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New characterizations of W -curves

By BANG-YEN CHEN (East Lansing), DONG-SOO KIM (Kwangju)
and YOUNG HO KIM (Taegu)

Abstract. We prove that a curve in a Euclidean space of arbitrary dimension
is a W -curve if and only if the chord joining any two points on the curve meets
the curve at the same angle. Moreover, W -curves in Euclidean 3-space E

3 are
characterized with two more general conditions. In particular, we prove that a
curve in E

3 is a W -curve if and only if the difference of the values of cosine of the
two angles between the curve and the chord joining any two points on the curve
depends only on the arc-length of the curve between the two points.

1. Introduction

It is well-known that a circle is characterized as a closed plane curve
such that the chord joining any two points on it meets the curve at the same
angle at the two points (cf. [2, pp. 160–162]). From differential geometric
point of view, this characteristic property of circles can be stated as follows:

Proposition. Let X = X(s) be a unit speed closed curve in the

Euclidean plane E
2 and T (s) = X ′(s) be its unit tangent vector field.

Then X = X(s) is a circle if and only if it satisfies Condition:

(C):
〈
X(t) −X(s), T (t) − T (s)

〉
= 0 holds dentically.

Actually, one can show that a unit speed plane curve X(s) satisfies
Condition (C) if and only if it is either a circle or a straight line.
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In views of Proposition, it is natural to ask the following question:

Question. “Which Euclidean space curves satisfy Condition (C)?”

A Frenet curve in a Euclidean space is called a W -curve if its Frenet
curvatures are constant. Circles, straight lines and circular helices in E

3

are the simplest examples of W -curves.
One purpose of this article is to study curves in a Euclidean space

of arbitrary dimension which satisfy Condition (C). For this we have the
following:

Theorem 1. A unit speed smooth curve X = X(s) in the Euclidean

m-space E
m is a W-curve if and only if the chord joining any two points

on it meets the curve at the same angle.

The second purpose of this article is to prove the following.

Theorem 2. A unit speed smooth curve X = X(s) in the Euclidean

3-space E
3 is a W-curve if and only if the difference of the values of cosine

of the two angles between the curve and the chord joining any two given

points on the curve depends only on the arc-length of the curve between

the two points.

The third purpose is to study space curves satisfying a condition more
general than (C), namely:

(A):
〈
X(s)−X(t), T (s) − T (t)

〉
depends only on s− t, where X = X(s) is

a unit speed curve in Euclidean m-space E
m and T (s) = X ′(s).

Condition (A) implies that the difference of the values of cosine of the
two angles between the curve and the chord joining any two given points
on the curve depends only on the arc-length of the curve and the length
of the chord between the two points.

Our third result is the following.

Theorem 3. A unit speed smooth curve X = X(s) in the Euclidean

3-space E
3 is a W-curve if and only if X = X(s) satisfies Condition (A).
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2. W -curves and Frenet curvatures

Let X(s) be a unit speed smooth curve in Euclidean m-space E
m, so

|X ′(s)| = 1 for all s in the domain I of the curve. The curve is called a
Frenet curve if the vectors X ′,X ′′, . . . ,X(m−1) are linearly independent at
each point in I.

If, for some integer n ∈ [1,m], the derivatives X ′,X ′′, . . . ,X(n) are
linearly independent and the derivatives X ′,X ′′, . . . ,X(n+1) are linearly
dependent at each point in an open subinterval J ⊂ I, then e1, e2, . . . , en
on J are uniquely determined by the following conditions (cf. [1, p. 13]):

(i) e1, e2, . . . , en are orthonormal.

(ii) For every k = 1, . . . , n, we have

Lin(e1, e2, . . . , ek) = Lin(X ′,X ′′, . . . ,X(k)),

where Lin denotes the linear span.

(iii)
〈
X(k), ek

〉
> 0 for k = 1, . . . , n.

