Lattice-valued positive vector measures with given marginals

By SURJIT SINGH KHURANA (Iowa City)

Abstract

Suppose E is a Dedekind complete vector lattice, X_{1} and X_{2} are Hausdorff completely regular spaces, and $M_{(o, t)}^{+}\left(X_{1}, E\right), M_{(o, t)}^{+}\left(X_{2}, E\right), M_{(o, t)}^{+}\left(X_{1} \times X_{2}, E\right)$ are E-valued tight measues on X_{1}, X_{2}, and $X_{1} \times X_{2}$ respectively, in the context of order convergence. Some Strassen type theorems are proved about these measures. Similar results are proved about τ-smooth and Baire measures.

1. Introduction and notation

The celebrated Strassen theorem ([8]) has been the subject of investigations by many authors ([3], [2], [4], [1]). In [1] the authors have considered the measures spaces of positive lattice-valued measures when the countable additivity is defined in terms of order convergence. They have established conditions for the existence of positive lattice-valued measures having given marginals. In this paper we deal with the similar matter when the measures are considered on completely regular Hausdorff spaces.

All vector spaces are taken over reals. E, in this paper, is always assumed to be Dedekind complete vector lattice. For a completely regular Hausdorff space $X, \mathcal{B}(X)$ and $\mathcal{B}_{1}(X)$ are the classes of Borel and Baire subsets of $X, C(X)$ (resp. $\left.C_{b}(X)\right)$ is the spaces of all real-valued, (resp. real-valued and bounded) continuous functions on X and X^{\sim} is the Stone-Cech compactification of X. For an $f \in C_{b}(X), f^{\sim}$ is its unique continuous extension to X^{\sim}.

[^0]Let G be a Dedekind complete vector lattice. G is said to be weakly σ-distributive ([13]) if whenever $\left\{v_{i, j}: i=1,2, \ldots, j=1,2, \ldots\right\}$ is an order bounded subset of G with $v_{i, j+1} \leq v_{i, j}$ for each i and for each j then

$$
\bigvee_{i=1}^{\infty} \bigwedge_{j=1}^{\infty} v_{i, j}=\bigwedge_{\phi \in N^{N}} \bigvee_{i=1}^{\infty} v_{i, \phi(i)}
$$

G is said to be weakly (σ, ∞)-distributive if for any infinite set L and the set N of natural numbers, we have, for any order bounded subset $\left\{v_{n, \lambda}: n \in N, \lambda \in L\right\}$,

$$
\bigvee_{n \in N} \bigwedge_{\lambda \in L} v_{n, \lambda}=\bigwedge\left\{\bigvee_{n \in N} v_{n, \varphi(n)}: \varphi \in L^{N}\right\}
$$

(The definition of ordinary weakly (σ, ∞)-distributivity is given in ([1]); the two are the same in case G is Dedekind complete.)

For a compact Hausdorff space X, let $\mu: \mathcal{B}(X) \rightarrow G^{+}$be a countably additive (conutable additivity in the order convergence of G) Borel measure; then μ is said to be quasi-regular if for any open $V \subset X, \mu(V)=\sup \{\mu(C): C$ compact, $C \subset V\}$. Integration with respect to these measures is taken in the sense of ([9], [12]). There is 1-1 correspondence between these quasi-regular, positive, G-valued, Borel measures on X and positive linear mappings $\mu: C(X) \rightarrow G$ ([9], [11], [5]); $M_{o}^{+}(X, G)$ will denote the set of all these measures.

