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Limit interchange for semigroup valued integrals

By I. FLEISCHER (Windsor)

Classically, the convergence in measure criterion for real-valued func-
tions,

λ{x : |tx− snx| ≥ ε} −→ 0 for every ε,

comes to being able to decompose the domain of integration D into com-
plementary subdomains Dn, on which sn is uniformly close to t, and D′

n,
of small λ-measure. Should sn be measurable, Dn could be further decom-
posed into finitely many subsets on all but one of which the oscillation of
sn was small; and then the uniform closeness to t would ensure the same
for it. If sn is integrable, the values of its induced set function, multiplied
by the measure of, and summed over, the sets of such small oscillation
will converge — e.g. under decompositions into finitely many subsets of
oscillation converging to zero with union expanding to fill out D almost
everywhere — to the integral of sn over D.

In recent years, successively more general definitions of abstract-valued
integrals and their associated limit interchange criteria have resulted in for-
mulations for semigroup-valued integrals: these are designed to integrate
(possibly multi-valued) point functions with values in a uniform space X
against measures taking values in a topological semigroup Y by means of a
composition (homomorphic in the second argument) X×Y −→ a uniform
semigroup Z.

Inasmuch as the integration process uses the point function only via
the set function it induces, it becomes feasible to carry through the for-
mulation exclusively for set functions.1 Once this is realized, it becomes
possible to dispense with the carrier set and to replace its system of subsets
by a set structured with only an abstract notion of disjointness. It is still
necessary to be able to specify in this context the “domains” “over” which
the integration is to take place — this is done by specifying the nets of
finite disjoint elements evaluation at which yields the approximating sums
whose convergence along these nets defines the integral. And, to cover the

1Not, however, for the Kurzweil integral, whose defining net depends on the arguments
of the point function as well as on those of the measure. For how this may be handled,
see [SS].
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diverse ways in which these approximating sums are required to converge
in the literature, the organization of the finite disjoint families into nets is
left unrestricted.

Definition of the integral

The functions τ to be integrated will be defined on a set S equipped
with a symmetric irreflexive relation “disjoint” and take values in a commu-
tative uniform monoid Z: this is a uniform space with a jointly uniformly
continuous addition and an identity denoted 0. Also, a net with values in
ΣS, the set of finite pairwise disjoint families in S, must be specified to
govern the approach of approximating sums to the integral; more gener-
ally the integral will be defined by taking limits along nets related to this
net. One obtains these nets by specifying in each finite family a subfamily.
Such a specification constitutes a domain D.

To define the integral of τ over D, extend τ from S to Στ : ΣS → Z
by additivity and set

∫
D

τ = limΣτ along the net specified by D.

Additivity of integral

Continuity of addition in Z ensures additivity in τ . There is also
additivity in D: Call a domain D′ a subdomain of D if, at each index in
the net, the subfamily specified for D′ is contained in that specified for D
— the passage from D to D′ will be called restriction. There is then a
complementary subdomain D′′ consisting of the elements in the families
of D not in D′. Since Στ sends complementary subfamilies into sums in
Z,

∫
D

τ =
∫
D′ τ +

∫
D′′ τ .

Existence (convergence) criterion — junior grade

Suppose Z is complete (as a uniform space) and for each of its en-
tourages W there is a function σ(W ) integrable over a subdomain D(W )
of D, such that (Στ, Σσ) ∈ W finally in (the net specified by) D(W ) and
such that restriction to D(W ) has graph sent finally (in D) by Στ into W
— then τ is integrable over D and

∫
D

τ = limW

∫
D(W )

σ(W ).
Because of the uniform continuity of addition in Z, the elements in

some neighbourhood of 0 translate every element into its W neighbourhood
— hence if Στ send the complementary subdomain of D(W ) finally into
this neighbourhood of 0, then it will send the graph of restriction into W .

The formulation can be made more comfortably in terms of “iterated
limit” filters [F]. Rather than say that (Στ, Σσ) ∈ W finally in D(W ),
form the filter D(W ):W with base

⋃{some final piece of D(W ):W ⊂ W0}
indexed by W0 and by elements in D(W ) for W ⊂ W0, and say that
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(Σσ(W ), Στ) converges along this filter; similarly, form the filter D(W )′ :
W with base

⋃ {some final piece of complement of D(W ) : W ⊂ W0} and
require Στ to converge to 0 along this filter. Somewhat more generally, let
Dn, n ∈ D, be any net of subdomains of D on which some σn, integrable
over Dn, has (Σσn, Στ) converging along the iterated filter Dn : D, while
Στ converges to 0 along D′

n : D, the iteration of the complementary filters
— then if Z is complete, τ is integrable over D with

∫
D

τ = lim
∫
Dn

σn.

Integration of a product

The setting is now elaborated by interposing a new set X between S
and Z and integrating functions t from S to X against functions λ from S
to ZX : these data provide a function τ from S to Z evaluated at an S ∈ S
by applying to the image, t(S) of S in X , the function which is the image,
λ(S) of S in ZX : the resulting function τ is denoted tλ.

Use of uniform structure on X to attain (Στ, Σσ) ∈ W finally

λ evaluated on a finite (disjoint) family in S yields a finite tuple in
ZX , thus a map from a finite power of X to the same power of Z; by
composing with addition in Z one obtains a map from Xn to Z, which will
be taken as the value of Σλ at this element of ΣS.

