϕ(`), Tdϕ) is discrete and let ϕ(+0) = 0.
Then {x} ∈ Tdϕ for all x ∈ ϕ(`). Let x = (0, 0, 0, . . . ), then Aϕ(x, ε) = {x}
for some ε > 0. There is a > 0 such that ϕ(a) < ε. Put y = (a, 0, 0, . . . ),
then y ∈ Aϕ(x, ε) and y 6= x. This gives a contradiction. We conlude that
ϕ(+0) > 0.

Theorem 1.4. Let ϕ ∈ Φ. The topological space (ϕ(`), Tdϕ) is sym-
metrizable (see [4]) if and only if ϕ(u) > 0 for u > 0.

proof. Sufficiency. Let ϕ(u) > 0 for u > 0 and for x, y ∈ ϕ(`) let
%(x, y) = min{1, dϕ(x, y)}. Then % satisfies the axioms for a symmetric
and Tdϕ is a topology generated by this symmetric (see [4]).

Necessity. If the space (ϕ(`), Tdϕ) is symmetrizable, then it is a T1

space (see [4]). Hence {x} = {x} for every x ∈ ϕ(`). Let a > 0 be
such that ϕ(a) = 0, let x = (0, 0, 0, . . . ) and y = (a, 0, 0, . . . ). Then
Aϕ(y, ε) ∩ {x} 6= ∅ for all ε > 0 and thus y ∈ p({x}). This implies that
p({x}) 6= {x}, a contradiction. Hence ϕ(u) > 0 for u > 0.

Theorem 1.5. Let ϕ ∈ Φ be such that ϕ(u) > 0 for u > 0. The space
(ϕ(`), Tdϕ) is separable if and only if ϕ(+0) = 0.

Proof. Sufficiency. Let x ∈ ϕ(`) and ε > 0 be arbitrary. Then there
are a natural number k0 and a real number δ > 0 such that

∞∑

k=k0+1

ϕ(ξk) <
ε

2
and ϕ(δ) <

ε

2k0
.
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For every ξk (1 ≤ k ≤ k0) there exists a rational number wk such that
|ξk − wk| < δ (1 ≤ k ≤ k0). Now we define

ηk =
{

wk if 1 ≤ k ≤ k0 ,

0 if k > k0 .

Clearly y ∈ W and dϕ(x, y) < ε. Hence x ∈ p(W) and we obtain ϕ(`) = W̄.

Necessity follows from Theorem 1.3.

Theorem 1.6. Let ϕ ∈ Φ, ϕ(u) > 0 for u > 0. The space (ϕ(`), Tdϕ)
is connected if and only if ϕ(+0) = 0.

Proof. Sufficiency. Let x ∈ ϕ(`) and t0 ∈ 〈0, 1〉 be arbitrarily cho-
sen, where 〈0, 1〉 = {t ∈ R : 0 ≤ t ≤ 1}, and let V ⊂ ϕ(`) be an arbitrary
neighbourhood of t0x ∈ ϕ(`). Then there are U ∈ Tdϕ and ε > 0 such

that t0x ∈ U ⊂ V and Aϕ(t0x, ε) ⊂ U . As lim
λ→0

∞∑
k=1

ϕ(λξk) = 0, we can

find a δ > 0 such that for any t ∈ 〈0, 1〉 satisfying |t − t0| < δ we have
∞∑

k=1

ϕ ((t− t0)ξk) < ε. This implies that tx ∈ V . Thus the function

Fx : 〈0, 1〉 → (ϕ(`), Tdϕ); t → tx

is a continuous function for every x ∈ ϕ(`). We conclude that the im-
age Fx(〈0, 1〉) is connected in (ϕ(`), Tdϕ) and so the space (ϕ(`), Tdϕ) is
connected too.

Necessity follows from Theorem 1.3.

Now we shall give the conditions under which the operator p is a
Kuratowski closure operator.

Theorem 1.7. Let ϕ ∈ Φ, ϕ(u) > 0 for u > 0 and ϕ(+0) = 0. The
condition (∆2) is sufficient and necessary for the following property to be
fulfilled:

(1.1)
for all x ∈ ϕ(`) and ε > 0 there is a δ > 0 such that for

each y ∈ Aϕ(x, δ) there is a γ > 0 such that Aϕ(y, γ) ⊂ Aϕ(x, ε) .

