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Lattice-valued positive vector measures with given marginals

By SURJIT SINGH KHURANA (Iowa City)

Abstract. Suppose E is a Dedekind complete vector lattice, X1 and X2 are Haus-

dorff completely regular spaces, and M+
(o,t)(X1, E), M+

(o,t)(X2, E), M+
(o,t)(X1 × X2, E)

are E-valued tight measues on X1, X2, and X1×X2 respectively, in the context of order

convergence. Some Strassen type theorems are proved about these measures. Similar

results are proved about τ -smooth and Baire measures.

1. Introduction and notation

The celebrated Strassen theorem ([8]) has been the subject of investigations
by many authors ([3], [2], [4], [1]). In [1] the authors have considered the measures
spaces of positive lattice-valued measures when the countable additivity is defined
in terms of order convergence. They have established conditions for the existence
of positive lattice-valued measures having given marginals. In this paper we deal
with the similar matter when the measures are considered on completely regular
Hausdorff spaces.

All vector spaces are taken over reals. E, in this paper, is always assumed
to be Dedekind complete vector lattice. For a completely regular Hausdorff space
X, B(X) and B1(X) are the classes of Borel and Baire subsets of X, C(X)
(resp. Cb(X)) is the spaces of all real-valued, (resp. real-valued and bounded)
continuous functions on X and X∼ is the Stone–Cech compactification of X. For
an f ∈ Cb(X), f∼ is its unique continuous extension to X∼.
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Let G be a Dedekind complete vector lattice. G is said to be weakly σ-dis-
tributive ([13]) if whenever {vi,j : i = 1, 2, . . . , j = 1, 2, . . . } is an order bounded
subset of G with vi,j+1 ≤ vi,j for each i and for each j then

∞∨

i=1

∞∧

j=1

vi,j =
∧

φ∈NN

∞∨

i=1

vi,φ(i).

G is said to be weakly (σ,∞)-distributive if for any infinite set L and the set N of
natural numbers, we have, for any order bounded subset {vn,λ : n ∈ N, λ ∈ L},

∨

n∈N

∧

λ∈L

vn,λ =
∧ { ∨

n∈N

vn,ϕ(n) : ϕ ∈ LN

}
.

(The definition of ordinary weakly (σ,∞)-distributivity is given in ([1]); the two
are the same in case G is Dedekind complete.)

For a compact Hausdorff space X, let µ : B(X) → G+ be a countably additive
(conutable additivity in the order convergence of G) Borel measure; then µ is said
to be quasi-regular if for any open V ⊂X, µ(V )= sup{µ(C) : C compact, C ⊂V }.
Integration with respect to these measures is taken in the sense of ([9], [12]).
There is 1-1 correspondence between these quasi-regular, positive, G-valued, Borel
measures on X and positive linear mappings µ : C(X) → G ([9], [11], [5]);
M+

o (X, G) will denote the set of all these measures.
Now suppose that X is a completely regular Hausdorff space. A positive

countably additive Borel measure µ : B(X) → G+ is said to be tight if for
any open V ⊂X, µ(V ) = sup{µ(C) : C compact, C ⊂ V } ([6], p. 207). This
measure gives a positive linear mapping µ∼ : C(X∼) → G, µ∼(f) = µ(f|X);
M+

(o,t)(X, G) will denote the set of all these tight measures. If µ : B(X) → G+

is a countably additive Borel measure, then µ is said to be τ -smooth if for any
increasing net {Uα} of open subsets of X µ(∪Uα) = sup µ(Uα) (some properties
of these measures are given in [6], p. 207). Any such measure gives a positive
linear mapping µ∼ : C(X∼) → G, µ∼(f) = µ(f|X); M+

(o,τ)(X, G) will denote the
set of all these τ -smooth measures. If µ : B1(X) → G+ is a countably additive
Baire measure then, as in the case of τ -smooth measure, we get µ∼ : C(X∼) → G,
µ∼(f) = µ(f|X); M+

