Small derived quotients in finite \boldsymbol{p}-groups

By CSABA SCHNEIDER (Budapest)

Dedicated to the memory of my dear friend and mentor, Edit Szabó

Abstract

More than 70 years ago, P. Hall showed that if G is a finite p group such that a term $G^{(d+1)}$ of the derived series is non-trivial, then the order of the quotient $G^{(d)} / G^{(d+1)}$ is at least $p^{2^{d}+1}$. Recently Mann proved that, in a finite p-group, Hall's lower bound can be taken for at most two distinct d. For odd p, we prove a sharp version of this result and characterise the groups with two small derived quotients.

1. Introduction

Suppose that G is a finite p-group in which a term $G^{(d+1)}$ of the derived series is non-trivial (we index the terms of the derived series so that $G^{(0)}=G, G^{(1)}=G^{\prime}, G^{(2)}=G^{\prime \prime}$, etc.). Then how small can the order of the quotient $G^{(d)} / G^{(d+1)}$ possibly be? As far as I know, the answer for this general question is not known. Hall showed in [Hal34] that if H is a non-abelian normal subgroup in a finite p-group G that is contained in the i-th term $\gamma_{i}(G)$ of the lower central series of G (the terms of the lower central series are indexed so that $\gamma_{1}(G)=G, \gamma_{2}(G)=G^{\prime}$, etc), then

[^0]$\left|H / H^{\prime}\right| \geqslant p^{i+1}$ (see Lemma 2.1(a)). As $G^{(d)} \leqslant \gamma_{2^{d}}(G)$, this result implies that $\log _{p}\left|G^{(d)} / G^{(d+1)}\right| \geqslant 2^{d}+1$ provided $G^{(d+1)} \neq 1$.

In a finite p-group G let us call a quotient $G^{(d)} / G^{(d+1)}$ a small derived quotient if $G^{(d+1)} \neq 1$ and $\log _{p}\left|G^{(d)} / G^{(d+1)}\right|=2^{d}+1$. Mann [Man00] showed that a finite p-group can have at most two small derived quotients. Building on the results of [SchXX], we prove the following sharp theorem.

Theorem 1.1. Let p be an odd prime and let G be a finite p-group that contains two small derived quotients. Then $p \geqslant 5,|G|=p^{6},\left|G^{\prime \prime}\right|=p$, and G has nilpotency class 5. Further, for $p \geqslant 5$, there are precisely $p+4+\operatorname{gcd}(4, p-1)+\operatorname{gcd}(5, p-1)+\operatorname{gcd}(6, p-1)$ pairwise non-isomorphic finite p-groups with two small derived quotients.

My main motivation for studying small derived quotients in p-groups was to improve the existing lower bounds for the order of a p-group with a given derived length $d+1$. In such a group $G^{(d)} \neq 1$. If we assume, as did Philip Hall in [Hal34], that, for $i=0, \ldots, d-1$, the quotient $G^{(i)} / G^{(i+1)}$ is small, then we obtain that $\log _{p}|G| \geqslant 2^{d}+d$. However, if we use Mann's result that at most two of the derived quotients can be small, we find $\log _{p}|G| \geqslant 2^{d}+2 d-2$; see [Man00]. Using Theorem 1.1 we can easily obtain a miniscule improvement of Mann's lower bound for $|G|$. However, in a separate article [SchXX], I show that investigating the metabelian quotients of G, the linear term in Mann's bound can be further improved. To be precise, if $p \geqslant 5$ and $G^{(d)} \neq 1$, then $\log _{p}|G| \geqslant 2^{d}+3 d-6$; see [SchXX] for details.

2. The structure of small derived quotients

If A and B are subgroups in a group G and n is a natural number then let $\left[A,{ }_{n} B\right]$ denote the left-normed commutator subgroup

$$
\left[A,{ }_{n} B\right]=[A, \underbrace{B, \ldots, B}_{n \text { copies }}] .
$$

One can easily show by induction on i that if A and B are normal subgroups of G, then

$$
\begin{equation*}
\left[A, \gamma_{i}(B)\right] \leqslant\left[A,{ }_{i} B\right] . \tag{1}
\end{equation*}
$$

We will need the following well-known lemma. Part (a) was shown in [Hal34], while part (b) can be found as [Bla58, Lemma 2.1].