Proof. Sufficiency. Let Aϕ(x, ε) be a given neighbourhood and let
0 < δ < min

(
ε

2C , ϕ(u0)
)
, where C > 0, u0 > 0 are constants as in the

condition (∆2). Let y ∈ Aϕ(x, δ). We choose 0 < γ ≤ δ and we shall prove
that Aϕ(y, γ) ⊂ Aϕ(x, ε). Let z ∈ Aϕ(y, γ). Then by Remark 1.2

dϕ(x, z) ≤ 2Cδ < ε ,

and hence z ∈ Aϕ(x, ε).
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Necessity. Let x ∈ ϕ(`) and ε > 0 be arbitrary. According to the
property (1.1) we can choose δ > 0. There is a natural number k1 such

that
∞∑

k=k1+1

ϕ(ξk) < δ. Put

ηk =
{

ξk if 1 ≤ k ≤ k1 ,

0 if k > k1 .

It is evident that dϕ(x, y) < δ and so Aϕ(y, γ) ⊂ Aϕ(x, ε) for some γ > 0.

On the other hand there is a natural number k2 such that
∞∑

k=k2+1

ϕ(ξk) < γ.

We denote k′ = min(k1, k2), k′′ = max(k1, k2) and we define

ζk =





ξk if 1 ≤ k ≤ k′ ,
0 if k′ < k ≤ k′′ ,
−ξk if k > k′′ .

It is easily seen that z ∈ ϕ(`) and z ∈ Aϕ(y, γ). Hence z ∈ Aϕ(x, ε), that

is ε > dϕ(x, z) ≥
∞∑

k=k′′+1

ϕ(2ξk). It follows that 2x ∈ ϕ(`). Hence, as it is

easily seen, condition (∆2) holds (see also [5], Lemma 1.2).

From the above theorem and Theorem 1.6 in [7] we immediately get

Corollary 1.1. Let ϕ ∈ Φ, ϕ(u) > 0 for u > 0 and ϕ(+0) = 0. A
sufficient and necessary condition for the operator p to be a Kuratowski
closure operator is (∆2).

2. Let ϕ ∈ Φ, ϕ(u) > 0 for u > 0 and ϕ(+0) = 0. By ϕ∗(`) we

denote the space of those x for which lim
λ→0

∞∑
k=1

ϕ(λξk) = 0. As it is easily

seen ϕ∗(`) is a linear subspace of RN containing the set ϕ(`) and in this
linear space we may introduce an F–norm (see [2] 1.8 or [3] Theorem 1.5)
by the formula

x ϕ = inf

{
a > 0 :

∞∑

k=1

ϕ

(
1
a
ξk

)
≤ a

}
.

By Tϕ∗ we denote the topology generated by the metric %(x, y)= x − y ϕ

restricted to ϕ(`). Let Kϕ(x, ε) be an open ball in the metric space
(ϕ(`), Tϕ∗), i.e.,

Kϕ(x, ε) ≡ {y ∈ ϕ(`) : x− y ϕ < ε} .
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Remark 2.1. Observe that for 0 < ε < 1 and for every x ∈ ϕ(`) we
have Kϕ(x, ε) ⊂ Aϕ(x, ε).

Let Tϕ be the topology induced by the subbase {Aϕ(x, ε) : x ∈
ϕ(`), ε > 0}. We investigate the connections between the topologies
Tdϕ

, Tϕ∗ and Tϕ.

It is easy to prove that Tdϕ
⊂ Tϕ∗ (cf. Remark 2.1) and Tdϕ

⊂ Tϕ.

Theorem 2.1. Let ϕ ∈ Φ, ϕ(u) > 0 for u > 0 and ϕ(+0) = 0.
Suppose that ϕ satisfies the condition (∆2). Then Tϕ∗ ⊂ Tdϕ

.

Proof. Let U ∈ Tϕ∗ and x ∈ U be arbitrary. There exists ε > 0
such that Kϕ(x, ε) ⊂ U . We choose a natural number n and a real δ > 0
such that ε ≥ 1

2n and δ < min
(

ε
2Cn+1 , ϕ

(
u0
2n

))
, where C > 0, u0 > 0

are constants as in the condition (∆2). We shall prove that Aϕ(x, δ) ⊂
Kϕ(x, ε). Let y ∈ Aϕ(x, δ), then

∞∑

k=1

ϕ

(
2
ε
(ηk − ξk)

)
≤

∞∑

k=1

ϕ
(
2n+1(ηk − ξk)

)
<

ε

2
.

This implies that y ∈ Kϕ(x, ε) and so U ∈ Tdϕ .

Observe as an immediate corollary of Theorem 2.1 the following

Remark 2.2. Let ϕ be the same as in Theorem 2.1. Then for every
ε > 0 there is a δ > 0 such that for x, y ∈ ϕ(`), dϕ(x, y) < δ implies
x− y ϕ < ε.