The Frenet curvatures κ1, . . . , κn−1 are then determined by the follow-
ing Frenet equations (cf. [1, p. 26]):




e′1 = κ1e2,

e′i = −κi−1ei−1 + κiei+1, i = 2, . . . , n− 1,
...

e′n = −κn−1en−1.

(2.1)

A unit speed smooth Euclidean curve X(s), s ∈ I, is called a W -curve
of rank r if, for all s ∈ I, the derivatives X ′(s), . . . ,X(r)(s) are linearly
independent, the derivatives X ′(s), . . . ,X(r+1)(s) are linearly dependent,
and if the (therefore well-defined) Frenet curvatures κ1, . . . , κr−1 are con-
stant on I.

In general, if X = X(s) is a unit speed W -curve in Euclidean m-space,
then, with respect to a suitable Euclidean coordinate system, X(s) can be
written as follows (cf. [1, pp. 29–31]):

X(s) = (a1 cos c1s, a1 sin c1s, . . . , an cos cns, an sin cns, 0, . . . , 0) (2.2)
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or as

X(s) = (a1 cos c1s, a1 sin c1s, . . . , an cos cns, an sin cns, bs, 0, . . . , 0) (2.3)

for distinct nonzero numbers c1, . . . , cn and a nonzero number b according
as X is of even or odd rank. Since X = X(s) is of unit speed, we have

a2
1c

2
1 + · · · + a2

nc
2
n = 1 or a2

1c
2
1 + · · · + a2

nc
2
n + b2 = 1. (2.4)

For a unit speed curve X = X(s) in E
3, Frenet’s equation gives

X ′ = e1,

X ′′ = κ1e2,

X ′′′ = −κ2
1e1 + κ′1e2 + κ1κ2e3,

X(4) = −3κ1κ
′
1e1 + (κ′′1 − κ3

1 − κ1κ
2
2)e2 + (2κ′1κ2 + κ1κ

′
2)e3.

(2.5)

3. Proof of Theorem 1

Let X = X(s) be a unit speed smooth curve in Euclidean m-space.
Without loss of generality, we may assume that X = X(s) is defined on
an open interval I containing 0. Suppose that the curve satisfies Condi-
tion (C). Then, by putting t = s+ a, we obtain

〈
X(s+ a) −X(s), T (s + a) − T (s)

〉
= 0. (3.1)

It follows from equation (3.1) that

|X(s + a) −X(s)|2 = f(a) (3.2)

for some function f = f(a). From (3.2) we find

f(−a) = |X(s − a) −X(s)|2
= |X(s − a+ a) −X(s− a)|2 = f(a),

(3.3)

which implies that f(a) is an even function.
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Let us consider Taylor’s expansion of f(a) about a = 0. Since f(a) is
an even function, we have

f(a) =
2m∑
k=2

cka
k +O(|a|2m+1) as a→ 0, (3.4)

for some constants c2, . . . , c2m, where O(|a|2m+1) is a function g(a) satis-
fying |g(a)| ≤ C|a|2m+1 for some constant C and sufficiently small a > 0.

Let us also consider Taylor’s expansion of X(s+a) about a = 0 which
enable

X(s+ a) −X(s) =
2m−1∑
k=1

1
k!
X(k)(s)ak +O(|a|2m). (3.5)

From (3.2) and (3.5) we find

f(a) =
2m∑
k=2

(
k−1∑
i=1

1
i!(k − i)!

〈
X(i)(s),X(k−i)(s)

〉)
ak +O(|a|2m+1) (3.6)

as a→ 0. Hence we obtain

ck =
k−1∑
i=1

1
i!(k − i)!

〈
X(i)(s),X(k−i)(s)

〉
(3.7)

for k = 2, . . . , 2m. Now, we claim by mathematical induction that

〈
X(i)(s),X(k−i)(s)

〉
is constant for i = 1, . . . , k − 1; 2 ≤ k ≤ 2m. (MI)

Clearly, (MI) holds for k = 2, since X = X(s) is assumed to be of
unit speed. Let us assume that (MI) holds for k = � with � < 2m and put
k = �+ 1.