Lemma 2.1. (a) Suppose that H is a non-abelian normal subgroup in a finite p-group G such that $H \leqslant \gamma_{i}(G)$. Then $\left|H / H^{\prime}\right| \geqslant p^{i+1}$ and $|H| \geqslant p^{i+2}$.
(b) If G is a group and H is a normal subgroup such that G / H is cyclic, then $G^{\prime}=[G, H]$.

Suppose that G is a finite p-group and that $G^{(d)} / G^{(d+1)}$ is a small derived quotient for some $d \geqslant 0$. As $G^{(d)} \leqslant \gamma_{2^{d}}(G)$, we obtain

$$
G^{(d+1)}=\left[G^{(d)}, G^{(d)}\right] \leqslant\left[G^{(d)}, \gamma_{2^{d}}(G)\right] \leqslant\left[G^{(d)}, 2_{2^{d}} G\right]
$$

therefore we have the following chain of G-normal subgroups:

$$
\begin{equation*}
G^{(d)}>\left[G^{(d)}, G\right]>\left[G^{(d)}, G, G\right]>\cdots>\left[G^{(d)}, 2^{d} G\right] \geqslant G^{(d+1)} . \tag{2}
\end{equation*}
$$

Counting number of non-trivial factors of this chain, we obtain that $G^{(d)} /\left[G^{(d)}, G\right]$ has order at most p^{2}. If $G^{(d)} /\left[G^{(d)}, G\right]$ is cyclic, then, by Lemma 2.1(b), the subgroup $G^{(d+1)}$ coincides with $\left[G^{(d)},\left[G^{(d)}, G\right]\right]$, and so

$$
G^{(d+1)}=\left[G^{(d)},\left[G^{(d)}, G\right]\right] \leqslant\left[G^{(d)}, \gamma_{2^{d}+1}(G)\right] \leqslant\left[G^{(d)},{ }_{2^{d}+1} G\right] .
$$

Thus, in this case, we obtain the following modified chain:

$$
\begin{equation*}
G^{(d)}>\left[G^{(d)}, G\right]>\left[G^{(d)}, G, G\right]>\cdots>\left[G^{(d)}, 2^{d+1} G\right] \geqslant G^{(d+1)} . \tag{3}
\end{equation*}
$$

If the first quotient in these chains has order p, then this quotient is cyclic, and so (3) must hold. In this case, counting the non-trivial factors in (3), we find that the following chain must be valid:

$$
\begin{equation*}
G^{(d)}>\left[G^{(d)}, G\right]>\left[G^{(d)}, G, G\right]>\cdots>\left[G^{(d)}, 2^{d}+1\right]=G^{(d+1)} . \tag{4}
\end{equation*}
$$

Now suppose that the first quotient $G^{(d)} /\left[G^{(d)}, G\right]$ has order p^{2}. Then chain (3) is too long, and so $G^{(d)} /\left[G^{(d)}, G\right]$ must be elementary abelian. As before, we count the number of factors in (2) and find the following chain:

$$
\begin{equation*}
G^{(d)}>\left[G^{(d)}, G\right]>\left[G^{(d)}, G, G\right]>\cdots>\left[G^{(d)},{ }_{2}{ }^{d} G\right]=G^{(d+1)} \tag{5}
\end{equation*}
$$

It is, perhaps, somewhat surprising that, in general, chain (5) is not possible.

Theorem 2.2. Suppose that p is an odd prime, $d \geqslant 1$, and that $G^{(d)} / G^{(d+1)}$ is a small derived quotient in a finite p-group G. Then $\left|G^{(d)} /\left[G^{(d)}, G\right]\right|=p$ and so chain (4) must be valid.