Indeed, by Theorem 2.1, Kϕ(0, ε) ∈ Tdϕ for every ε > 0 and thus
there is a δ > 0 with Aϕ(0, δ) ⊂ Kϕ(0, ε).

Taking into account also Theorem 2.4 and Proposition 2.1 in [6] we
can easily prove the following

Theorem 2.2. Let ϕ ∈ Φ, ϕ(u) > 0 for u > 0 and ϕ(+0) = 0. Then
Tϕ ⊂ Tdϕ

if and only if ϕ(u + 0) = ϕ(u) for u > 0 and ϕ satisfies the
condition (∆2).

Theorem 2.3. If ϕ ∈ Φ, ϕ(u) > 0 for u > 0, ϕ(+0) = 0 and ϕ does
not satisfy the conditon (∆2), then Tϕ \ Tϕ∗ 6= ∅ and Tϕ∗ \ Tϕ 6= ∅.

Proof. Choose a sequence un ↓ 0 as n →∞ such that

ϕ(un) <
1
2n

and ϕ

((
1 +

1
n

)
un

)
> 2n+1ϕ(un) for n ≥ 1 .
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Such a sequence clearly exists. Moreover there clearly exists a decomposi-

tion N =
∞⋃

n=1
Fn of the set N = {1, 2, . . . } into nonempty sets Fn such that

j ∈ Fm and j′ ∈ Fm+1 imply j < j′ and

1
2n

≤
∑

j∈Fn

ϕ(un) <
1

2n−1
for n ≥ 1

(see also [5], the proof of Lemma 1.2). Now let ξk = 1
2un, ηk = − 1

2un

if k ∈ Fn. Clearly x, y ∈ ϕ(`). Let U = Aϕ

(
y, 9

4

)
. Then U ∈ Tϕ and

dϕ(x, y) =
∞∑

n=1

∑
j∈Fn

ϕ(un) < 2, thus x ∈ U . We shall prove that U 6∈ Tϕ∗ .

Let ε > 0 be an arbitrary real. There is a natural number m such that
ε > 2

m . We define

ζk =

{ (
1
2 + 1

m

)
um if k ∈ Fm ,

1
2ui if k ∈ Fi, i 6= m .

One can easily prove that z ∈ ϕ(`). Further,
∞∑

k=1

ϕ
(

2
ε (ξk − ζk)

)
=

=
∑

j∈Fm

ϕ
(

2
mεum

)
< ε

2 and hence z ∈ Kϕ(x, ε). Let us suppose that z ∈ U .

Then dϕ(z, y) < 9
4 . On the other hand

dϕ(z, y) =
∑

j∈Fm

ϕ

((
1 +

1
m

)
um

)
+

∞∑

i=1
i 6=m

∑

j∈Fi

ϕ(ui) >

> 2 +
∞∑

i=1
i 6=m

1
2i

= 3− 1
2m

≥ 5
2

,

a contradiction. Hence Kϕ(x, ε) 6⊂ U for all ε > 0. This implies that
U /∈ Tϕ∗ and so Tϕ \ Tϕ∗ 6= ∅.

Now let ξk = un if k ∈ Fn. Let
N⋂

i=1

Aϕ(xi, εi) be an arbitrary set belonging

to the base of the topology Tϕ such that x ∈
N⋂

i=1

Aϕ(xi, εi). Take 0 < δi <

εi− dϕ(x, xi) for 1 ≤ i ≤ N . For any 1 ≤ i ≤ N there is a natural number
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ki such that
∞∑

k=ki+1

ϕ(ξi
k) < δi. Denote k0 = max

1≤i≤N
ki and let

ηk =
{

ξk if 1 ≤ k ≤ k0 ,

0 if k > k0 .

Then clearly y ∈ ϕ(`). Further,

dϕ(y, xi) =
k0∑

k=1

ϕ
(
ξk − ξi

k

)
+

∞∑

k=k0+1

ϕ(ξi
k) < dϕ(x, xi) + δi < εi

for 1 ≤ i ≤ N . Hence y ∈
N⋂

k=1

Aϕ(xi, εi). Choose 0 < ε < 1 and suppose

that y ∈ Kϕ(x, ε). Then
∞∑

k=1

ϕ
(

1
ε (ξk − ηk)

) ≤ ε. On the other hand there

are natural numbers n1 and n2 such that 1
ε > 1 + 1

n1
and k0 + 1 ∈ Fn2 .

