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On the smallest locally and residually closed class
of groups, containing all finite and all soluble groups

By BEATA BAJORSKA (Gliwice)

Abstract. The class C was introduced in [1] as an infinite union of certain
classes of groups. We provide a simpler characterization of the class C. We confirm
in the class C the conjecture by R. Grigorchuk, that all groups of intermediate
growth are residually finite. We also consider the larger class obtained from C by
closing under extentions. We show that Malcev conjecture – that every finitely
generated group satisfying a positive law must be nilpotent-by-finite – known to
hold in the class C, remains true in the extended class cl C.

1. On the class in the title

By Nc we denote the variety of all nilpotent groups of nilpotency
class ≤ c, and by Sn – the variety of all soluble groups of solubility
length ≤ n. By Be we denote so called restricted Burnside variety of
exponent e, that is, the variety generated by all finite groups of exponent e.
It follows from the positive solution of the Restricted Burnside Problem
(see [14] for details) that all groups in Be are locally finite of exponent
dividing e.

We define an SB-group to be one lying in some product of finitely
many varieties each of which is either Sn or Be (for varying e, n). We
denote the class of SB-groups simply by SB, expecially in expressions such
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as “residually-SB” or “locally-SB”. More precisely:

SB := {G;G ∈ V1V2 · · ·Vs, Vi ∈ {Sn,Be, e, n ∈ N}, s ∈ N}.
The class of SB-groups strictly contains the known class of SC-groups,
considered in [4]. Indeed, SC-groups are ones lying in some product of
finitely many varieties each of which is either a soluble or a Cross va-
riety. Since every Cross variety is generated by a finite group (by [10],
Theorem 3), it is locally finite of finite exponent, and hence belongs to
a restricted Burnside variety Be for some e.

The class C, defined in [1], is obtained from the class of all SB-
groups by repeated applications of the operations L and R, where for
any group-theoretic class X of groups (see [13]), LX denotes the class
of all groups locally in X and RX – the class of groups residually in X .
More precisely: we denote by ∆1 the class of all SB-groups and define
inductively: ∆n+1 := L∆n ∪ R∆n. The class C is the union: C :=

⋃
n ∆n.

Lemma 1. The class C is closed under taking subgroups.

Proof. Let G be a group and H – a subgroup of G. We show more,
namely that if G ∈ ∆n for some n ∈ N, then H ∈ ∆n. Since each subgroup
of G lies in varG the variety generated by G, the statement is true for
n = 1. We assume that it is true for ∆n and we will show that if G is in
∆n+1, then all its subgroups are also in ∆n+1. So let G ∈ L∆n ∪ R∆n.
There are two possibilities:

1. Let G ∈ L∆n, that is each finitely generated subgroup of G lies
in ∆n. Let H be any subgroup of G. Since each finitely generated subgroup
of H is a finitely generated subgroup of G and lies in ∆n, we get that
H ∈ L∆n ⊆ ∆n+1.

2. Let G ∈ R∆n+1, that is (by [9], 17.73) G is a subcartesian product
of quotients G/Ni ∈ ∆n, i ∈ I. If H is a subgroup of G, then H is a
subcartesian product of quotients HNi/Ni, which are subgroups of the
corresponding G/Ni ∈ ∆n. By the inductive assumption, the subgroups
HNi/Ni lie also in ∆n. Hence H lies in R∆n and therefore in ∆n+1.

Thus, by the induction principle, every subgroup of a group in ∆n lies
in ∆n itself. �

Point (i) in the following theorem states that each finitely generated
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group in the class C is residually-SB. Point (ii) is an immediate conse-
quence of the definition of the class C. This affords two equivalent defini-
tions of the class C.

Theorem 1. The class C
(i) consists of all locally-(residually-SB) groups,

(ii) is the smallest locally and residually closed class of groups containing

the class SB.

Proof. (i) We will show first that each finitely generated group G ∈ C
is residually-SB.