Now suppose that X is a completely regular Hausdorff space. A positive countably additive Borel measure $\mu: \mathcal{B}(X) \rightarrow G^{+}$is said to be tight if for any open $V \subset X, \mu(V)=\sup \{\mu(C): C$ compact, $C \subset V\}$ ([6], p. 207). This measure gives a positive linear mapping $\mu^{\sim}: C\left(X^{\sim}\right) \rightarrow G, \mu^{\sim}(f)=\mu\left(f_{\mid X}\right)$; $M_{(o, t)}^{+}(X, G)$ will denote the set of all these tight measures. If $\mu: \mathcal{B}(X) \rightarrow G^{+}$ is a countably additive Borel measure, then μ is said to be τ-smooth if for any increasing net $\left\{U_{\alpha}\right\}$ of open subsets of $X \mu\left(\cup U_{\alpha}\right)=\sup \mu\left(U_{\alpha}\right)$ (some properties of these measures are given in [6], p. 207). Any such measure gives a positive linear mapping $\mu^{\sim}: C\left(X^{\sim}\right) \rightarrow G, \mu^{\sim}(f)=\mu\left(f_{\mid X}\right) ; M_{(o, \tau)}^{+}(X, G)$ will denote the set of all these τ-smooth measures. If $\mu: \mathcal{B}_{1}(X) \rightarrow G^{+}$is a countably additive Baire measure then, as in the case of τ-smooth measure, we get $\mu^{\sim}: C\left(X^{\sim}\right) \rightarrow G$, $\mu^{\sim}(f)=\mu\left(f_{\mid X}\right) ; M_{(o, \sigma)}^{+}(X, G)$ will denote the set of all these Baire measures.

For $i=1,2$, let X_{i} be compact Hausdorff spaces and $\lambda \in M_{o}^{+}\left(X_{1} \times X_{2}, E\right)$. For $i=1,2$. We get $\lambda^{(i)} \in M_{o}^{+}\left(X_{i}, E\right)$, defined by $\lambda^{(1)}(B)=\lambda\left(B \times X_{2}\right)$ and $\left.\lambda^{(2)}(B)=\lambda\left(X_{1} \times B\right)\right)$ for the respective Borel sets B. This is the same as $\lambda^{(1)}\left(f_{1}\right)=\lambda\left(f_{1} \otimes 1\right)$ and $\lambda^{(2)}\left(f_{2}\right)=\lambda\left(1 \otimes f_{2}\right)$ for $f_{i} \in C\left(X_{i}\right) . \lambda^{(1)}$ and $\lambda^{(2)}$ will be called the marginals of λ. If X_{i} are completely regular Hausdorff spaces then,
for a $\lambda \in M_{o}^{+}\left(\left(X_{1} \times X_{2}\right)^{\sim}, E\right)$, the marginals $\lambda^{(i)} \in M_{o}^{+}\left(X_{i}^{\sim}, E\right)$, are defined by $\lambda^{(1)}\left(f_{1}\right)=\lambda\left(f_{1} \otimes 1\right)$ and $\lambda^{(2)}\left(f_{2}\right)=\lambda\left(1 \otimes f_{2}\right)$ for $f_{i} \in C\left(X_{i}^{\sim}\right)$.

For completely regular Hausdorff spaces X_{1}, X_{2}, let $H=\left\{f g: f \in C_{b}\left(X_{1}\right)\right.$, $\left.g \in C_{b}\left(X_{2}\right)\right\}$; the closed subspace generated by H in $\left(C_{b}\left(X_{1} \times X_{2}\right),\|\|.\right)$ is denoted by H_{s}. It is easily verified that $H_{s}=\left(C\left(X_{1}^{\sim} \times X_{2}^{\sim}\right)\right)_{\mid\left(X_{1} \times X_{2}\right)}$. The zero-set of H_{s} are the closed subsets of $\left(X_{1} \times X_{2}\right)$ of the form $\left\{f^{-1}(0): f \in H_{s}\right\}$. This result about H will be used in the paper.

2. Main results

We will need the following theorem which follows from the known results.
Theorem 1. For a completely regular Hausdorff space X, let $\phi: C_{b}(X) \rightarrow E$ be a positive linear map. Let ν be the quasi-regular Borel measure on X^{\sim} given by $\nu(f)=\phi\left(f_{\mid X}\right)$, for each $f \in C\left(X^{\sim}\right)$.
(a) ϕ is representable by a unique, positive, Borel, E-valued, tight measure on X if and only if $\phi(1)=\vee\{\nu(C): C$ compact and $C \subset X\}$.
(b) If E is weakly (σ, ∞)-distributive and $\nu(C)=0$ for any compact $C \subset$ $X^{\sim} \backslash X$, then ϕ is representable by a unique, positive, Borel, E-valued, τ-smooth measure on X.
(c) If If E is weakly σ-distributive and $\nu(C)=0$ for any compact G_{δ} set $C \subset X^{\sim} \backslash X$, then ϕ is representable by a unique, positive, E-valued, Baire measure on X.