(o,σ)(X, G) will denote the set of all these Baire measures.
For i = 1, 2, let Xi be compact Hausdorff spaces and λ ∈ M+

o (X1 ×X2, E).
For i = 1, 2. We get λ(i) ∈ M+

o (Xi, E), defined by λ(1)(B) = λ(B × X2) and
λ(2)(B) = λ(X1 × B)) for the respective Borel sets B. This is the same as
λ(1)(f1) = λ(f1 ⊗ 1) and λ(2)(f2) = λ(1 ⊗ f2) for fi ∈ C(Xi). λ(1) and λ(2) will
be called the marginals of λ. If Xi are completely regular Hausdorff spaces then,
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for a λ ∈ M+
o ((X1 ×X2)∼, E), the marginals λ(i) ∈ M+

o (X∼
i , E), are defined by

λ(1)(f1) = λ(f1 ⊗ 1) and λ(2)(f2) = λ(1⊗ f2) for fi ∈ C(X∼
i ).

For completely regular Hausdorff spaces X1, X2, let H = {fg : f ∈ Cb(X1),
g ∈ Cb(X2)}; the closed subspace generated by H in (Cb(X1×X2), ‖ . ‖) is denoted
by Hs. It is easily verified that Hs = (C(X∼

1 ×X∼
2 ))|(X1×X2). The zero-set of Hs

are the closed subsets of (X1 × X2) of the form {f−1(0) : f ∈ Hs}. This result
about H will be used in the paper.

2. Main results

We will need the following theorem which follows from the known results.

Theorem 1. For a completely regular Hausdorff space X, let φ : Cb(X) → E

be a positive linear map. Let ν be the quasi-regular Borel measure on X∼ given

by ν(f) = φ(f|X), for each f ∈ C(X∼).

(a) φ is representable by a unique, positive, Borel, E-valued, tight measure

on X if and only if φ(1) = ∨{ν(C) : C compact and C ⊂ X}.
(b) If E is weakly (σ,∞)-distributive and ν(C) = 0 for any compact C ⊂

X∼ \X, then φ is representable by a unique, positive, Borel, E-valued, τ -smooth

measure on X.

(c) If If E is weakly σ-distributive and ν(C) = 0 for any compact Gδ set

C ⊂ X∼ \ X, then φ is representable by a unique, positive, E-valued, Baire

measure on X.

Proof. (a) This is proved in ([6], Proposition 10, p. 210). In this case we
will say that ν ∈ M+

(o,t)(X, E).
(b) This follows from ([13], Lemma 2.1) and ([6], Corollary 7, p. 208). In this

case we will say that ν ∈ M+
(o,τ)(X, E).

(c) This follows from([11], Theorem N) and ([6], Corollary 3, p. 206). In this
case we will say that ν ∈ M+

(o,σ)(X, E). ¤

Theorem 2. Let X1 and X2 be Hausdorff completely regular spaces. For

i = 1, 2, let µi ∈ M+
o (X∼

i , E) be such that µi(X∼
i ) = v ∈E; also take a γ ∈ E,

0 < γ ≤ v. Put W = (X1 × X2)∼ or W = X∼
1 × X∼

2 (the theorem will work

for both) and take a non-empty closed subset S of W . Then there exists a λ ∈
M+

o (W,E) such that λ(S) ≥ γ and λ(i) = µi, i = 1, 2, if and only if for any

fi ∈ Cb(X∼
i ), fi ≥ 0 (i = 1, 2), and f1(x1) + f2(x2) ≥ 1 on S, we have µ1(f1) +