Theorem 2.2 first appeared in my PhD thesis [Sch00]. The special case of $d=1$ was also proved in a recent article [Sch03]. The proof of the general case can be found, besides my thesis, in the forthcoming article [SchXX].

3. Proof of Theorem 1.1

Let p be an odd prime, let G be a finite p-group and let d be a nonnegative integer such that $G^{(d)} / G^{(d+1)}$ is a small derived quotient. Let us assume, in addition, that d is the smallest such integer. If (4) is valid, then

$$
G^{(d+1)} \leqslant\left[G^{(d)},{ }_{2^{d}+1} G\right] \leqslant \gamma_{2^{d+1}+1}(G)
$$

Now easy induction shows, for $e \geqslant 1$, that $G^{(d+e)} \leqslant \gamma_{2^{d+e}+2^{e-1}}(G)$. Hence Lemma 2.1(a) implies that $G^{(d+e)} / G^{(d+e+1)}$ cannot be small for $e \geqslant 1$. Therefore, in this case, $G^{(d)} / G^{(d+1)}$ is the unique small derived quotient in G.

Suppose now that (5) is valid. In this case, it is easy to show that $G^{(d+1)} /\left[G^{(d+1)}, G\right]$ must be cyclic (see [SchXX, Corollary 5.2$]$), and following the argument in the previous paragraph, one easily obtains that $G^{(d+e)} / G^{(d+e+1)}$ cannot be small for $e \geqslant 2$. Hence only the derived quotients $G^{(d)} / G^{(d+1)}$ and $G^{(d+1)} / G^{(d+2)}$ can be small in G. By assumption, (5) must hold for the quotient $G^{(d)} / G^{(d+1)}$ and, as shown above, (4) must be valid for the quotient $G^{(d+1)} / G^{(d+2)}$.

So far, we have obtained ManN's result in [Man00] that a finite p group can have at most two small derived quotients (the assumption that p is odd has played no rôle up to this point). Now we may use Theorem 2.2 and obtain, for $p \geqslant 3$, that (5) is only possible for $d=0$. Thus if G has odd order, then the two distinct small derived quotients must be $G / G^{\prime}, G^{\prime} / G^{\prime \prime}$. The quotient $G^{\prime} / G^{\prime \prime}$ is as in (4) and so we find that $G^{\prime \prime}=\left[G^{\prime}, G, G, G\right]=$ $\gamma_{5}(G)$. As $\left|G^{\prime} / G^{\prime \prime}\right|=p^{3}$, a result that Blackburn attributes to P. Hall (see [Bla87]) shows that $\left|G^{\prime \prime}\right|=p$. Thus $|G|=p^{6}$, and, as $G^{\prime \prime}=\gamma_{5}(G) \neq 1$,
we obtain that G has nilpotency class 5 . Therefore G is a group with maximal class.

It remains to show that the restriction on p in the theorem holds and that the number of groups with two small derived quotients is as claimed. We still work under the assertion that p is odd and that G has two small derived quotients. As chain (4) is valid for $G^{\prime} / G^{\prime \prime}$, we obtain

$$
\left[\gamma_{2}(G), \gamma_{3}(G)\right]=\left[G^{\prime},\left[G^{\prime}, G\right]\right]=G^{\prime \prime}=\gamma_{5}(G),
$$

and so G has degree of commutativity 0 (see [Bla58, p. 57]). A 3 -group with two distinct small derived quotients lies in Blackburn's class ECF $(6,6,3)$ and so [Bla58, Theorem 3.8] shows that such a 3-group has degree of commutativity greater than zero. Thus we obtain that $p \geqslant 5$. (The claim that $p \geqslant 5$ can also be verified using the Small Groups Library of the computational algebra systems [GAP] or [MAGMA].)