If G is in ∆1, then it is an SB-group, and hence residually-SB. Sup-
pose now that every finitely generated group in ∆n is residually-SB and
let G be in ∆n+1 = L∆n ∪ R∆n. There are two possibilities:

1. If G ∈ L∆n, then, being finitely generated, G lies in ∆n and – by
an inductive assumption – G is residually-SB.

2. If G ∈ R∆n, then (by [9], 17.73) G is a subcartesian product of quo-
tients G/N ∈ ∆n, which, by the inductive assumption, are residually-SB.
Thus G is residually-(residually-SB), and hence G is residually-SB (by [9],
17.74). So each finitely generated group in the class C is residually-SB.
Hence, by the induction principle, every finitely generated group in the
class C is residually-SB (that is lies in R∆1).

Since by Lemma 1 the class C is closed under taking subgroups, we con-
clude that every finitely generated subgroup of G is residually-SB, which
implies that G is locally-(residually-SB). Hence we obtain the following
sequence of inclusions: C ⊆ L(R∆1) ⊆ ∆3 ⊆ C, which implies

C = L(R∆1) = ∆3. �

The first examples of groups of intermediate growth were constructed
in 1984 by Grigorchuk [3]. Every known group of intermediate growth
is residually finite and it was conjectured by Grigorchuk, that this is
true in general. We prove this conjecture (as Corollary 2) for groups in
the class C.

We will use the following known results:

R0. Each finitely generated group in a restricted Burnside variety is finite
(by definition).
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R1. Every finitely generated soluble group without free nonabelian sub-
semigroups is nilpotent-by-finite (by [13], 4.7, 4.12).

R2. If G is a finitely generated group without free nonabelian subsemi-
groups, then all derived subgroups of G are finitely generated (by [8],
Corollary 3).

R3. If G is finitely generated, then the centralizer of a finite normal
subgroup of G is a finitely generated normal subgroup of finite index
in G (by [5], 3.1.2–4).

Theorem 2. Every finitely generated SB-group without free non-

abelian subsemigroups is nilpotent-by-finite.

Proof. Every SB-group belongs to a product of a finite number,
say n, of varieties, each of which is either Be or Sd for some e, d. Let G

be a finitely generated SB-group. Since Be1Be2 is a restricted Burnside
variety and Sd1Sd2 is a soluble variety, without loss of generality we can
assume that varieties B and S appears in the product alternatively. We
will prove the statement by induction on n.

If n = 1, then either G is a finitely generated soluble group without
free nonabelian subsemigroups – and hence G is nilpotent-by-finite by R1
– or G is a finitely generated group in a restricted Burnside variety and is
finite by R0, whence certainly nilpotent-by-finite.

If n = 2, then we have two cases:
1. G ∈ SdBe. Then G is finitely generated with a soluble normal

subgroup N of finite index. Hence (by [5], 14.3.2) N is finitely generated.
Moreover, N (as a subgroup of G) has no free nonabelian subsemigroups.
Thus by R1, N is nilpotent-by-finite, and hence G is (nilpotent-by-finite)-
by-finite, and so nilpotent-by-finite (by [5], 23.1.1).

2. G ∈ BeSd. Then G has a normal subgroup N ∈ Be such that
G/N ∈ Sd. That means that G/N is soluble of solublity length ≤ d,
whence G(d) ⊆ N ∈ Be. Since G does not contain free nonabelian sub-
semigroups, neither does G(d), so by R2, G(d) is finitely generated and
hence by R0, is finite. Now, let C := CG(G(d)) be the centralizer of G(d)

in G. By R3, C is a normal subgroup of finite index in G. Moreover, C

is soluble, because 1 = [G(d), C] ⊇ [C(d), C(d)] = C(d+1). Since C (as a
subgroups of G) has no free nonabelian subsemigroups, from R1 we con-
clude that C is nilpotent-by-finite. So G (as a finite extension of C) is also
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nilpotent-by-finite (by [5], 23.1.1).