Denoting n0 = max(n1, n2) we have
∞∑

k=1

ϕ

(
1
ε
(ξk − ηk)

)
=

∞∑

k=k0+1

ϕ

(
1
ε
ξk

)
≥

≥
∞∑

n=n0+1

∑

j∈Fn

ϕ

((
1 +

1
n

)
un

)
= ∞ ,

a contradiction. It follows
N⋂

i=1

Aϕ(xi, εi) 6⊂ Kϕ(x, ε). This implies that

Kϕ(x, ε) 6∈ Tϕ and so Tϕ∗ \ Tϕ 6= ∅.
From the above theorems follows immediately

Corollary 2.1. Let ϕ ∈ Φ, ϕ(u) > 0 for u > 0 and ϕ(+0) = 0.

(a) If ϕ(u + 0) = ϕ(u) for u > 0 and ϕ satisfies the condition (∆2),
then Tdϕ = Tϕ∗ = Tϕ.

(b) If ϕ satisfies the condition (∆2) and there is a real u0 > 0 such
that ϕ(u0 + 0) > ϕ(u0), then Tdϕ = Tϕ∗ $ Tϕ.

(c) If ϕ does not satisfy the condition (∆2), then Tdϕ $ Tϕ∗ , Tdϕ $ Tϕ,
Tϕ \ Tϕ∗ 6= ∅ and Tdϕ \ Tϕ 6= ∅.

Corollary 2.2. If ϕ ∈ Φ, ϕ(u) > 0 for u > 0, ϕ(u + 0) = ϕ(u)
for u ≥ 0 and ϕ satisfies the condition (∆2), then the space (ϕ(`), Tϕ) is
metrizable.

Now we shall give the conditions under which the space (ϕ(`), Tdϕ) is
metrizable.
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Theorem 2.4. Let ϕ ∈ Φ and ϕ(+0) = 0. The space (ϕ(`), Tdϕ
) is

metrizable if and only if ϕ(u) > 0 for u > 0 and ϕ satisfies the condition
(∆2).

Proof. Sufficiency follows immediately from Theorem 2.1.

Necessity. If (ϕ(`), Tdϕ) is a metrizable space, then by Theorem 1.4
we have ϕ(u) > 0 for u > 0. Suppose that ϕ does not satisfy the condition
(∆2). Then there are x ∈ ϕ(`) and ε > 0 such that x 6∈ IntAϕ(x, ε). In
fact, suppose that x ∈ IntAϕ(x, ε) for every x ∈ ϕ(`) and ε > 0. As p
is not a Kuratowski closure operator (see Corollary 1.1), there are a set
A ⊂ ϕ(`) and y ∈ ϕ(`) such that y ∈ p(p(A)) and y 6∈ p(A). Hence
A ⊂ ϕ(`) \ Aϕ(y, ε0) for some ε0 > 0. From Remark 1.3(a) we obtain
p(p(A)) ⊂ ϕ(`) \Aϕ(y, ε0) and so IntAϕ(y, ε0) ⊂ ϕ(`) \ p(p(A)). This
implies that y 6∈ p(p(A)), a contradiction. Applying now Theorem 4 from
[4] we obtain that the space (ϕ(`), Tdϕ) does not satisfy the first axiom of
countability and hence it is not metrizable.

3. Let ϕ ∈ Φ, ϕ(u) > 0 for u > 0 and let ϕ be a convex function.
Then ϕ(+0) = 0 and in the space ϕ∗(`) we can introduce a norm

‖x‖ϕ = inf

{
a > 0 :

∞∑

k=1

ϕ

(
1
a
ξk

)
≤ 1

}
.

By T ϕ∗ we denote the topology induced by the metric %(x, y) = ‖x− y‖ϕ

restricted to ϕ(`) ⊂ ϕ∗(`). It is easy to see that for 0 < ε ≤ 1 x ϕ < ε
implies ‖x‖ϕ < ε and ‖x‖ϕ < ε2 implies x ϕ < ε. An obvious corollary of
this fact is the following

Remark 3.1. If ϕ ∈ Φ, ϕ(u) > 0 for u > 0 and ϕ is a convex function,
then T ϕ∗ = Tϕ∗ and if ϕ(`) is complete in the metric defined by the F–
norm · ϕ, then it is complete in the metric defined by the norm ‖ · ‖ϕ, and
conversely.