First, suppose that k = �+ 1 is an odd number, say 2p + 1. Without
loss of generality, we may assume that i < k − i. Then, by the induction
hypothesis, we obtain

〈
X(i)(s),X(k−i)(s)

〉
=
〈
X(i)(s),X(2p−i)(s)

〉′ − 〈X(i+1)(s),X(2p−i)(s)
〉

= −〈X(i+1)(s),X(2p−i)(s)
〉

(3.8)
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for i = 1, . . . , p. Hence we have

〈
X(i)(s),X(k−i)(s)

〉
= −〈X(i+1)(s),X(2p−i)(s)

〉
= . . .

= (−1)p−i
〈
X(p)(s),X(p+1)(s)

〉
=

(−1)p−i

2
〈
X(p)(s),X(p)(s)

〉′
= 0

(3.9)

by the induction hypothesis.
Next, suppose that k = �+ 1 is an even number, say 2p. Without loss

of generality, we may assume that i ≤ k− i. In this case, as in the previous
case, we obtain from induction hypothesis that

〈
X(i)(s),X(k−i)(s)

〉
=
〈
X(i)(s),X(�−i)(s)

〉′ − 〈X(i+1)(s),X(2p−1−i)(s)
〉

= −〈X(i+1)(s),X(2p−1−i)(s)
〉

= . . .

= (−1)p−i
〈
X(p)(s),X(p)(s)

〉
. (3.10)

By substituting (3.10) into (3.7), we obtain

c2p =
2p−1∑
i=1

1
i!(2p − i)!

〈
X(i)(s),X(2p−i)(s)

〉

=

(
2p−1∑
i=1

(−1)p−i

i!(2p − i)!

)〈
X(p)(s),X(p)(s)

〉
.

(3.11)

In order to compute the coefficient in (3.11), we consider the binomial:

(x+ 1)2p = x2p +
2p−1∑
i=1

(2p)!
i!(2p − i)!

x2p−i + 1. (3.12)

By putting x = −1 in (3.12), we obtain from (3.11) that

〈
X(p)(s),X(p)(s)

〉
=

(−1)p+1(2p)!
2

c2p,
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which is constant. Hence the mathematical induction together with (3.10)
implies that (MI) holds for each k = 2, . . . , 2m.

Now, suppose that the derivatives X ′,X ′′, . . . ,X(r) are linearly inde-
pendent on I for some r = 1, . . . ,m−1. Then e1, e2, . . . , er are well-defined
on I and thus the well-known Gram–Schmidt orthogonalization procedure
shows that the normal component ēr+1 of X(r+1) to Lin(X ′,X ′′, . . . ,X(r))
is defined as follows:

ēr+1 = X(r+1) −
r∑

i=1

〈
X(r+1), ei

〉
ei. (3.13)

It follows from (MI) that ēr+1 has constant length. This implies that
there exists an integer r such that the derivatives X ′(s), . . . ,X(r)(s) are
linearly independent and the derivatives X ′(s), . . . ,X(r+1)(s) are linearly
dependent at each point s ∈ I.

Finally, we claim that all of the Frenet curvatures ofX(s) are constant.
In fact, (MI) and the Gram–Schmidt orthogonalization procedure show
that, for each i = 1, 2, . . . , r, there exist constants ci1, ci2, . . . , cii satisfying

ei = ci1X
′(s) + ci2X

′′(s) + · · · + ciiX
(i)(s).

This together with (MI) implies that each Frenet curvature κi is constant.
Consequently, the unit speed curve X = X(s) is a W -curve.

Conversely, if X(s) is a unit speed W -curve in E
m, then for a suitable

coordinate system X(s) can be written as either (2.2) or (2.3) according as
the rank is even or odd. By applying (2.2), (2.3) and (2.4), it is straight-
forward to show that the curve X = X(s) satisfies Condition (C). This
completes the proof of our theorem.