Suppose inductively that if G lies in a product of n varieties, n ≥ 2,
then G is nilpotent-by-finite, and let G ∈ V1V2 . . .VtVn+1. There are
two cases:

1. Suppose Vn+1 = Be for some e. Since the multiplication of varieties
is associative (by [9], 21.51), there exists a normal subgroup N of G, such
that N ∈ V1V2 . . .Vn and G/N ∈ Be. As a finitely generated group,
G/N is finite by R0, and hence N is finitely generated (by [5], 14.3.2).
Thus by the inductive assumption, N is nilpotent-by-finite, which implies
that G (as a finite extension of N) is also nilpotent-by-finite (by [5], 23.1.1).

2. Suppose Vn+1 is soluble. Then, since n ≥ 2, we can take Vn+1 =
Sd, Vn = Be, and Vn−1 = Sk for some d, e, k. Since the multiplication
of varieties is associative (by [9], 21.51), there exists a normal subgroup N

of G, such that N∈V1V2 . . .Vn−1 and G/N∈BeSd. As in the case n =2,
we conclude that G/N is nilpotent-by-finite, say G/N ∈ NcBd. Therefore
G lies in the product V1V2 . . . Vn−2SdNcBd. Since Nc ⊆ Sc+1, SkNc

is a soluble variety, hence G lies in the product of n varieties each of which
is either a soluble or a restricted Burnside variety, and therefore, by the
inductive assumption, G is nilpotent-by-finite.

Thus from the induction principle it follows that every finitely gen-
erated SB-group without free non-abelian subsemigroups is nilpotent-by-
finite. �

Corollary 1. Every group without free nonabelian subsemigroups in

the class C is locally-(residually finite).

Proof. Let G ∈ C be a group without free nonabelian subsemigroups
and let H be a finitely generated subgroup of G. Then, by (i) in Theorem 1,
H is residually-SB and by the above theorem, H is residually-(nilpotent-
by-finite), hence residually-(residually finite) (by [6], Theorem 1), which
finally implies (by [9], 17.74) that H is a residually finite group as required.
Hence every finitely generated subgroup of G is residually finite which
implies that G is locally-(residually finite). �

Since groups of intermediate growth do not contain free nonabelian
subsemigroups (because otherwise they would have exponential growth),
we obtain the required
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Corollary 2. Every group of intermediate growth in the class C is

residually finite. �

2. A generalization

We widen the class C by closing under extensions. Thus we define the
class cl C as the one obtained from SB-groups by repeated applications of
the operations L, R, E, where L,R are defined as before, and for any group-
theoretic class X of groups, EX denotes the class of groups each of which
is an extension of a group from X by a group from X . More precisely: we
denote by Θ1 the class of all SB-groups and define inductively: Θn+1 :=
LΘn ∪ RΘn ∪ EΘn. The class cl C is the union: cl C :=

⋃
n Θn.

Similarly to the class C we obtain

Lemma 2. The class cl C is closed under taking subgroups.

Proof. It is enough to show, that if a group belongs to Θn for any n,
so do all of its subgroups. Thus the proof is very similar to that of
Lemma 1. We only have to consider one more case:

3. Let G ∈ EΘn+1, that is there exist groups M,K ∈ Θn such that
G/M ∼= K. If H is a subgroup of G, then by the inductive assumption
M∩H lies in Θn (as a subgroup of M), hence also H/M∩H ∼= HM/M ⊆ K

lies in Θn (as a subgroup of K). Thus H ∈ EΘn ⊆ Θn+1. �

We will show that the main theorem concerning the class C remains
true in the class cl C.

We recall some notions. Let F denote the free semigroup freely gener-
ated by X := {xi, i ∈ I}. We say that an n-tuple of elements g1, g2, . . . , gn

in a group G satisfies a nontrivial n-ary positive relation u(x1, . . . , xn) =
v(x1, . . . , xn) if u, v are different words in F and the equality u(g1, . . . , gn)=
v(g1, . . . , gn) holds. A group G satisfies an n-ary positive law u = v if the
equality holds under every substitution of elements in G for the genera-
tors xi. We say that a positive relation (law) u = v is of degree k (or: has
degree k) if k is the maximal length of u, v (e.g. x2y = y5x is of degree 6).

We note that every (nontrivial) n-ary positive relation implies a (non-
trivial) 2-ary positive relation (by making the substitution xi → xyi for
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instance). Thus if G satisfies a positive law, it satisfies such a law in 2
variables.