Proof. (a) This is proved in ([6], Proposition 10, p. 210). In this case we will say that $\nu \in M_{(o, t)}^{+}(X, E)$.
(b) This follows from ([13], Lemma 2.1) and ([6], Corollary 7, p. 208). In this case we will say that $\nu \in M_{(o, \tau)}^{+}(X, E)$.
(c) This follows from ([11], Theorem N) and ([6], Corollary 3, p. 206). In this case we will say that $\nu \in M_{(o, \sigma)}^{+}(X, E)$.

Theorem 2. Let X_{1} and X_{2} be Hausdorff completely regular spaces. For $i=1,2$, let $\mu_{i} \in M_{o}^{+}\left(X_{i}^{\sim}, E\right)$ be such that $\mu_{i}\left(X_{i}^{\sim}\right)=v \in E$; also take a $\gamma \in E$, $0<\gamma \leq v$. Put $W=\left(X_{1} \times X_{2}\right)^{\sim}$ or $W=X_{1}^{\sim} \times X_{2}^{\sim}$ (the theorem will work for both) and take a non-empty closed subset S of W. Then there exists a $\lambda \in$ $M_{o}^{+}(W, E)$ such that $\lambda(S) \geq \gamma$ and $\lambda^{(i)}=\mu_{i}, i=1,2$, if and only if for any $f_{i} \in C_{b}\left(X_{i}^{\sim}\right), f_{i} \geq 0(i=1,2)$, and $f_{1}\left(x_{1}\right)+f_{2}\left(x_{2}\right) \geq 1$ on S, we have $\mu_{1}\left(f_{1}\right)+$ $\mu_{2}\left(f_{2}\right) \geq \gamma$.

Proof. The condition is trivially necessary.
Let $F=\left\{f \in C(W): f=f_{1}+f_{2}, f_{i} \in C\left(X_{i}^{\sim}\right), i=1,2\right\}$ (note that $C\left(X_{1}^{\sim} \times X_{2}^{\sim}\right)$ can be considered a subspace of $C(W) . \quad F$ is a majorizing ([7], p. 47) subspace of $C(W)$. Define $T_{0}: F \rightarrow E, T_{0}\left(f_{1}+f_{2}\right)=\mu_{1}\left(f_{1}\right)+\mu_{2}\left(f_{2}\right) . T_{0}$ is a well-defined positive linear operator on F. Define $\theta: C(W) \rightarrow E, \theta(f)=$ $\inf \left\{T_{0}(g) ; g \in F, g \geq f\right\}$. It is easily verified that θ is monotone and sublinear and $\theta(f)=T_{0}(f), \forall f \in F$ ([7], p. 47, Corollary 1.5.9). Let $K=\{f \in C(W)$, $\left.f \geq 0, f_{\mid S} \geq 1\right\}$. K is convex. Define $\tau: K \rightarrow E, \tau(f)=\gamma, \forall f \in K$. It is a obvious that τ is concave and $\tau(f) \leq \theta(f)$ for every $f \in K$. As done in ([7], Lemma 1.51, p. 44), define $\rho: C(W) \rightarrow E, \rho(f)=\inf \{\theta(f+t k)-t \tau(k): t \in$ $[0, \infty), k \in K\}$. By ([7], Lemma 1.51, p. 44), ρ is sublinear and $\rho \leq \theta$. We claim that $T_{0} \leq \rho$ on F: fix an $f \in F$ and take a $k \in K$ and a $t \in(0, \infty)$. For any $g \in F$ with $g \geq f+t k$ we have $\frac{g-f}{t} \geq k$ and so $T_{0}\left(\frac{g-f}{t}\right) \geq \gamma$. This means $T_{0}(g)-t \tau(k) \geq T_{0}(f), \forall t \in[0, \infty)$. This proves the claim.