From the proof of Theorem 1 we have the following

Corollary. For a unit speed curve X(s) in Euclidean m-space E
m,

the following five statements are equivalent:

(i) X(s) is a W -curve.

(ii) |X(k)(s)|, k = 1, . . . ,m, are constant.

(iii)
〈
X(i)(s),X(k−i)(s)

〉
, i = 1, . . . , k − 1; k = 2, . . . , 2m, are constant.

(iv) |X(s + a) −X(s)| depends only on a.

(v) X(s) satisfies the condition (C).
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4. Proof of Theorem 2

Let X = X(s) be a unit speed curve in E
m such that the difference

of the values of cosine of the two angles between the curve and the chord
joining any two points on the curve depends only on the arc-length between
the two points. Then we have

(B):
〈 X(s)−X(t)
|X(s)−X(t)| , T (s)− T (t)

〉
depends only on s− t, where X = X(s) is a

unit speed curve in Euclidean m-space E
m and T (s) = X ′(s).

We may assume that κ1 �= 0, since otherwise the curve is an open
portion of a line which is a W -curve. By putting t = s+a, we obtain from
condition (B) that〈

X(s+ a) −X(s)
|X(s+ a) −X(s)| , T (s+ a) − T (s)

〉
= g(a) (4.1)

for some function g. Obviously, (4.1) is equivalent to

|X(s + a) −X(s)| = g(a)s + h(a) (4.2)

for some function h. Clearly, we have g(0) = h(0) = 0. From (4.2) we get

g(−a)s + h(−a) = |X(s − a) −X(s)|
= |X(s − a+ a) −X(s − a)|
= g(a)(s − a) + h(a),

(4.3)

which yields g(−a) = g(a) and h(−a) = h(a) − ag(a). Therefore we know
that g(a) and ψ(a) := h(a) − 1

2ag(a) are even functions. Hence we get

djg

daj
(0) = 0,

djh

daj
(0) =

1
2
(ag(a))(j)(0) (4.4)

for j = 1, 3, 5, 7, . . . . From (4.4) we find

h(2i)(0) = 0, h(2i−1)(0) =
2i− 1

2
g(2i−2)(0), i = 1, 2, 3, . . . . (4.5)

Since g(0) = 0, (4.5) gives h′(0) = 0. Consequently, we have

g(0) = h(0) = h′(0) = g(2i−1)(0) = h(2i)(0) = 0,

h(2i−1)(0) =
2i− 1

2
g(2i−2)(0), i = 1, 2, 3, . . . .

(4.6)
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It follows from (4.2) that〈
X(s + a) −X(s),X(s + a) −X(s)

〉
= (g(a)s + h(a))2. (4.7)

Differentiating (4.7) with respect to s gives〈
Ys(a),X ′(s+ a) −X ′(s)

〉
= g(a)(g(a)s + h(a)), (4.8)

where Ys(a) = X(s + a) −X(s). Clearly, we have Ys(0) = 0 and Y ′
s(a) =

X ′(s+a). By putting Z(j)
s (a) = X(j)(s+a), j = 0, 1, 2, . . . , we get Z(j)

s (0) =
X(j)(s). Since X(s) is of unit speed, differentiating (4.8) with respect to
a yields we find〈
Ys(a), Z ′′

s (a)
〉− 〈Z ′

s(a),X
′(s)
〉

= g′(a)(g(a)s + h(a)) + g(a)(g′(a)s + h′(a)) − 1, (4.9)〈
Ys(a), Z ′′′

s (a)
〉− 〈Z ′′

s (a),X ′(s)
〉

=
2∑

i=0

(
2
i

)
g(i)(a)(g(2−i)(a)s + h(2−i)(a)), (4.10)

k∑
j=0

(
k

j

)〈
Z(j)

s (a), Z(3+k−j)
s (a)

〉− 〈Z(k+2)
s (a),X ′(s)

〉− 〈Z(k+3)
s (a),X(s)

〉

=
k+2∑
i=0

(
k+2
i

)
g(i)(a)(g(k+2−i)(a)s+h(k+2−i)(a)), k = 2, 3, 4, . . . . (4.11)

