Publ. Math. Debrecen 69/3 (2006), 387–390

On point modules

By LANCE W. SMALL (San Diego) and EFIM I. ZELMANOV (San Diego)

In memory of Edith Szabó

Abstract. We prove that (1) a free associative algebra has a faithful point module; (2) a graded algebra $A = F1 + A_1 + \ldots$ over a field F, |F| > n, generated by the subspace A_1 and having the subspace A_1 nil of degree $\leq n$, does not have point modules. As a corollary we show that the polynomial algebra over the Lie algebra of the Grigorchuk group is not graded nil.

Let $A = \sum_{i=0}^{\infty} A_i$ be a graded associative algebra over a ground field F; $\dim_F A_i < \infty$; $A_i A_j \subseteq A_{i+j}$; $i, j \ge 1$. A graded (right) module $V = \sum_{i=0}^{\infty} V_i$ is called a *point module* if

(1) $\dim_F V_i = 1$ for all $i \ge 0$;

(2) V is generated by V_0 .

Point modules naturally appear in the context of noncommutative projective algebraic geometry (see [ATV1], [ATV2]).

In this paper we make the following observations.

Proposition 1. A free associative algebra $F\langle x_1, \ldots, x_m \rangle$ of finite rank has a faithful point module.

Mathematics Subject Classification: 16P90, 16S38, 16W50, 20F40.

Key words and phrases: point module, nil algebra, Grigorchuk group.

The first author partially supported by an NSA grant.

The second author partially supported by the NSF grants DMS-0455 906 and DMS-0500568.

We say that a subspace S of an associative algebra is nil of degree $\leq n$ if for an arbitrary element $a \in S$ we have $a^n = 0$.

Proposition 2. Let $A = \sum_{i=0}^{\infty} A_i$ be a graded associative algebra generated by A_1 . Suppose that the subspace A_1 of A is nil of degree $\leq n$ and the ground field F contains more than n elements. Then A does not have graded modules, $V = \sum_{i=0}^{\infty} V_i$, such that $\dim_F V_0 = \ldots = \dim_F V_n = 1$, $V = V_0 A$. In particular, A does not have point modules.

Proposition 2 has some implications for scalar extensions of the Lie algebra of the GRIGORCHUK group, (see [G]).

PROOF OF THE PROPOSITION 1. Choose an infinite word $w = x_{i_1}x_{i_2}\dots$ in the alphabet $X = \{x_1, \dots, x_m\}$ such that every (finite) word occurs as a subword of w. Let R be the right ideal of $F\langle X \rangle$ which is generated by all words $x_{j_1}\dots x_{j_k}, u \ge 1$, such that $x_{j_1}\dots x_{j_k} \ne x_{i_1}\dots x_{i_k}$. It is clear, that the right $F\langle X \rangle$ -module $V = F\langle X \rangle/R$ in a point module.

Let us show that the module V is faithful. Suppose that $V(\sum_k \alpha_k w_k) = (0)$, where $0 \neq \alpha_k \in F$, and w_k are distinct words in X. Without loss of generality, we will assume that all the words w_k have the same length. By our assumption w_1 is a subword of $w, w = x_{i_1} \dots x_{i_\ell} w_1 \dots$ Now $(x_{i_1} \dots x_{i_\ell} + R) (\sum_k \alpha_k w_k) = \alpha_1 (x_{i_1} \dots x_{i_\ell} w_1 + R) \neq 0$, a contradiction. Proposition 1 is proved.

PROOF OF PROPOSITION 2. Let $V = \sum_{i=0}^{\infty} V_i$ be a graded module over $A, 0 \neq v_0 \in V_0, V = v_0 A$, the subspace A_1 of A is nil of degree $\leq n$ and $\dim_F V_0 = \cdots = \dim_F V_n = 1$.

Choose a basis a_1, \ldots, a_m in A_1 . For every $k = 1, \ldots, n$, let $i_k = \min\{i \mid 1 \le i \le m, V_k a_i \ne (0)\}$. Then $V_n = V_0 a_{i_1} \ldots a_{i_n}$.

We say that two words w_1 , w_2 in the alphabet $\{x_1, \ldots, x_m\}$ have the same composition if each letter x_i occurs the same number of times in w_1 and w_2 .

If a word $x_{j_1} \ldots x_{j_n}$ has the same composition as $x_{i_1} \ldots x_{i_n}$, but $x_{j_1} \ldots x_{j_n} \neq x_{i_1} \ldots x_{i_n}$, then $v_0 a_{j_1} \ldots a_{j_n} = 0$. Indeed, there exists $k, 1 \le k \le n$, such that $j_k < i_k$. Then $v_0 a_{j_1} \ldots a_{j_k} \subseteq V_{k-1} a_{j_k} = (0)$, by minimality of i_k . For arbitrary coefficients $\alpha_1, \ldots, \alpha_m \in F$ we have

 $(\alpha_1 a_1 + \dots + \alpha_m a_m)^n = 0$. Since the field F contains more than n elements it follows that every homogeneous (in each α_i) component of $(\alpha_1 a_1 + \dots + \alpha_m a_m)^n$

388

On point modules

 $(\alpha_m a_m)^n$ is equal to zero. Hence for an arbitrary word w in x_1, \ldots, x_m of length n

$$w(a_1,\ldots,a_n) = -\Sigma v(a_1,\ldots,a_n)$$

where $\alpha \in F$; all words v on the right hand side have the same composition as w but $v \neq w$. Applying this to the word $x_{i_1} \dots x_{i_n}$ we get $V_0 a_{i_1} \dots a_{i_n} = (0)$, a contradiction. Proposition 2 is proved.