So the mapping $T_{0}: F \rightarrow E$ satisfies the condition $T_{0} \leq \rho$. By ([7], Theorem 2.5.4, p. 45), it can be extended to a linear mappling $\lambda: C(W) \rightarrow E$ such that $\lambda \leq \rho$. By ([7] Lemma 1.51., p. 44), this implies that $\lambda \leq \theta$ and, on $\mathrm{K}, \lambda \geq \tau$. Now we will prove that λ is positive. Take an $f \leq 0$. Now $\lambda(f) \leq \theta(f) \leq \theta(0)=0$ (note that θ is monotone). This proves that λ is positive. Thus λ is an E-valued quasi-regular Borel measure on the compact Hausdorff space W; it is easy to see that its marginals are $\mu_{i}(i=1,2)$. To prove $\lambda(S) \geq \gamma$, note $\lambda \geq \tau$ on K.

Now we prove the existence of measures with given marginals. First we consider tight measures.

Theorem 3. Suppose X_{1} and X_{2} are Hausdorff completely regular spaces and $\lambda \in M_{o}^{+}\left(\left(X_{1} \times X_{2}\right)^{\sim}, E\right)$.
(a) If the marginals of λ are in $M_{(o, t)}^{+}\left(X_{i}, E\right)(i=1,2)$, then $\lambda \in M_{(o, t)}^{+}\left(X_{1} \times\right.$ $\left.X_{2}, E\right)$.
(b) Suppose, for $i=1,2, \mu_{i} \in M_{(o, t)}^{+}\left(X_{i}, E\right)$ and $\mu_{i}\left(X_{i}\right)=e \in E$. Take a $\gamma \in E, 0<\gamma \leq e$ and a non-void closed subset $S \subset\left(X_{1} \times X_{2}\right)$. There exists a $\lambda \in M_{(o, t)}^{+}\left(X_{1} \times X_{2}, E\right)$ with marginals μ_{1} and μ_{2} and $\lambda(S) \geq \gamma$ if and only if for any $f_{i} \in C_{b}\left(X_{i}^{\sim}\right), f_{i} \geq 0(i=1,2)$, and $f_{1}\left(x_{1}\right)+f_{2}\left(x_{2}\right) \geq 1$ on S, we have $\mu_{1}\left(f_{1}\right)+\mu_{2}\left(f_{2}\right) \geq \gamma$.