In this section we shall give the conditions under which the space
(ϕ(`), Tdϕ) is normable (cf. Theorem 1.1). Later we need the following

Lemma 3.1. If ϕ ∈ Φ and the space (ϕ(`), Tdϕ) is linear and normable,
then ϕ(u) > 0 for u > 0, ϕ satisfies the condition (∆2) and ϕ is equivalent
to a convex function ψ ∈ Φ.

Proof. The idea comes from the proof of [2] 1.9. Since (ϕ(`), Tdϕ) is
a nontrivial normable space it follows that it is nondiscrete and metrizable.
Thus according to Theorems 1.3 and 2.4 we have ϕ(+0) = 0, ϕ(u) > 0 for
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u > 0 and ϕ satisfies the condition (∆2). There exists a norm ‖ · ‖ on the
set ϕ(`) such that the topology T induced by the metric %(x, y) = ‖x− y‖
coincides with the original topology of ϕ(`), that is Tdϕ

= T . Let K(x, ε)
denote the open ball

K(x, ε) ≡ {y ∈ ϕ(`) : ‖x− y‖ < ε}
in the space (ϕ(`), T ). Theorem 1.7 shows that 0 ∈ ϕ(`) belongs to the
interior (in Tdϕ

) of the 1–neighbourhood Aϕ(0, 1) of 0 and thus there are
δ > 0 and ε > 0 such that Aϕ(0, ε) ⊂ K(0, δ) ⊂ Aϕ(0, 1). Now, let
0 < α ≤ 1 be arbitrary. Then there is a natural number n such that

1
n+1 < α ≤ 1

n . Let x1, . . . , xn ∈ Aϕ(0, ε) be arbitrarily chosen. Then
1
n (x1+· · ·+xn) ∈ Aϕ(0, 1). There is a real number γ > 0 such that ϕ(γ) <
ε. Let 0 < t ≤ γ. Then there is a natural number m such that ε

m+1 ≤
ϕ(t) < ε

m . Hence 1
m ≤ 2

εϕ(t). Let e1 = (1, 0, 0, . . . ), e2 = (0, 1, 0, . . . ),
e3 = (0, 0, 1, . . . ), . . . and xi = t(ei + ei+n + · · ·+ ei+(m−1)n) for 1 ≤ i ≤ n.
Then dϕ(xi, 0) = mϕ(t) < ε and thus dϕ

(
x1+···+xn

n , 0
)

= nmϕ
(

t
n

)
< 1.

Consequently ϕ
(

t
n

)
< 1

nm ≤ 2
nεϕ(t). Hence ϕ(αt) < 2

nεϕ(t) < 4
εαϕ(t).

Let us define a function

f(t) = sup
0<α≤1

ϕ(αt)
α

for 0 < t ≤ γ .

Then 0 < f(t) < ∞ for 0 < t ≤ γ,

f(λt) = sup
0<α≤1

ϕ(αλt)
α

= λ sup
0<α≤1

ϕ(αλt)
αλ

≤ λf(t)

for 0 < t ≤ γ, 0 < λ ≤ 1

and f is equivalent to ϕ. Now we define

g(t) =





f(t)
t if 0 < t ≤ γ ,

f(γ)
γ2 · t if t = 0 or t > γ .

This function is non-decreasing for all t ≥ 0. Indeed, for 0 < t1 < t2 ≤ γ

we have g(t1) =
f
�

t1
t2

t2
�

t1
≤ f(t2)

t2
= g(t2) and for 0 < t1 ≤ γ < t2 g(t1) ≤

f(γ)
γ ≤ f(γ)

γ · t2
γ = g(t2). Finally, let

ψ(t) =





t∫
0

g(s)ds if t ≥ 0 ,

ψ(−t) if t < 0 .
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This function is convex. Moreover, for 0 < t ≤ min(2u0, γ) we have

ψ(t) ≤ g(t) · t ≤ 4
εϕ(t), ψ(t) ≥

t∫
t
2

g(s)ds ≥ g
(

t
2

) · t
2 ≥ 1

C ϕ(t), where C > 0,

u0 > 0 are constants as in the condition (∆2). This implies that ψ is
equivalent to ϕ,ψ ∈ Φ and ψ is a convex function.

Theorem 3.1. Let ϕ ∈ Φ. The space (ϕ(`), Tdϕ
) is linear and normable

if and only if ϕ(u) > 0 for u > 0, ϕ satisfies the condition (∆2) and ϕ is
equivalent to a convex function ψ ∈ Φ.