In particular, at a = 0, (4.6) and (4.11) give〈
X ′(s),X(4)(s)

〉
+
〈
X ′′(s),X ′′′(s)

〉
= 6a2

1s, (4.12)

2
〈
X ′(s),X(5)(s)

〉
+ 3
〈
X ′′(s),X(4)(s)

〉
+ |X ′′′(s)|2 = 15a2

1, (4.13)

3
〈
X ′(s),X(6)(s)

〉
+ 6
〈
X ′′(s),X(5)(s)

〉
+ 5
〈
X ′′′(s),X(4)(s)

〉
= 30a1a2s, (4.14)

(k − 1)
〈
X ′(s),X(k+2)(s)

〉
+

k∑
j=2

(
k

j

)〈
X(j)(s),X(3+k−j)(s)

〉

=
k+2∑
i=2

(
k + 2
i

)
g(i)(0)(g(k+2−i)(0)s + h(k+2−i)(0)) (4.15)
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for k = 2, 3, 4, . . . , where a1 = g′′(0), a2 = g(4)(0), . . . .
Differentiating (4.15) with respect to s gives

(k − 1)
〈
X ′(s),X(3+k)(s)

〉
+

k∑
j=2

(
k + 1
j

)〈
X(j)(s),X(4+k−j)(s)

〉
+
〈
X(k+1)(s),X ′′′(s)

〉− 〈X ′′(s),X(k+2)(s)
〉

=
k+2∑
i=2

(
k + 2
i

)
g(i)(0)g(k+2−i)(0) (4.16)

for k = 2, 3, 4, . . . . Replacing k by k + 1 in (4.15) gives

k
〈
X ′(s),X(k+3)(s)

〉
+

k+1∑
j=2

(
k + 1
j

)〈
X(j)(s),X(4+k−j)(s)

〉

=
k+3∑
i=2

(
k + 3
i

)
g(i)(0)(g(k+3−i)(0)s + h(k+3−i)(0)). (4.17)

By combining (4.16) and (4.17) we find〈
X ′(s),X(3+k)(s)

〉
+
〈
X ′′(s),X(k+2)(s)

〉
=

k+3∑
i=2

(
k + 3
i

)
g(i)(0)

(
g(k+3−i)(0)s + h(k+3−i)(0)

)

−
k+2∑
i=2

(
k + 2
i

)
g(i)(0)g(k+2−i)(0).

Therefore, by applying (4.6), we obtain

〈
X ′(s),X(2j+1)(s)

〉′ = s

j∑
�=1

(
2j + 2

2�

)
a�aj−�+1, (4.18)

〈
X ′(s),X(2j+2)(s)

〉′
=

j∑
�=1

(
(2j − 2�+ 3)

2

(
2j + 3

2�

)
−
(

2j + 2
2�

))
a�aj−�+1 (4.19)
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for j = 1, 2, 3, . . . . In particular, for j = 1, 2 and 3, (4.18) gives
〈
X ′(s),X ′′′(s)

〉′ = 6a2
1s,

〈
X ′(s),X(5)(s)

〉′ = 30a1a2s,〈
X ′(s),X(7)(s)

〉′ = (56a1a3 + 70a2
2)s.

(4.20)

It follows from
〈
X ′,X ′′〉 = 0 and the first equation in (4.20) that

〈
X ′,X ′′′〉 = −〈X ′′,X ′′〉 = 3a2

1s
2 − b1 (4.21)

for some constant b1. By differentiating (4.21) we find
〈
X ′,X(4)

〉
+
〈
X ′′,X ′′′〉 = 6a2

1s,
〈
X ′′,X ′′′〉 = −3a2

1s.

which implies that
〈
X ′,X(4)

〉
= 9a2

1s,
〈
X ′′,X ′′′〉 = −3a2

1s. Thus we have

〈
X ′,X(5)

〉′ + 〈X ′′,X(4)
〉′ =

〈
X ′′′,X ′′′〉′ + 〈X ′′,X(4)

〉′ = 0.