µ2(f2) ≥ γ.
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Proof. The condition is trivially necessary.
Let F = {f ∈ C(W ) : f = f1 + f2, fi ∈ C(X∼

i ), i = 1, 2} (note that
C(X∼

1 × X∼
2 ) can be considered a subspace of C(W ). F is a majorizing ([7],

p. 47) subspace of C(W ). Define T0 : F → E, T0(f1 + f2) = µ1(f1) + µ2(f2). T0

is a well-defined positive linear operator on F . Define θ : C(W ) → E, θ(f) =
inf{T0(g); g ∈ F, g ≥ f}. It is easily verified that θ is monotone and sublinear
and θ(f) = T0(f), ∀f ∈ F ([7], p. 47, Corollary 1.5.9). Let K = {f ∈ C(W ),
f ≥ 0, f|S ≥ 1}. K is convex. Define τ : K → E, τ(f) = γ, ∀f ∈ K. It is
a obvious that τ is concave and τ(f) ≤ θ(f) for every f ∈ K. As done in ([7],
Lemma 1.51, p. 44), define ρ : C(W ) → E, ρ(f) = inf{θ(f + tk) − tτ(k) : t ∈
[0,∞), k ∈ K}. By ([7], Lemma 1.51, p. 44), ρ is sublinear and ρ ≤ θ. We
claim that T0 ≤ ρ on F: fix an f ∈ F and take a k ∈ K and a t ∈ (0,∞). For
any g ∈ F with g ≥ f + tk we have g−f

t ≥ k and so T0( g−f
t ) ≥ γ. This means

T0(g)− tτ(k) ≥ T0(f), ∀t ∈ [0,∞). This proves the claim.
So the mapping T0 : F → E satisfies the condition T0 ≤ ρ. By ([7], Theo-

rem 2.5.4, p. 45), it can be extended to a linear mappling λ : C(W ) → E such
that λ ≤ ρ. By ([7] Lemma 1.51., p. 44), this implies that λ ≤ θ and, on K, λ ≥ τ .
Now we will prove that λ is positive. Take an f ≤ 0. Now λ(f) ≤ θ(f) ≤ θ(0) = 0
(note that θ is monotone). This proves that λ is positive. Thus λ is an E-valued
quasi-regular Borel measure on the compact Hausdorff space W ; it is easy to see
that its marginals are µi (i = 1, 2). To prove λ(S) ≥ γ, note λ ≥ τ on K.

Now we prove the existence of measures with given marginals. First we
consider tight measures.

Theorem 3. Suppose X1 and X2 are Hausdorff completely regular spaces

and λ ∈ M+
o ((X1 ×X2)∼, E).

(a) If the marginals of λ are in M+
(o,t)(Xi, E) (i = 1, 2), then λ ∈ M+

(o,t)(X1×
X2, E).

(b) Suppose, for i = 1, 2, µi ∈ M+
(o,t)(Xi, E) and µi(Xi) = e ∈ E. Take a

γ ∈ E, 0 < γ ≤ e and a non-void closed subset S ⊂ (X1 × X2). There exists a

λ ∈ M+
(o,t)(X1 × X2, E) with marginals µ1 and µ2 and λ(S) ≥ γ if and only if

for any fi ∈ Cb(X∼
i ), fi ≥ 0 (i = 1, 2), and f1(x1) + f2(x2) ≥ 1 on S, we have

µ1(f1) + µ2(f2) ≥ γ.

Proof. (a) For i = 1, 2 let µi ∈ M+
(o,t)(Xi, E) be the marginals of λ. Let

φ : (X1×X2)∼ → (X∼
1 ×X∼

2 ) be the extension of the identity mapping X1×X2 →
(X∼

1 × X∼
2 ). Because of this, C(X∼

1 × X∼
2 ) can be considered a subspace of

C((X1×X2)∼). For i = 1, 2 take an increasing net {Ci
α} of compact subsets of Xi

such that µi(Xi \Ci
α) ≤ uα with uα ↓ 0. Fix α and take fi ∈ Cb(Xi), 0 ≤ fi ≤ 1,
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fi ≥ χCi
α
. From 1−f1f2 = 1−f1+f1(1−f2), we have 1−f∼1 f∼2 ≤ (1−f∼1 )+(1−f∼2 )

on (X1×X2)∼. This means λ(1−f∼1 f∼2 ) ≤ µ1(X1 \C1
α)+µ2(X2 \C2

α) ≤ uα +uα.
Because of the regularity of λ, taking limits over f∼i as they decrease to χCi