Proof. (a) For $i=1,2$ let $\mu_{i} \in M_{(o, t)}^{+}\left(X_{i}, E\right)$ be the marginals of λ. Let $\phi:\left(X_{1} \times X_{2}\right)^{\sim} \rightarrow\left(X_{1}^{\sim} \times X_{2}^{\sim}\right)$ be the extension of the identity mapping $X_{1} \times X_{2} \rightarrow$ $\left(X_{1}^{\sim} \times X_{2}^{\sim}\right)$. Because of this, $C\left(X_{1}^{\sim} \times X_{2}^{\sim}\right)$ can be considered a subspace of $C\left(\left(X_{1} \times X_{2}\right)^{\sim}\right)$. For $i=1,2$ take an increasing net $\left\{C_{\alpha}^{i}\right\}$ of compact subsets of X_{i} such that $\mu_{i}\left(X_{i} \backslash C_{\alpha}^{i}\right) \leq u_{\alpha}$ with $u_{\alpha} \downarrow 0$. Fix α and take $f_{i} \in C_{b}\left(X_{i}\right), 0 \leq f_{i} \leq 1$,
$f_{i} \geq \chi_{C_{\alpha}^{i}}$. From $1-f_{1} f_{2}=1-f_{1}+f_{1}\left(1-f_{2}\right)$, we have $1-f_{1}^{\sim} f_{2}^{\sim} \leq\left(1-f_{1}^{\sim}\right)+\left(1-f_{2}^{\sim}\right)$ on $\left(X_{1} \times X_{2}\right)^{\sim}$. This means $\lambda\left(1-f_{1}^{\sim} f_{2}^{\sim}\right) \leq \mu_{1}\left(X_{1} \backslash C_{\alpha}^{1}\right)+\mu_{2}\left(X_{2} \backslash C_{\alpha}^{2}\right) \leq u_{\alpha}+u_{\alpha}$. Because of the regularity of λ, taking limits over f_{i}^{\sim} as they decrease to $\chi_{C_{\alpha}^{i}}$, we get $\lambda\left(\left(X_{1} \times X_{2}\right)^{\sim} \backslash C_{\alpha}^{1} \times C_{\alpha}^{2}\right) \leq u_{\alpha}+u_{\alpha}$. Taking the order-limit over α and using Theorem 1(a), we prove that $\lambda \in M_{o, t}^{+}\left(X_{1} \times X_{2}, E\right)$.
(b) The condition is trivially necessary. Now, for $i=1,2, \mu_{i}^{\sim} \in M_{o}^{+}\left(X_{i}^{\sim}, E\right)$. Let \bar{S} be the closure of S in $\left(X_{1} \times X_{2}\right)^{\sim}$. Using the given hypothesis and Theorem 2, we get a $\lambda^{\sim} \in M_{o}^{+}\left(\left(X_{1} \times X_{2}\right)^{\sim}, E\right)$ such that $\lambda^{\sim}(\bar{S}) \geq \gamma$ and its marginals are $\mu_{i}^{\sim}(i=1,2)$. By (a) λ^{\sim} arises from a $\lambda \in M_{(o, t)}^{+}\left(X_{1} \times X_{2}, E\right)$. Take a net $\left\{f_{\alpha}\right\} \subset C_{b}\left(X_{1} \times X_{2}\right), f_{\alpha} \downarrow \chi_{S}$; this means $f_{\alpha}^{\sim} \downarrow$ and $\lim f_{\alpha}^{\sim} \geq \chi_{\bar{S}}$. Now $\lambda(S)=\lim \lambda\left(f_{\alpha}\right)=\lambda^{\sim}\left(f_{\alpha}^{\sim}\right) \geq \lambda^{\sim}(\bar{S}) \geq \gamma$. This proves the result.

Now we consider τ-smooth measures.
Theorem 4. Suppose X_{1} and X_{2} are Hausdorff completely regular spaces, E is weakly (σ, ∞)-distributive and $\lambda \in M_{o}^{+}\left(\left(X_{1} \times X_{2}\right)^{\sim}, E\right)$.
(a) If $\lambda^{(1)} \in M_{(o, t)}^{+}\left(X_{1}, E\right)$ and $\lambda^{(2)} \in M_{(o, \tau)}^{+}\left(X_{2}, E\right)$ then $\lambda \in M_{(o, \tau)}^{+}\left(X_{1} \times\right.$ $\left.X_{2}, E\right)$.
(b) Suppose, $\mu_{1} \in M_{(o, t)}^{+}\left(X_{i}, E\right), \mu_{2} \in M_{(o, \tau)}^{+}\left(X_{i}, E\right)$ and, for $i=1,2$, $\mu_{i}\left(X_{i}\right)=e \in E$. Take a $\gamma \in E, 0<\gamma \leq e$ and a non-void closed subset $S \subset\left(X_{1} \times X_{2}\right)$. There exists a $\lambda \in M_{(o, \tau)}^{+}\left(X_{1} \times X_{2}, E\right)$ with marginals μ_{1} and μ_{2} and $\lambda(S) \geq \gamma$ if and only if for any $f_{i} \in C_{b}\left(X_{i}\right), f_{i} \geq 0(i=1,2)$, and $f_{1}\left(x_{1}\right)+f_{2}\left(x_{2}\right) \geq 1$ on S, we have $\mu_{1}\left(f_{1}\right)+\mu_{2}\left(f_{2}\right) \geq \gamma$.