Proof. Sufficiency. It is apparent that for the convex function ψ ∈ Φ
we have ψ(+0) = 0. If ψ is equivalent to ϕ, then ψ(u) > 0 for u > 0
and ψ satisfies the condition (∆2). Hence Tdψ

= T ψ∗ and thus, taking
into account also Theorem 1.1, (ψ(`), Tdψ

) is a normable linear space.
Moreover, ϕ(`) = ψ(`) and Tdϕ = Tdψ

. Thus (ϕ(`), Tdϕ) is a normable
space as required.

Necessity follows from Lemma 3.1.

4. In this section we examine connections between Cauchy sequences
and convergent ones in the sense of the ϕ–distance.

Later we shall need the following

Definition 4.1. We say that a sequence (xn)n≥1, xn ∈ ϕ(`) for n ≥ 1
satisfies the Cauchy condition in the sense of the ϕ–distance (or it is a
Cauchy sequence in the sense of the ϕ–distance) if for every ε > 0 there
exists a natural number N(ε) such that dϕ(xn, xm) < ε for n,m > N(ε).

Lemma 4.1. Let ϕ ∈ Φ, ϕ(u) > 0 for u > 0 and ϕ(+0) = 0. Any
sequence of elements of ϕ(`), convergent in the sense of the ϕ–distance to
some element of ϕ(`), is a Cauchy sequence in the sense of the ϕ–distance
if and only if ϕ satisfies the condition (∆2).

Proof. Sufficiency. Let (xn)n≥1 be an arbitrary sequence such that
xn ∈ ϕ(`) for n ≥ 1, dϕ(xn, x) → 0 as n → ∞ and x ∈ ϕ(`). Let
C > 0, u0 > 0 be constants as in the condition (∆2) and let ε > 0 be an
arbitrary real. There exists a natural number N such that dϕ(xn, x) <
min

(
ε

2C , ϕ(u0)
)

for n > N . Then, by Remark 1.2, dϕ(xn, xm) < ε for
n,m > N and hence the sequence is a Cauchy sequence in the sense of the
ϕ–distance.

Necessity . Let us suppose that the condition (∆2) is not satisfied.
Choose a sequence un ↓ 0 as n → ∞ and the sets Fn as in the proof of
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Theorem 2.3. We define for every fixed n ≥ 1

ξn
k =





0 if k ∈ Fi, i < n ,

− 1
nun if k ∈ Fn ,

ui if k ∈ Fi, i > n .

Then for every fixed n ≥ 1
∞∑

k=1

ϕ(ξn
k ) =

∑

j∈Fn

ϕ

(
1
n

un

)
+

∞∑

i=n+1

∑

j∈Fi

ϕ(ui) <

∞∑

i=n

1
2i−1

< ∞

and hence xn ∈ ϕ(`) for n ≥ 1. Let x = (0, 0, . . . ). Then dϕ(xn, x) → 0
as n → ∞. Thus the sequence (xn)n≥1 is convergent to x ∈ ϕ(`) in the
sense of the ϕ–distance. Now let n > m be arbitrary natural numbers. We
obtain

dϕ(xn, xm) >
∑

j∈Fn

ϕ

((
1 +

1
n

)
un

)
> 2n+1

∑

j∈Fn

ϕ(un) ≥ 2 .

This implies that (xn)n≥1 is not a Cauchy sequence in the sense of the
ϕ–distance.

Lemma 4.2. Let ϕ ∈ Φ, ϕ(u) > 0 for u > 0 and ϕ(+0) = 0. Any
Cauchy sequence in the sense of the ϕ–distance of elements of ϕ(`) is
convergent in the sense of the ϕ–distance to an element of ϕ(`) if and only
if ϕ satisfies the condition (∆2).

Proof. Sufficiency . Let (xn)n≥1, xn ∈ ϕ(`) for n ≥ 1 be an ar-
bitrary sequence satisfying the Cauchy condition in the sense of the ϕ–
distance. We choose a continuous function ψ ∈ Φ, equivalent to ϕ (this
is clearly possible). Let ε > 0 be arbitrary. Then dψ(xn, xm) < ε for
sufficiently large n,m. It follows that lim

n→∞
ξn
k = ξk for k ≥ 1. By the

continuity of ψ, obviously dψ(xn, x) → 0 as n →∞ and so dϕ(xn, x) → 0
as n → ∞. Since xn − x ∈ ϕ(`) for large n, we conclude by Theorem 1.1
that x ∈ ϕ(`).

Necessity . Suppose that the condition (∆2) is not satisfied. Let the
sequence un ↓ 0 as n →∞ and the sets Fn be as in the proof of Theorem
2.3. We put

ξn
k =

{
2ui if k ∈ Fi, i ≤ n ,

ui if k ∈ Fi, i > n .