α
, we

get λ((X1×X2)∼ \C1
α×C2

α) ≤ uα +uα. Taking the order-limit over α and using
Theorem 1(a), we prove that λ ∈ M+

o,t(X1 ×X2, E).
(b) The condition is trivially necessary. Now, for i = 1, 2, µ∼i ∈ M+

o (X∼
i , E).

Let S̄ be the closure of S in (X1 ×X2)∼. Using the given hypothesis and Theo-
rem 2, we get a λ∼ ∈ M+

o ((X1×X2)∼, E) such that λ∼(S̄) ≥ γ and its marginals
are µ∼i (i = 1, 2). By (a) λ∼ arises from a λ ∈ M+

(o,t)(X1 × X2, E). Take a
net {fα} ⊂ Cb(X1 × X2), fα ↓ χS ; this means f∼α ↓ and lim f∼α ≥ χS̄ . Now
λ(S) = lim λ(fα) = λ∼(f∼α ) ≥ λ∼(S̄) ≥ γ. This proves the result. ¤

Now we consider τ -smooth measures.

Theorem 4. Suppose X1 and X2 are Hausdorff completely regular spaces,

E is weakly (σ,∞)-distributive and λ ∈ M+
o ((X1 ×X2)∼, E).

(a) If λ(1) ∈ M+
(o,t)(X1, E) and λ(2) ∈ M+

(o,τ)(X2, E) then λ ∈ M+
(o,τ)(X1 ×

X2, E).

(b) Suppose, µ1 ∈ M+
(o,t)(Xi, E), µ2 ∈ M+

(o,τ)(Xi, E) and, for i = 1, 2,

µi(Xi) = e ∈ E. Take a γ ∈ E, 0 < γ ≤ e and a non-void closed subset

S ⊂ (X1 × X2). There exists a λ ∈ M+
(o,τ)(X1 × X2, E) with marginals µ1 and

µ2 and λ(S) ≥ γ if and only if for any fi ∈ Cb(Xi), fi ≥ 0 (i = 1, 2), and

f1(x1) + f2(x2) ≥ 1 on S, we have µ1(f1) + µ2(f2) ≥ γ.

Proof. Proof. (a) Q = C(X∼
1 × X∼

2 ) can be considered a subspace of
C((X1 × X2)∼). Taking ν = λ|Q, we get ν ∈ M+

o (X∼
1 × X̃2, E). Now, for

i = 1, 2, λ(i) ∈ M+
o (X∼

i ) and we have λ(1)(f) = ν(f ⊗ 1), f ∈ C(X∼
1 ), and

λ(2)(f) = ν(1 ⊗ f), f ∈ C(X∼
2 ). This means for any compact Bi in X∼

i , i =
1, 2, ν(B1 × X∼

2 ) = λ(1)(B1 ∩ X1) and ν(X∼
1 × B2) = λ(2)(B2 ∩ X2). Take an

increasing net {Cα} of compact subsets of X1 such that ν((X∼
1 \ Cα)×X∼

2 ) ↓ 0
(here we are very much using that λ(1) ∈ M+

(o,t)(X1, E)). First we prove that

for any compact K of (X∼
1 × X∼

2 ), K ⊂ (X∼
1 × (X̃2 \ X2)), ν(K) = 0. Let

ψ1 : X∼
1 ×X∼

2 → X∼
1 and ψ2 : X∼

1 ×X∼
2 → X∼

2 be the canonical mappings; they
are continuous. Ki = ψi(K) are compact subsets of X∼