Let H be a p-group of maximal class with order p^{6}. As $H^{\prime} /\left[H^{\prime}, H\right]$ is cyclic with order p, we obtain that $H^{\prime \prime} \leqslant \gamma_{5}(H)$ (Lemma 2.1(b)). Thus, by the above, H has two distinct small derived quotients, if and only if H is not metabelian. By [Bla58, Theorems 4.4 and 4.5], the number of such groups is $p+4+\operatorname{gcd}(4, p-1)+\operatorname{gcd}(5, p-1)+\operatorname{gcd}(6, p-1)$.

Thus the proof of Theorem 1.1 is now complete.

4. Some final remarks

The Sylow 2-subgroup P of the symmetric group $\mathrm{S}_{2^{d}}$ of rank 2^{d} satisfies $\log _{2}\left|P^{(d-2)} / P^{(d-1)}\right|=2^{d-2}+1$ and $P^{(d-1)} \neq 1$ (see [KLGP97, Lemma (II.7)]). Hence the derived quotient $P^{(d-2)} / P^{(d-1)}$ is small, and one can also show using [KLGP97, Lemma (II.7)] that, in this case, (5) is valid; that is, $\left|P^{(d-2)} /\left[P^{(d-2)}, P\right]\right|=p^{2}$. Therefore Theorem 2.2 is not valid for 2 -groups.

There are many finite p-groups in which the quotient G / G^{\prime} is small. Finite p-groups in which $G^{\prime} / G^{\prime \prime}$ is small were characterised in [Sch03]. However, for odd p, it is not clear whether in a p-group G the quotient $G^{(d)} / G^{(d+1)}$ can be small for $d \geqslant 2$. We do not even know of odd-order examples G in which $G^{(2)} / G^{(3)}$ is small, that is, $G^{(3)}$ is non-trivial and $\left|G^{(2)} / G^{(3)}\right|=p^{5}$.

Acknowledgments. Much of the research presented in this paper was carried out while I was a PhD student at The Australian National University. I am particularly grateful to my PhD supervisor, Mike Newman, for his guidance. My work was also supported by the Hungarian Scientific Research Fund (OTKA) grants F049040 and T042706.

References

[Bla58] N. Blackburn, On a special class of p-groups, Acta Math. 100 (1958), 45-92.
[Bla87] Norman Blackburn, The derived group of a 2-group, Math. Proc. Cambridge Philos. Soc. 101(2) (1987), 193-196.
[Magma] Wieb Bosma, John Cannon and Catherine Playoust, The Magma algebra system I: The user language, J. Symbolic Comput. 24(3-4) (1997), 235-265.
[Hal34] P. HALL, A contribution to the theory of groups of prime-power order, Proc. London Math. Soc. (2) 36 (1934), 29-95.
[KLGP97] G. Klaas, C. R. Leedham-Green and W. Plesken, Linear pro-p-groups of finite width, Springer-Verlag, Berlin, 1997.
[Man00] Avinoam Mann, The derived length of p-groups, J. Algebra 224(2) (2000), 263-267.
[Sch00] Csaba Schneider, Some results on the derived series of finite p-groups, PhD thesis, The Australian National University, 2000.
[Sch03] Csaba Schneider, Groups of prime-power order with a small second derived quotient, J. Algebra 266(2) (2003), 539-551.
[SchXX] Csaba Schneider, The derived series of finite p-groups, arXiv.org/math.GR/0510220.
[GAP] The GAP Group, GAP - Groups, Algorithms, and Programming, Version 4.4 (Aachen, St Andrews, 2004), http://www.gap-system.org.

CSABA SCHNEIDER

INFORMATICS LABORATORY
COMPUTER AND AUTOMATION RESEARCH INSTITUTE
THE HUNGARIAN ACADEMY OF SCIENCES
1518 BUDAPEST P. O. BOX 63
HUNGARY
E-mail: csaba.schneider@sztaki.hu
URL: http://www.sztaki.hu/~schneider

[^0]: Mathematics Subject Classification: 20D15, 20-04.
 Key words and phrases: finite p-groups, derived subgroups, derived quotients, derived series.