Then for every fixed n ≥ 1
∞∑

k=1

ϕ(ξn
k ) <

n∑

i=1

ϕ(2ui)
ϕ(ui)2i−1

+
∞∑

i=n+1

1
2i−1

< ∞ .
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Hence xn ∈ ϕ(`) for every n ≥ 1. Further, for any natural numbers p > q

∞∑

k=1

ϕ(ξp
k − ξq

k) =
p∑

i=q+1

∑

j∈Fi

ϕ(ui) <

p∑

i=q+1

1
2i−1

.

Thus dϕ(xp, xq) → 0 as p, q → ∞. Now let ξk = 2ui if k ∈ Fi. Then

dϕ(xn, x) <
∞∑

i=n+1

2
1

i−1 → 0 as n → ∞, but
∞∑

k=1

ϕ(ξk) >
∞∑

n=1
2 = ∞. This

implies that (xn)n≥1 is a Cauchy sequence in the sense of the ϕ–distance,
but taking also Remark 1.1 into account, it is not convergent in the sense
of the ϕ–distance.

From the above lemmas follows immediately

Theorem 4.1. Let ϕ ∈ Φ, ϕ(u) > 0 for u > 0 and ϕ(+0) = 0. The
following conditions are equivalent:

(a) ϕ satisfies the condition (∆2),
(b) any sequence of elements of ϕ(`), convergent in the sense of the

ϕ–distance to some element of ϕ(`), is a Cauchy sequence in the sense of
the ϕ–distance,

(c) any Cauchy sequence in the sense of the ϕ–distance of elements of
ϕ(`) is convergent in the sense of the ϕ–distance to an element of ϕ(`).

Note the following obvious

Remark 4.1. Let ϕ ∈ Φ, ϕ(u) > 0 for u > 0 and ϕ(+0) = 0. If a
sequence (xn)n≥1, xn ∈ ϕ(`) for n ≥ 1 satisfies the Cauchy condition in
the metric defined by the F–norm · ϕ, then it satisfies this condition in
the sense of the ϕ–distance (see also Remark 2.1).

Now we shall prove

Theorem 4.2. Let ϕ ∈ Φ, ϕ(u) > 0 for u > 0 and ϕ(+0) = 0. A
sequence satisfying the Cauchy condition in the sense of the ϕ–distance
satisfies the Cauchy condition in the F–norm · ϕ if and only if ϕ satisfies
the condition (∆2).

Proof. Sufficiency follows from Remark 2.2.
Necessity . Suppose that ϕ does not satisfy the condition (∆2). Let

the sequence un ↓ 0 as n → ∞ and the sets Fn be as in the proof of
Theorem 2.3. Let for every fixed n ≥ 1

ξn
k =

{
2un if k ∈ Fn ,

ui if k ∈ Fi, i 6= n .
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Then xn ∈ ϕ(`) for n ≥ 1. Moreover,

dϕ(xn, xm) =
∑

j∈Fn

ϕ(un)+
∑

j∈Fm

ϕ(um) <
1

2n−1
+

1
2m−1

→ 0 as n,m →∞ .

Hence (xn)n≥1 is a Cauchy sequence in the sense of the ϕ–distance. Let
us suppose that it is a Cauchy sequence in the F–norm · ϕ. Let ε > 0 be
arbitrary. Then there is (see [3] Theorem 1.6) a natural number N such

that
∞∑

k=1

ϕ (2 (ξn
k − ξm

k )) < ε for n,m > N . On the other hand, for every

n,m
∞∑

k=1

ϕ (2 (ξn
k − ξm

k )) =
∑

j∈Fn

ϕ(2un) +
∑

j∈Fm

ϕ(2um) ≥ 4 ,

a contradiction.
Applying Remark 4.1, Theorem 4.1(a), (c) and Remark 2.2 we can

rephrase Theorem 1.82 in [2] as follows

Corollary 4.1. Let ϕ ∈ Φ, ϕ(u) > 0 for u > 0 and ϕ(+0) = 0. If
any Cauchy sequence in the sense of the ϕ–distance of elements of ϕ(`) is
convergent to an element of ϕ(`) in the sense of the ϕ–distance, then the
space ϕ(`) is complete in the F–norm · ϕ.

Finally we examine the problem of compactness of the sets in the
space (ϕ(`), Tdϕ).

Definition 4.2. We say that a set A ⊂ ϕ(`) is bounded in the sense
of the ϕ–distance if there are x ∈ ϕ(`) and a real number δ > 0 such that
A ⊂ Aϕ(x, δ).