Proof. Proof. (a) $Q=C\left(X_{1}^{\sim} \times X_{2}^{\sim}\right)$ can be considered a subspace of $C\left(\left(X_{1} \times X_{2}\right)^{\sim}\right)$. Taking $\nu=\lambda_{\mid Q}$, we get $\nu \in M_{o}^{+}\left(X_{1}^{\sim} \times \tilde{X}_{2}, E\right)$. Now, for $i=1,2, \lambda^{(i)} \in M_{o}^{+}\left(X_{i}^{\sim}\right)$ and we have $\lambda^{(1)}(f)=\nu(f \otimes 1), f \in C\left(X_{1}^{\sim}\right)$, and $\lambda^{(2)}(f)=\nu(1 \otimes f), f \in C\left(X_{2}^{\sim}\right)$. This means for any compact B_{i} in $X_{i}^{\sim}, i=$ $1,2, \nu\left(B_{1} \times X_{2}^{\sim}\right)=\lambda^{(1)}\left(B_{1} \cap X_{1}\right)$ and $\nu\left(X_{1}^{\sim} \times B_{2}\right)=\lambda^{(2)}\left(B_{2} \cap X_{2}\right)$. Take an increasing net $\left\{C_{\alpha}\right\}$ of compact subsets of X_{1} such that $\nu\left(\left(X_{1}^{\sim} \backslash C_{\alpha}\right) \times X_{2}^{\sim}\right) \downarrow 0$ (here we are very much using that $\lambda^{(1)} \in M_{(o, t)}^{+}\left(X_{1}, E\right)$). First we prove that for any compact K of $\left(X_{1}^{\sim} \times X_{2}^{\sim}\right), K \subset\left(X_{1}^{\sim} \times\left(\tilde{X}_{2} \backslash X_{2}\right)\right), \nu(K)=0$. Let $\psi_{1}: X_{1}^{\sim} \times X_{2}^{\sim} \rightarrow X_{1}^{\sim}$ and $\psi_{2}: X_{1}^{\sim} \times X_{2}^{\sim} \rightarrow X_{2}^{\sim}$ be the canonical mappings; they are continuous. $K_{i}=\psi_{i}(K)$ are compact subsets of $X_{i}^{\sim}, i=1,2, K \subset K_{1} \times K_{2}$ and $K_{2} \subset\left(\tilde{X}_{2} \backslash X_{2}\right)$. Since μ_{2} is τ-smooth, $\nu\left(X_{1}^{\sim} \times K_{2}\right)=0$. This means $\nu\left(K_{1} \times K_{2}\right)=0$ and so $\nu(K)=0$, proving the result. Now take any compact $K \subset\left(X_{1}^{\sim} \times \tilde{X}_{2}\right) \backslash\left(X_{1} \times X_{2}\right)$. This means $K \cap\left(C_{\alpha} \times X_{2}^{\sim}\right) \subset\left(X_{1}^{\sim} \times\left(\tilde{X}_{2} \backslash X_{2}\right)\right)$, for all α and so $\nu\left(K \cap\left(C_{\alpha} \times X_{2}^{\sim}\right)\right)=0$, for all α. Now $\nu(K)=\nu\left(K \cap\left(C_{\alpha} \times\right.\right.$
$\left.\left.\tilde{X}_{2}\right)\right)+\nu\left(K \cap\left(\left(\tilde{X}_{1} \backslash C_{\alpha}\right) \times \tilde{X}_{2}\right)\right) \leq \nu\left(\left(\tilde{X}_{1} \backslash C_{\alpha}\right) \times \tilde{X}_{2}\right)=\lambda^{(1)}\left(X_{1}^{\sim} \backslash C_{\alpha}\right)$. Taking limit over α and using the tightness property of μ_{1}, we get $\nu(K)=0$.

