Publ. Math. Debrecen 69/4 (2006), 451–455

Estimating the defect in Jensen's Inequality

By A. M. FINK (Ames)

Abstract. We consider how much the difference of the two sides of Jensen's Inequality might be. It has a connection with Grüss Inequality.

Grüss' Inequality gives an estimate on the defect in the Chebyshev Inequality and has found some application elsewhere, see for example [1]. Here we consider the defect in Jensen's Inequality.

To be more precise, let all the integrals exist and μ be a normalized measure, i.e. $\int_a^b d\mu = 1$. Then define

$$T(f,g) \equiv \int_{a}^{b} fg d\mu - \int_{a}^{b} fd\mu \int_{a}^{b} gd\mu.$$
(1)

Chebyshev showed that if f and g are both increasing (or both decreasing) then $T(f,g) \ge 0$. Now we know that $T(f,g) \ge 0$ if

$$[f(x) - f(y)][g(x) - g(y)] \ge 0 \quad \text{for all pairs } x, y.$$
(2)

Grüss considered how positive T could be. We will cite some of the results below. Similarly, we want to look at Jensen's Inequality,

$$\phi\left(\int_{a}^{b} f d\mu\right) \le \int_{a}^{b} \phi(f) d\mu \tag{3}$$

which we know to hold when ϕ is convex, f is in L_{∞} , and $\mu \ge 0$ and normalized. So

$$E(\phi, f, \mu) \equiv \int_{a}^{b} \phi(f) d\mu - \phi\left(\int_{a}^{b} f d\mu\right)$$
(4)

Mathematics Subject Classification: 26D15.

Key words and phrases: Jensen's Inequality, Grüss' Inequality.

A. M. Fink

is non-negative for such (ϕ, f, μ) . Then we ask, how positive can it be?

Jensen's inequality follows from the graph of a convex function lying above its tangent lines. Explicitly

$$\phi(t) \ge \phi(s) + (t-s)\phi'(s)$$

for any t and s. Here we must retain equality. So we begin with assuming that ϕ'' exists on [a,b] and write

$$\phi(t) = \phi(s) + (t-s)\phi'(s) + \int_{s}^{t} (t-u)\phi''(u)d\mu.$$
(5)

In (5) we replace t by f(t) and s by $M(f) \equiv \int_a^b f d\mu$, and integrate with respect to μ . We arrive at

$$\int_{a}^{b} \phi(t)d\mu(t) = \phi(M(f)) + \int_{a}^{b} \int_{M(f)}^{f(t)} [f(t) - u]\phi''(u)dud\mu(t)$$
(6)

from which we obtain the representation

$$E(\phi, f, \mu) = \int_{a}^{b} \int_{M(f)}^{f(t)} [f(t) - u] \phi''(u) du d\mu(t).$$
(7)

The integrand of the outside integral is non-negative. For let $A \equiv \{t \mid f(t) \ge M(f)\}$ and $B \equiv [a, b] \setminus A$. Then

$$E(\phi, f, \mu) = \int_{A} \int_{M(f)}^{f(t)} (f(t) - u)\phi''(u)dud\mu(t) + \int_{B} \int_{f(t)}^{M(f)} (u - f(t))\phi''(u)dud\mu(t).$$
(8)

Let $S(t) = \frac{t^2}{2}$ so that $S''(t) \equiv 1$.

Theorem 1. Let ϕ be convex with ϕ'' continuous, $f \in L_{\infty}$, and $\mu \ge 0$ with $\int_{a}^{b} d\mu = 1$. Then

$$E(\phi, f, \mu) \le \|\phi''\|_{\infty} E(S, f, \mu).$$
 (9)

Equality hold for $\phi = S$.

PROOF. The proof is immediate from (8). Since all quantities are nonnegative we may majorize E by replacing ϕ'' with $\|\phi''\|$, factoring it out of the integrals, and we get E with ϕ'' replaced by 1, i.e. $\phi = S$.

Estimating the defect in Jensen's Inequality

Now the quantity $E(S, f, \mu)$ is interesting.

$$E(S, f, \mu) = \frac{1}{2} \left[\int_a^b f^2 d\mu - \left(\int_a^b f d\mu \right)^2 \right].$$

The quantity in brackets is the defect in the Cauchy–Schwarz Inequality for f and 1. It somehow measures how much f and 1 are independent functions.

Moreover, $E(S, f\mu) = \frac{1}{2}T(f, f)$ so there is a connection with the Chebyshev and Grüss Inequalities. We now cite the relevant things about these. GRÜSS [2] in his original paper does not notice that (with $\mu \ge 0$ and normalized)

$$T(f,g) = \frac{1}{2} \int_{a}^{b} \int_{a}^{b} [f(x) - f(y)][g(x) - g(y)]d\mu(x)d\mu(y).$$

This was known much earlier, see the chapter on Chebyshev's Inequality in [3]. By the Cauchy–Schwarz we have $T(f,g) \leq T(f,f)^{\frac{1}{2}}T(g,g)^{\frac{1}{2}}$. However he arrives at this inequality in other ways and provides a couple of upper bounds. He shows that (still with μ normalized)

$$T(f, f) \le [\max f - M(f)][M(f) - \min f].$$
 (10)

Since min $f \leq M(f) \leq \max f$, this last expression is at most $\frac{1}{4}(\max f - \min f)^2$. Furthermore, equality holds here if $f(t) = \operatorname{sgn}(t - \overline{\mu})$ where $\int_a^{\overline{\mu}} d\mu = \int_{\overline{\mu}}^b d\mu = \frac{1}{2}$.