Theorem 4.3. Let ϕ ∈ Φ, ϕ(u) > 0 for u > 0, ϕ(+0) = 0 and let
ϕ satisfy the condition (∆2). If a set A ⊂ ϕ(`) is compact in the Tdϕ

topology, then the following conditions are fulfilled:
(a) A = A,
(b) for every ε > 0 there is a natural number N such that

∞∑

k=n+1

ϕ(ξk) < ε for n ≥ N and x ∈ A ,

(c) A is a bounded set in the sense of the ϕ–distance.
If ϕ is additionally a convex function, then these conditions are also suffi-
cient in order that A be a compact set in the Tdϕ topology.

Proof. Sufficiency . By Corollary 2.1, Remark 3.1, Theorem 1.1,
Theorem 4.1 and Corollary 4.1 we can state that (ϕ(`), Tdϕ) = (ϕ(`), T ϕ∗)
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is a Banach space and taking also Remarks 3.1, 2.2 and 2.1 into ac-
count we can state that the set: e1 = (1, 0, 0, . . . ), e2 = (0, 1, 0, . . . ),
e3 = (0, 0, 1, . . . ), . . . is a basis in this space. We shall prove that the
condition (b) is equivalent to the following requirement:

for every ε > 0 there is a natural number N such that

(∗)
∥∥∥∥∥

∞∑

k=n+1

ξkek

∥∥∥∥∥
ϕ

< ε for n ≥ N and x ∈ A .

As the implication (∗) ⇒ (b) is obvious, it suffices to prove that (b) ⇒ (∗).
In fact, let ε > 0 be an arbitrary real. There is a natural number m
such that ε ≥ 1

2m−1 . Let C > 0, u0 > 0 be constants as in the condition

(∆2). From (b) there exists a natural number N such that
∞∑

k=n+1

ϕ(ξk) <

min
(

1
Cm , ϕ

(
u0

2m−1

))
for n ≥ N and x ∈ A. Hence

∞∑
k=n+1

ϕ
(

2
εξk

)
< 1

and so

∥∥∥∥∥
∞∑

k=n+1

ξkek

∥∥∥∥∥
ϕ

≤ ε

2
< ε. Further, one can easily prove that if

y ∈ Aϕ(x, δ), then ‖x− y‖ϕ ≤ max(1, δ) for x ∈ ϕ(`) and δ > 0. Applying
now from [1], the Theorem in §28 we obtain that the set A is compact.

Necessity . It is clear that the condition (a) holds. We shall prove
that the condition (b) is fulfilled. Let ε > 0 be an arbitrary real and let
C > 0, u0 > 0 be constants as in the condition (∆2). Choose 0 < δ <
min

(
1, ϕ(u0), ε

2C

)
. We can find a finite set {x1, . . . , xm} of points of ϕ(`)

which is a δ–net for the set A in the metric defined by the F–norm · ϕ.

Further, there exists a natural number N such that
∞∑

k=N+1

ϕ(ξi
k) < δ for

1 ≤ i ≤ m. Let x ∈ A be arbitrarily chosen. Then by Remark 1.2
∞∑

k=n+1

ϕ(ξk) ≤ C

∞∑

k=n+1

ϕ(ξk − ξi
k) + C

∞∑

k=n+1

ϕ(ξi
k) < ε for n ≥ N .

Hence the condition (b) holds. It remains to prove that the set A is
bounded in the sense of the ϕ–distance. There is a real number a0>0
such that ϕ(a0) < 1. Let 0 < δ ≤ ϕ(a0). We can find a finite set
{x1, x2, . . . , xm} of elements of ϕ(`) which is a δ–net for the set A in
the metric defined by the F–norm · ϕ. Let y be a fixed element of ϕ(`)
and let d = max

1≤i≤m
dϕ(y, xi). For every 1 ≤ i ≤ m there is a real number

ai > 0 such that |ηk − ξi
k| ≤ ai for k ≥ 1. Let a = max

0≤i≤m
ai. There exists

a constant Ca > 0 such that ϕ(u + v) ≤ Ca(ϕ(u) + ϕ(v)) if 0 < u, v ≤ a.
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Let x ∈ A be arbitrarily chosen. Then there is xi ∈ {x1, x2, . . . , xm} such
that x− xi ϕ < δ. Thus

dϕ(x, y) =
∞∑

k=1

ϕ
(|ξk − ξi

k|+ |ξi
k − ηk|

)
< Ca(1 + d)

and so A ⊂ Aϕ(y, Ca(1 + d)). This implies that the condition (c) holds.
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