In [G] R. I. GRIGORCHUK constructed a remarkable 2-generated p-group with intermediate word growth. We recall the definition of a Zassenhaus filtration of a group G. Let $k_p = \mathbb{Z}/p\mathbb{Z}$ and let k_pG be the group algebra, with the augmentation ideal $w = \{\sum_i \alpha_i g_i, \alpha_i \in k_p, g_i \in G, \sum \alpha_i = 0\}$. The filtration $G_i = \{g \in G \mid 1 - g \in w^i\}, G = G_1 > G_2 > \dots$ is called the Zassenhaus filtration of G.

The direct sum of vector spaces

$$\widetilde{L} = \bigoplus_{i \ge 1} G_i / G_{i+1}$$

is a Lie algebra over the field k_p via the bracket $[a_iG_{i+1}, b_jG_{j+1}] = (a_i, b_j)$ $G_{i+j+1}, a_i \in G_i, b_j \in G_j$ and $(a_i, b_j) = a_i^{-1}b_j^{-1}a_ib_j$. Let L = L(G) be the Lie subalgebra of \widetilde{L} generated by G_1/G_2 . Clearly, $L = L_1 + L_2 + \cdots$ is a graded subalgebra of \widetilde{L} . In [BG] L. Bartholdi and R. I. GRIGORCHUK showed that for the Lie algebra L = L(G) of the Grigorchuk group G (i) the algebra L is graded nil; that is, for an arbitrary homogeneous element $a \in L$ the adjoint operator ad(a) is nilpotent; (ii) $\dim_{k_p} L_i = 1$, or 2, for all $i \geq 1$; (iii) for an arbitrary $n \geq 1$ there exists $m \geq 1$ such that $\dim_{k_p} L_{m+1} = \cdots = \dim_{k_p} L_{m+n} = 1$.

It is not known if the associative enveloping algebra $\langle ad(L) \rangle \subseteq \operatorname{End}_{k_p} L$ is a nil algebra.

Corollary 1. The polynomial algebra L[x, y] is not graded nil.

PROOF. If e_1 , e_2 is a basis of L_1 then the operator $ad(xe_1 + ye_2)$: $L[x,y] \to L[x,y]$ is not nilpotent. Indeed, suppose that $L[x,y]ad(xe_1 + ye_2)^n = (0)$. Let F be a field of characteristic p containing more than n elements. Consider the Lie algebra $\widetilde{L} = L \otimes_{k_p} F$ and the associative algebra $A = \langle ad(\widetilde{L}) \rangle \subseteq \operatorname{End}_F \widetilde{L}$ generated by all adjoints. The algebra A is graded and generated by $A_1 = Fe_1 + Fe_2$. Moreover, the subspace A_1 of L. W. Small and E. I. Zelmanov : On point modules

A is nil of degree $\leq n$. By [BG] there exists $m \geq 1$ such that $\dim_{k_p} L_m = \cdots = \dim_{k_p} L_{m+n} = 1$. Now $V = \sum_{i=1}^{\infty} V_i$, $V_i = \tilde{L}_{m+i} = L_{m+i} \otimes_{k_p} F$, is an A-module generated by $V_0 = \tilde{L}_m$ and $\dim_F V_0 = \cdots = \dim_F V_n = 1$, which contradicts Proposition 2.

References

- [ATV1] M. ARTIN, J. TATE and M. VAN DEN BERGH, Some algebras associated to automorphisms of elliptic curves, The Grothendieck Festschrift, vol. 1, *Birkhäuser*, 1990, 33–85.
- [ATV2] M. ARTIN, J. TATE and M. VAN DEN BERGH, Modules over regular algebras of dimension 3, *Invent. Math.* 106 (1991), 335–388.
- [BG] L. BARTHOLDI and R. I. GRIGORCHUK, Lie methods in growth of groups and groups of finite width, Computational and geometric aspects of modern algebra, (Edinburgh, 1998), 1–27; LMS Lecture Note Ser., 275, Cambridge Univ. Press, 2000.
- [G] R. I. GRIGORCHUK, On the Milnor problem of group growth, Dokl. Akad. Nauk SSSR 271, no. 1 (1983), 30–33.
- [S] A. SMOKTUNOWICZ, Polynomial rings over nil rings need not be nil, J. Algebra 233, no. 2 (2000), 427–436.

LANCE W. SMALL DEPARTMENT OF MATHEMATICS UNIVERSITY OF CALIFORNIA SAN DIEGO USA

EFIM I. ZELMANOV DEPARTMENT OF MATHEMATICS UNIVERSITY OF CALIFORNIA SAN DIEGO USA

E-mail: ezelmano@math.ucsd.edu

(Received October 26, 2005; revised February 22, 2006)

390