Corollary 1. Let ϕ be convex f bounded and integrable, and $\mu \geq 0$ and normalized, then

$$E(\phi, f, \mu) \le \frac{1}{2} \|\phi''\|_{\infty} \left[\max f - M(f) \right] \left[M(f) - \min f \right] \\\le \frac{1}{8} \|\phi''\|_{\infty} \left[\max f - \min f \right]^2.$$

These are all best possible constants.

For Grüss' proof and other results one may consult either [3, p. 296] or [4].

The above results are straight forward for measures for which $\mu \geq 0$. We know however, that there are other situations when $E(\phi, f, \mu) \geq 0$. Suppose that f is monotone and bounded, ϕ convex, and μ end positive, i.e.

$$L(t) \equiv \int_{a}^{t} d\mu \ge 0, \quad \text{and}, \quad R(t) \equiv \int_{t}^{b} d\mu \ge 0 \quad \text{for} \quad a \le t \le b.$$
(11)

Then $E(\phi, f, \mu) \ge 0$. See e.g. [3, p. 13] or [5], but it is a result known to Steffenson in the discrete case earlier. The above arguments need to be modified since the measure is no longer non-negative and the argument of the theorem fails.

Theorem 2. If ϕ is convex with ϕ'' continuous, f' exists and is strictly one sign, and μ is a normalized measure satisfying (11), then the estimate of Theorem 1 holds.

PROOF. We take the case when f' > 0. There is a $c \in (a, b)$ such that $f(t) \leq M(f)$ on [a, c) and $f(t) \geq M(f)$ on [c, b]. To see this, we must show that f(a) < M(f) < f(b). Recalling that L(b) = R(a) = 1 we have by interchange of integration

$$\int_{a}^{b} f d\mu = f(b) - \int_{a}^{b} f' L dt < f(b)$$

and

$$\int_{a}^{b} f d\mu = f(a) + \int_{a}^{b} f' R dt > f(a)$$

Now

$$E(\phi, f, \mu) = \int_{a}^{c} \int_{f(t)}^{M(f)} [u - f(t)] \phi''(u) du d\mu(t) + \int_{c}^{b} \int_{M(f)}^{f(t)} [f(t) - u] \phi''(u) du d\mu(t) = \int_{f(a)}^{M(f)} \int_{a}^{f^{-1}(u)} (u - f(t)) d\mu(t) \phi''(u) du + \int_{M(f)}^{f(b)} \int_{f^{-1}(u)}^{b} (f(t) - u) d\mu(t) \phi''(u) du.$$
(12)

The inner integrals are by interchange of order

$$\int_{a}^{f^{-1}(u)} (u - f(t)) d\mu(t) = \int_{a}^{f^{-1}(u)} f'(t) L(t) dt \ge 0$$

and

$$\int_{f^{-1}(u)}^{b} (f(t) - u) d\mu(t) = \int_{f^{-1}(u)}^{b} f'(t) R(t) dt \ge 0.$$

So we may again majorize ϕ'' by its norm as in the proof of Theorem 1.

Again the estimate which involves S(t) is T(f, f). Since (f, f) clearly satisfies (2), this is non-negative and we may look for a Grüss type estimate. All of the results in [2] or [3] require that $\mu \ge 0$. However, in [4] we looked at some results for end positive measures.

Estimating the defect in Jensen's Inequality

Corollary 2. If (ϕ, f, μ) satisfy the hypothesis of Theorem 2, then

$$E(\phi, f, \mu) \le \frac{1}{2} F[f(b) - f(a)]^2 \|\phi''\|_{\infty},$$

and

$$E(\phi, f, \mu) \le N \|f'\|_{\infty}^2 \|\phi''\|_{\infty},$$

where $F = \max_{a \le t \le x \le b} L(t)R(x)$ and $N = \int_a^b RL_1 dx$, $L_1(x) = \int_a^x L(t) dt$ Both estimates have the best possible constants.

PROOF. These are direct applications of Theorems 11 and 16 of [4]. \Box

It is possible using the identities (7) and (12) to get estimates using Hölder's Inequality with $\|\phi''\|_p$ but they are not so nice and it is difficult to get best possible estimates.

References

- S. S. DRAGOMIR and I. FEDALOV, A Grüss type inequality for mappings of bounded variation and applications to numerical analysis, *Funct. Anal & Appl.* 6, no. 3 (2001), 425–438.
- [2] G. GRÜSS, Über das Maximum des absolutions Betrages von $\frac{1}{b-a}\int_a^b f(x)g(x)dx \frac{1}{(b-a)^2}\int_a^b f(x)dx\int_a^b g(x)dx$, Math. Z. **39** (1935), 215–226.
- [3] D. S. MITRONOVIĆ, J. E. PEČARÍĆ and A. M. FINK, Classical and New Inequalities in Analysis, *Kluwer Academic Publishers*, 1993.
- [4] A. M. FINK, A treatise on Grüss' Inequality, in: Analytic and Geometric Inequalities and Application, (T. M. Rassias and H. M. Srivastava, eds.), *Kluwer Academic Publishers*, 1999, 93–114.
- [5] A. M. FINK and M. JODEIT JR., Jensen inequalities for functions with higher monotonicities, Aequations Math. 40 (1990), 26–43.

A. M. FINK MATHEMATICS DEPARTMENT IOWA STATE UNIVERSITY AMES, IA 50011 USA

E-mail: fink@math.iastate.edu

(Received March 18, 2005; revised May 17, 2005)