We will show that the Theorem B in [1] concerning the class C can be
extended to the class cl C. This theorem gives a positive answer in the class
cl C to the Malcev conjecture, that every finitely generated group satisfying
a positive law must be nilpotent-by-finite (note that Ol’shanskii and
Storozhev in [11] constructed a counterexample to this conjecture).

Theorem 3. Every group in the class cl C that satisfies a positive law

of degree n belongs to the variety NcBe, where c, e depend on n only.

Proof. We will prove first that every group in Θk,∀k ∈ N, which
satifsies a positive law of degree n, belongs to the class C.

If k = 1, then G is an SB-group and hence belongs to the class C.
Suppose inductively that the statement is true for G ∈ Θk and we

will prove that every group in Θk+1 satisfying a positive law of degree n

belongs to the class C. We have three possibilities:
1. G ∈ LΘk which means that every finitely generated subgroup H of

G belongs to Θk. Since H satisfies a positive law of degree n (the same
as G), then by the inductive assumption H belongs to the class C. This
asserts that G is locally in the class C and hence by (ii) in Theorem 1, G

is in the class C itself.
2. G ∈ RΘk which means that G is a subcartesian product of groups

Ni ∈ Θk, i ∈ I. Since each Ni satisfies a positive law of degree n (the
same as G), then by the inductive assumption every Ni belongs to the
class C. This asserts that G is residually in the class C and again by (ii)
in Theorem 1, G is in the class C itself.

3. G ∈ EΘk which means that G/H ∼= K, where H,K ∈ Θk. Since
both H (as a subgroup) and K (as an image) satisfy the same positive law
as G, then by the inductive assumption they belong to the class C. Thus
by Theorem B in [1], both H and K lies in the same variety NcBe, where
c, e depend on n only. Since Nc ⊂ Sc+1, then G ∈ Sc+1BeSc+1Be which
means that G is an SB-group and hence belongs to the class C.

Thus, by the induction principle, if G ∈ Θk for any k ∈ N, then
G ∈ C. By definition, if G is a group in the class cl C then G ∈ Θk for
some k ∈ N. So every group satifying a positive law in the class cl C belongs
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to the class C and hence by Theorem B in [1], lies in some variety NcBe,
where c, e depend on n only. �

Remark. Theorem 3 is the consequence of Corollary 1 in [2] (also com-
pare with Theorem C in [7]). Indeed, in [2] it was stated without proof
that the class C is contained in the class of locally graded groups (LG for
short). Since the latter class is closed under taking extensions, we obtain
the following sequence of inclusions: C ⊆ clC ⊆ LG. However, it is still not
known whether any of these inclusions is an equality, so the class cl C was
supposed to be one step forward. The results from [2] and [7] are deep,
using advanced methods. We enclosed the above proof since it is short and
straight.

3. Questions and remarks

By definition of the class C we have ∆1 ⊆ ∆2 ⊆ ∆3 ⊆ C. As it
was shown in (i) in Theorem 1, the last inclusion is actually an equality.
Moreover, since an absolutely free group is residually finite (by [13], 6.1.9),
it belongs to ∆2, but clearly not to ∆1. Hence ∆1 �= ∆2. However it is still
not known whether the description of the class C given in (i) is optimal,
in other words what is the answer to the following

Question 1. Is it true that ∆2 �= ∆3?

We conjecture that the example can be found among locally free
groups.

By definition of cl C it is clear that C ⊆ cl C. However, it is still not
known whether the inverse is true:

Question 2. Is is true that C = cl C?

It can be easily seen that the class cl C is closed under taking exten-
sions. However it is still not known whether there is a result for the class
cl C similar to Theorem 1:

Question 3. Does there exist n such that cl C = Θn?

Although SB-group are contained in cl C, there is no simple extension
of Corollary 2 for cl C. Hence there is one more open problem here:
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Question 4. Is it true that every group of intermediate growth in the

class cl C is residually finite?

Of course, a positive answer to Question 2 implies positive answers to
Questions 3 and 4.
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