i , i = 1, 2, K ⊂ K1 ×K2

and K2 ⊂ (X̃2 \ X2). Since µ2 is τ -smooth, ν(X∼
1 × K2) = 0. This means

ν(K1 × K2) = 0 and so ν(K) = 0, proving the result. Now take any compact
K ⊂ (X∼

1 × X̃2) \ (X1 ×X2). This means K ∩ (Cα ×X∼
2 ) ⊂ (X∼

1 × (X̃2 \X2)),
for all α and so ν(K ∩ (Cα × X∼

2 )) = 0, for all α. Now ν(K) = ν(K ∩ (Cα ×
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X̃2)) + ν(K ∩ ((X̃1 \ Cα)× X̃2)) ≤ ν((X̃1 \ Cα)× X̃2) = λ(1)(X∼
1 \ Cα). Taking

limit over α and using the tightness property of µ1, we get ν(K) = 0.
Let X = (X1×X2)∼. This means λ ∈ M+

o (X, E). Let φ : X → (X∼
1 ×X̃2) be

the unique continuous extension of the identity mapping (X1×X2) → (X∼
1 ×X∼

2 );
φ maps X \ (X1 ×X2) onto (X∼

1 ×X∼
2 ) \ (X1 ×X2). It is easily verified that for

any f ∈ C(X∼
1 ×X∼

2 ), ν(f) = λ(f ◦φ). By regularity, we get ν(K) = λ(φ−1(K)),
for any compact K ⊂ (X∼

1 ×X∼
2 ). Take a compact C ⊂ X \ (X1 ×X2). Then

C1 = φ−1(φ(C)) is compact and contains C, and φ(C) is disjoint from (X1×X2).
Now λ(C) ≤ λ(C1) = ν(φ(C)) = 0. By Theorem 1(b), λ ∈ M+

(o,τ)(X1×X2). This
proves the result.

(b) The condition is trivially necessary. Now, for i = 1, 2, define µ∼i (f) =
µi(f|Xi

), ∀f ∈ C(X∼
i ); µ∼i ∈ M+

o (X∼
i , E). Let S̄ be the closure of S in (X1 ×

X2)∼. Using the given hypothesis and Theorem 2, we get a λ∼ ∈ M+
o ((X1 ×

X2)∼, E) such that λ∼(S̄) ≥ γ and its marginals are µ∼i (i = 1, 2). By (a) λ∼

arises from a λ ∈ M+
(o,τ)(X1 ×X2, E). Take a net {fα} ⊂ Cb(X1 ×X2), fα ↓ χS ;

this means fα∼ ↓. Proceeding as in part (b) Theorem 3, we get λ(S) ≥ γ. This
proves the result. ¤

Before the next theorem we introduce some new notations. Let Baire(H)
be the smallest σ-algebra in X1 × X2 relative to which all functions in H are
measurable. It is a simple verification that Baire(H) = Baire(Hs). Also
Baire(H) = (σ-algebra of Baire subsets of X̃1 × X̃2) ∩ (X1 ×X2).
Baire(H) ⊃ {B1 ×B2 : B1 a Baire set in X1, B2 a Baire set in X2}.

Theorem 5. Suppose X1 and X2 are Hausdorff completely regular spaces,

E is weakly σ-distributive and λ ∈ M+
o (X∼

1 ×X∼
2 , E).

(a) If λ(1) ∈ M+
(o,t)(X1, E) and λ(2) ∈ M+

(o,σ)(X2, E) then λ can be considered

as λ : Baire(H) → E and is countably additive.

(b) Suppose, µ1 ∈ M+
(o,t)(Xi, E), µ2 ∈ M+

(o,σ)(Xi, E) and, for i = 1, 2,

µi(Xi) = e ∈ E. Take a γ ∈ E, 0 < γ ≤ e and a non-void Hs-zero-set

S ⊂ (X1 × X2). There exists a a countably additive λ : Baire(H) → E with

marginals µ1 and µ2 and λ(S) ≥ γ if and only if for any fi ∈ Cb(Xi), fi ≥ 0
(i = 1, 2), and f1(x1) + f2(x2) ≥ 1 on S, we have µ1(f1) + µ2(f2) ≥ γ.