Combining this with the second equation in (4.20) gives
〈
X ′,X(5)

〉′ = −〈X ′′,X(4)
〉′ =

〈
X ′′′,X ′′′〉′ = 30a1a2s. (4.22)

By applying (4.22) we obtain

3
〈
X ′,X(6)

〉
= −5

〈
X ′′,X(5)

〉
= 15

〈
X ′′′,X(4)

〉
= 225a1a2s. (4.23)

Thus, after differentiating (4.23) twice and using (4.20), we find
〈
X ′,X(7)

〉′ = −〈X ′′,X(6)
〉′ =

〈
X ′′′,X(5)

〉′ = −〈X(4),X(4)
〉′

= (56a1a3 + 70a2
2)s.

(4.24)

Continuing such procedures sufficiently many times we obtain

Lemma 1. Let X = X(s) be a unit speed curve in E
m satisfying

Condition (B). Then, for any integer j ≥ 2 and i = 1, . . . , j + 1, we have

〈
X(i),X(2j+2−i)

〉′ = (−1)i+1s

j∑
�=1

(
2j + 2

2�

)
a�aj−�+1. (4.25)

where a1, a2, . . . are constant.
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Now, assume that m = 3. Then Lemma 1 and (2.5) imply that

κ2
1 = b1 − 3a2

1s
2, (4.26)

κ4
1 + κ′1

2 + κ2
1κ

2
2 = b2 + 15a1a2s

2, (4.27)

9κ2
1κ

′
1
2 + (κ′′1 − κ3

1 − κ1κ
2
2)

2 + (2κ′1κ2 + κ1κ
′
2)

2

= b3 − (35a2
2 + 28a1a3)s2 (4.28)

for some constant b1, b2, b3. Solving (4.26) and (4.27) for κ1, κ2 we obtain

k2
1 = b1 − 3a2

1s
2, (4.29)

κ2
2 =

(b1 − 3a2
1s

2)(b2 + 15a1a2s
2 − (b1 − 3a2

1s
2)2) − 9a4

1s
2

(b1 − 3a2
1s

2)2
. (4.30)

If a1 = 0, then κ1 is constant. Hence we know from (4.27) that κ2 is
constant as well. Thus, in this case X(s) is a W -curve.

If a1 �= 0, then after substituting (4.29) and (4.30) into the left-hand-
side of (4.28) we see that the left-hand-side of (4.29) is not a polynomial
in s, which is a contradiction. This completes the proof of Theorem 2.

5. Proof of Theorem 3

Let X = X(s) be a unit speed smooth curve in Euclidean 3-space E
3

defined on an open interval I. Suppose that the curve satisfies Condition
(A). We may assume that κ1 �= 0, since otherwise the curve is an open
portion of a line which is a W -curve.

By putting t = s+ a, we obtain that〈
X(s + a) −X(s), T (s + a) − T (s)

〉
= ϕ(a) (5.1)

for some function ϕ. From equation (5.1) we get

|X(s + a) −X(s)|2 = 2ϕ(a)s + f(a) (5.2)

for some function f = f(a). Using (5.2) we find

2ϕ(−a)s + f(−a) = |X(s − a) −X(s)|2 = |X(s − a+ a) −X(s − a)|2
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= 2ϕ(a)(s − a) + f(a), (5.3)

which yields ϕ(−a) = ϕ(a). Thus ϕ(a) is an even function which implies

ϕ(2j−1)(0) = 0, j = 1, 2, 3, . . . . (5.4)

Let us prove the following

Lemma 2. Let X = X(s) be a unit speed curve in E
m satisfying

Condition (A). Then, for any integer j ≥ 2 and i = 1, . . . , j, we have〈
X(i),X(2j−i)

〉
= (−1)j−i(aj−1s− bj−1), (5.5)〈

X(i),X(2j−i+1)
〉

= (−1)j−i

{
j − i+

1
2

}
aj−1 (5.6)

for some constants a1, a2, . . . , aj−1, b1, b2, . . . , bj−1.