Now assume X a uniform space; a domain B is of final bounded semi-
variation if for every W entourage in Z there exist a U entourage in X
and a final piece of B each of whose elements is sent by Σλ to a function
whose square sends the Un into W . Then if s is within U of t on the S
occurring finally in B, one will have (Σ(tλ), Σ(sλ)) ∈ W finally in B.

Use of convergence notion on
⋃

n(ZX )n

to attain Στ (graph of restriction) ⊂ W

Boundedness in X will be defined in terms of a “convergence” notion
given in the set of finite tuples of ZX : Assuming that certain nets of
these tuples have been declared “convergent”, a subset B of X is declared
“bounded” if every such convergent net sends arbitrary elements drawn
from B into a net of tuples in Z whose sums converge to 0.

Now let the elements of S in a final piece of the complement of a
subdomain be sent by t into a bounded subset of X (i.e. t is finally bounded
on the complement) and let πλ — i.e. λ extended to the finite families in
ΣS so as to map into tuples of ZX — converge along the complement:
then Σ(tλ) converges to 0 (in Z) along the complement and so Σtλ (graph
of restriction) ⊂ W is attained finally.
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Existence (convergence) criterion—utility grade

Suppose Z is complete and there exists a net of functions sn, n ∈ D,
integrable against λ over subdomains Dn of D such that (sn, t) evaluated
on the S in Dn converges (for the entourage filter of X ) along Dn : D,
which is supposed of final bounded semivariation, and t is finally bounded
on D′

n : D along which πλ is to converge — then t is integrable against λ
over D and

∫
D

tλ = lim
∫
Dn

snλ.

An integrability criterion for the refinement domain

Declare S′ to be (strictly) contained in S ∈ S if the elements disjoint
from S′ properly contain those disjoint from S (this is transitive and ir-
reflexive) and let t have oscillation on S contained in U (entourage in X )
if its values at all such S′ are within U of its value at S. One refines a
finite disjoint family by replacing some of its S by maximal finite disjoint
families contained in S (i.e. such that no S′ contained in S is disjoint from
the replacing finite family). This is transitive and, when directed, defines
the refinement domain; if this is of final bounded semivariation then a t
whose oscillation converges under refinement will have its approximating
sums Cauchy in Z, hence be integrable if Z is complete.

Absolute Integrability

To have the mode of convergence in the criterion hereditary — i.e.
to have it pass from a domain D to a subdomain D′ — one will need
to split D′ with the Dn, thus to form the intersection domain D′ ∩Dn,
understood as the common part from each of the subfamilies of D′ and Dn
— and to have the final bounded semivariation as well as the abstractly
converging n-tuples in ZX closed under subtuples — thus to have a U
exist (for W ) also on each subdomain and convergence preserved when
converging tuples are reduced in any way to subtuples. When a common
U exists for all subdomains and the convergence is uniform in reduction
to subtuples — i.e. when with every convergent filten of tuples, the union
of all filters of reduced tuples is also convergent (rather than just each
of them individually — e.g. if the convergence is of neighbourhood type),
then the approach to the integral of t over subdomains of D is uniform in
the subdomain, provided that of the sn is uniform in subdomains of the
Dn. This uniformity may be described as “absolute integrability” cf. [M,
defs 3,14], [M’,p.61].
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Absolute continuity

A domain function with values in Z is “absolutely continuos” if it
converges to zero along every net of domains along whose iterated domain
πλ converges. A bounded absolutely integrable function has an absolutely
continuous indefinite integral. A net of domain functions is called “ter-
minally uniformly absolutely continuous” [M def.10] if its evaluation, on
every net of domains along whose iterated domain πλ converges, converges
to zero as a product net.

A Cauchy criterion

Let sn be a net of functions absolutely integrable on a common domain
D with terminally uniformly absolutely continuous indefinite integrals and
suppose there is a net of subdomains Dn such that (sn′ , sn) on the S in
Dn converges uniformly in n′ > n along Dn : D of final bounded semi-
variation while πλ converges along D′

n : D (a sort of Cauchy in measure)
— then

∫
D

snλ is Cauchy. Moreover, in the presence of uniformity of fi-
nal bound and tuple convergence under subtuple reduction (as described
above)

∫
D′ snλ will also be Cauchy and even uniformly in the subdomain

D′ (a sort of Cauchy in mean: [M def.15]).

Existence (Convergence) criterion for not necessarily bounded t

What is needed is to be able to approximate the integration domain
D∞ with a net of subdomains D, on each of which t is finally bounded,
in such a way that all integrals over D∞ can be obtained as limits of the
corresponding integrals over the D whenever these limits exist. Then it
would suffice to have a net sn, of functions absolutely integrable over the D
for which the limits exist, converge to t so as to have lim

∫
D

snλ =
∫
D

tλ
uniformly in D; and this would follow from the immediately preceding
Cauchy criterion and the previous utility grade convergence criterion, when
sn converges to t in the “in measure” sense of the latter and one has the
uniformity of final bound and subtuple reduction ensuring the uniformity
in D of convergence of the integrals in the former.
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