Proof. (a) We have λ(1)(f) = λ(f⊗1), f ∈ C(X∼
1 ), and λ(2)(f) = λ(1⊗f),

f ∈ C(X∼
2 ). This means for any compact Bi in X∼

i , i = 1, 2, λ(B1 × X∼
2 ) =

λ(1)(B1 ∩X1) and λ(X∼
1 ×B2) = λ(2)(B2 ∩X2). Take an increasing net {Cα} of

compact subsets of X1 such that λ((X∼
1 \Cα)×X∼

2 ) ↓ 0 (here we are very much
using that λ(1) ∈ M+

(o,t)(X1, E)). First we prove that for any compact Gδ-set Z ⊂
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(X∼
1 × (X̃2 \X2)), λ(Z) = 0. Let ψ1 : X∼

1 ×X∼
2 → X∼

1 and ψ2 : X∼
1 ×X∼

2 → X∼
2

be the canonical mappings; they are continuous and open. This means ψ2(Z) is a
compact Gδ subset of (X̃2\X2). Now λ(Z) ≤ λ(X∼

1 ×(ψ2(Z)) = 0 and so λ(Z) = 0
(note λ(2) ∈ M+

(o,σ)(X2, E)). Fix any compact Gδ-set Z ⊂ (X∼
1 × X̃2)\ (X1×X2)

and take a compact C ⊂ X1. This means Z ∩ (C×X∼
2 ) ⊂ (X∼

1 × (X∼
2 \X2)) and

ψ2(Z ∩ (C× X̃2)) is compact Gδ-set in (X∼
2 \X2). Thus λ(Z ∩ (C×X∼

2 ) = 0, for
every compact C ⊂ X1. Now λ(Z) = λ(Z∩(C×X∼

2 ))+λ(Z∩((X∼
1 \C)×X∼

2 )) ≤
λ((X∼

1 \C)×X∼
2 ) = λ(1)(X∼

1 \C). Taking sup over C as C increases over compact
subsets of X1 and using the tightness property of λ(1), we get λ(Z) = 0. Since
E is a weakly σ-distributive vector lattice, we get λ(B) = 0 for every Baire set
B ⊂ X̃1 × X̃2 \ (X1 ×X2) ([11]).

Now it is easy to define λ : Baire(H) → E, λ(B) = λ(B0), B0 being any
Baire set in X∼

1 ×X∼
2 such that (X1 ×X2) ∩B0 = B; it is easily verified that it

is well-defined and countably additive. Other things are easy to verify.

(b) The condition is trivially necessary. Now, for i = 1, 2, define µ∼i (f) =
µi(f|Xi

), ∀f ∈ C(X∼
i ); µ∼i ∈ M+

o (X∼
i , E). Let S̄ be the closure of S in X∼

1 ×X∼
2 .

Using the given hypothesis and Theorem 2, we get a λ∼ ∈ M+
o ((X∼

1 × X∼
2 , E)

such that λ∼(S̄) ≥ γ and its marginals are µ∼i (i = 1, 2). By (a) λ∼ arises from
the countably additive λ : Baire(H) → E, λ(B) = λ(B0), B0 being any Baire
set in X∼

1 × X̃2 such that (X1 ×X2) ∩B0 = B.
Take a sequence {fn} ⊂ Hs, fn ↓ χS ; this means f∼n ≥ χS̄ , ∀n and f∼n ↓.

Now λ(S) = lim λ(fn) = lim λ∼(f∼n ) ≥ λ∼(S̄) ≥ γ. This proves the result. ¤

We are very thankful to the referee for making some very useful suggestions
and also pointing out some typographical errors; this has improved the paper.
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