Proof. Differentiating (4.2) k-times with respect to a and substitut-
ing a = 0, we get

2ϕ(k)(0)s + f (k)(0) =
k−1∑
i=1

k!
i!(k − i)!

〈
X(i)(s),X(k−i)(s)

〉
. (5.7)

Now we prove the following with mathematical induction:

〈
X(i)(s),X(k−i)(s)

〉
=

{
ak,is+ bk,i if k is even,

ck,i if k is odd
(MI’)

for some constants ak,i, bk,i and ck,i with i = 1, 2, . . . , k − 1.
Since

〈
X ′(s),X ′(s)

〉
= 1, we know that

〈
X ′(s),X ′′(s)

〉
= 0, (MI’)

holds for k = 2, 3. Let us assume that (MI’) holds for k = �. First,
suppose that k = � + 1 = 2p + 1 for any positive integer p. Then by
induction hypothesis we get〈

X(i)(s),X(k−i)(s)
〉

=
〈
X(i)(s),X(2p+1−i)(s)

〉
=
〈
X(i)(s),X(2p−i)(s)

〉′ − 〈X(i+1)(s),X(2p−i)(s)
〉

= a2p,i −
〈
X(i+1)(s),X(2p−i)(s)

〉
= . . .

= a2p,i − a2p,i+1 + · · · + (−1)p−i−1a2p,p−1 +
1
2
(−1)p−ia2p,p

(5.8)
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for i = 1, . . . , p. The last term is denoted by c2p+1,i. Let k = � + 1 = 2p
for any positive integer p. Then we have

〈
X(i)(s),X(k−i)(s)

〉
=
〈
X(i)(s),X(2p−i)(s)

〉
=
〈
X(i)(s),X(2p−i−1)(s)

〉′ − 〈X(i+1)(s),X(2p−i−1)(s)
〉

= −〈X(i+1)(s),X(2p−i−1)(s)
〉

= · · · = (−1)p−i
〈
X(p)(s),X(p)(s)

〉
(5.9)

for i = 1, 2, . . . , p by the induction. Putting (5.9) into (5.7) gives

2ϕ2p(0)s+ f (2p)(0) =
2p−1∑
i=1

(−1)p−i(2p)!
i!(k − i)!

〈
X(p)(s),X(p)(s)

〉

= (−1)p
{

2p−1∑
i=1

(−1)i(2p)!
i!(2p − i)!

}〈
X(p)(s),X(p)(s)

〉
.

(5.10)

If we make use of (3.12), we see that
∑2p−1

i=1
(−1)i(2p)!
i!(2p−i)! = −2. Substituting

this into (5.10), we find

〈
X(p)(s),X(p)(s)

〉
= (−1)p+1

{
ϕ(2p)(0)s +

1
2
f (2p)(0)

}
.

We put the right hand side by a2p,ps+ b2p,p. Therefore (MI’) holds.
Next, (5.9) implies a2p,i = (−1)p−ia2p,p and b2p,i = (−1)p−ib2p,p for

i = 1, 2, . . . , p. Together this with (5.8), we obtain

c2p+1,i = (−1)p−i

{
p− i+

1
2

}
a2p,p

where i = 1, 2, . . . , p. If we put a2p,p = ap−1 and b2p,p = −bp−1, we get
(5.5) and (5.6). This completes the proof of Lemma 2.

By applying (2.5) and Lemma 2, we find

κ2
1 = a1s− b1, κ2

1κ
2
2 + κ4

1 + κ′21 = a2s− b2,

(κ′′1 − κ3
1 − κ1κ

2
2)

2 + (2κ′1κ2 + κ1κ
′
2)

2 = a3s− b3 − 9
4
a2

1.
(5.11)
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It follows from (5.11) that

κ2
2 =

4(a2s− b2)(a1s− b1) − 4(a1s− b1)3 − a2
1

4(a1s− b1)2
. (5.12)

If X = X(s) is a planar curve, then κ2 = 0. Thus (5.12) yields

4(a2s− b2)(a1s− b1) − 4(a1s− b1)3 = a2
1, (5.13)

which is impossible unless a1 = 0, i.e., κ1 is constant. So X is a W -curve.
Next, assume that X = X(s) is not planar. If a1 = 0, then κ1 is

constant. Moreover, in this case (5.12) reduce to

0 = a3s− b3 +
(a2s− b2)2

b1
+

a2
2

4(b21 + b2 − a2s)
, (5.14)

which implies that a2 = 0, i.e., κ2 is constant. Hence X is a W -curve.
If a1 �= 0, then, after applying a suitable translation in s we have

b1 = 0 and κ2
1 = a1s. Without loss of generality, we may assume that

a1 = c2 for some positive number c and s is defined on an open subinterval
of (0,∞). In this case, we obtain from (5.11) and (5.12) that

0 = a3s− b3 − 9
4
c4 − (a2s− b2)2

c2s
+

(b2 − 2a2s+ 3c4s2)2

s(c2 + 4b2s− 4a2s2 + 4c4s3)
,

which gives

16c4(a2
2 − c2a3)s4 + 16(c6b3 − 2c4a2b2 + c2a2a3 − a3

2)s
3

+ 4(3c6a2 + 4c4b22 − 4c2a3b2 − 4c2a2b3 + 12a2
2b2)s

2

+ 4(3c6b2 − c4a3 − 3c2a2
2 + 4c2b2b3 − 12a2b

2
2)s

+ 9c8 + 4c4b3 + 8c2a2b2 + 16b32 = 0.

(5.15)

It follows from the coefficient of s4 in (5.15) that a3 = a2
2/c

2. Thus
the coefficient of s3 gives b3 = 2a2b2/c

2. Applying these we get from the
coefficient of s2 in (5.15) that a2 = −4b22/3c

2. Hence the coefficients of s
in (5.15) yields b2(16b32 + 27c8) = 0. If 16b32 + 27c8 �= 0, then b2 = 0 and
thus a2 = b3 = 0. From the last term in (5.15), we have c = 0, which
is a contradiction. Thus, 16b32 + 27c8 = 0. By substituting a3 = a2

2/c
2,

b3 = 2a2b2/c
2 and a2 = −4b22/3c

2 in the last term in (5.15), we find
−16b32 + 27c8 = 0. Consequently, b2 = c = 0. It is a contradiction. This
completes the proof of Theorem 3. �



472 B. Y. Chen, D. S. Kim and Y. H. Kim : New characterizations. . .

References

[1] W. Kühnel, Differential geometry, curves-surfaces-manifolds, Translated from the
(1999) German original by Bruce Hunt. Student Mathematical Library, Vol. 16,
American Mathematical Society, Providence, RI, 2002.

[2] H. Rademacher and O. Toeplitz, The enjoyment of mathematics, Translated
from the second (1933) German edition and with additional chapters by H. Zucker-
man, Princeton Science Library, Princeton University Press, Princeton, NJ, 1994.

BANG-YEN CHEN

DEPARTMENT OF MATHEMATICS

MICHIGAN STATE UNIVERSITY

EAST LANSING, MI 48824-1027

USA

E-mail: bychen@math.msu.edu

DONG-SOO KIM

DEPARTMENT OF MATHEMATICS

COLLEGE OF NATURAL SCIENCES

CHONNAM NATIONAL UNIVERSITY

KWANGJU 500-757

KOREA

E-mail: dosokim@chonnam.chonnam.ac.kr

YOUNG HO KIM

DEPARTMENT OF MATHEMATICS

COLLEGE OF NATURAL SCIENCES

KYUNGPOOK NATIONAL UNIVERSITY

TAEGU 702-701

KOREA

E-mail: yhkim@knu.ac.kr

(Received April 4, 2005)