Let $X=\left(X_{1} \times X_{2}\right)^{\sim}$. This means $\lambda \in M_{o}^{+}(X, E)$. Let $\phi: X \rightarrow\left(X_{1}^{\sim} \times \tilde{X}_{2}\right)$ be the unique continuous extension of the identity mapping $\left(X_{1} \times X_{2}\right) \rightarrow\left(X_{1}^{\sim} \times X_{2}^{\sim}\right)$; ϕ maps $X \backslash\left(X_{1} \times X_{2}\right)$ onto $\left(X_{1}^{\sim} \times X_{2}^{\sim}\right) \backslash\left(X_{1} \times X_{2}\right)$. It is easily verified that for any $f \in C\left(X_{1}^{\sim} \times X_{2}^{\sim}\right), \nu(f)=\lambda(f \circ \phi)$. By regularity, we get $\nu(K)=\lambda\left(\phi^{-1}(K)\right)$, for any compact $K \subset\left(X_{1}^{\sim} \times X_{2}^{\sim}\right)$. Take a compact $C \subset X \backslash\left(X_{1} \times X_{2}\right)$. Then $C_{1}=\phi^{-1}(\phi(C))$ is compact and contains C, and $\phi(C)$ is disjoint from $\left(X_{1} \times X_{2}\right)$. Now $\lambda(C) \leq \lambda\left(C_{1}\right)=\nu(\phi(C))=0$. By Theorem $1(\mathrm{~b}), \lambda \in M_{(o, \tau)}^{+}\left(X_{1} \times X_{2}\right)$. This proves the result.
(b) The condition is trivially necessary. Now, for $i=1,2$, define $\mu_{i}^{\sim}(f)=$ $\mu_{i}\left(f_{\mid X_{i}}\right), \forall f \in C\left(X_{i}^{\sim}\right) ; \mu_{i}^{\sim} \in M_{o}^{+}\left(X_{i}^{\sim}, E\right)$. Let \bar{S} be the closure of S in $\left(X_{1} \times\right.$ $\left.X_{2}\right)^{\sim}$. Using the given hypothesis and Theorem 2, we get a $\lambda^{\sim} \in M_{o}^{+}\left(\left(X_{1} \times\right.\right.$ $\left.\left.X_{2}\right)^{\sim}, E\right)$ such that $\lambda^{\sim}(\bar{S}) \geq \gamma$ and its marginals are $\mu_{i}^{\sim}(i=1,2)$. By (a) λ^{\sim} arises from a $\lambda \in M_{(o, \tau)}^{+}\left(X_{1} \times X_{2}, E\right)$. Take a net $\left\{f_{\alpha}\right\} \subset C_{b}\left(X_{1} \times X_{2}\right), f_{\alpha} \downarrow \chi_{S}$; this means $f \alpha^{\sim} \downarrow$. Proceeding as in part (b) Theorem 3, we get $\lambda(S) \geq \gamma$. This proves the result.

Before the next theorem we introduce some new notations. Let Baire (H) be the smallest σ-algebra in $X_{1} \times X_{2}$ relative to which all functions in H are measurable. It is a simple verification that $\operatorname{Baire}(H)=\operatorname{Baire}\left(H_{s}\right)$. Also
Baire $(H)=\left(\sigma\right.$-algebra of Baire subsets of $\left.\tilde{X}_{1} \times \tilde{X}_{2}\right) \cap\left(X_{1} \times X_{2}\right)$.
Baire $(H) \supset\left\{B_{1} \times B_{2}: B_{1}\right.$ a Baire set in X_{1}, B_{2} a Baire set in $\left.X_{2}\right\}$.
Theorem 5. Suppose X_{1} and X_{2} are Hausdorff completely regular spaces, E is weakly σ-distributive and $\lambda \in M_{o}^{+}\left(X_{1}^{\sim} \times X_{2}^{\sim}, E\right)$.
(a) If $\lambda^{(1)} \in M_{(o, t)}^{+}\left(X_{1}, E\right)$ and $\lambda^{(2)} \in M_{(o, \sigma)}^{+}\left(X_{2}, E\right)$ then λ can be considered as $\lambda: \operatorname{Baire}(H) \rightarrow E$ and is countably additive.
(b) Suppose, $\mu_{1} \in M_{(o, t)}^{+}\left(X_{i}, E\right), \mu_{2} \in M_{(o, \sigma)}^{+}\left(X_{i}, E\right)$ and, for $i=1,2$, $\mu_{i}\left(X_{i}\right)=e \in E$. Take a $\gamma \in E, 0<\gamma \leq e$ and a non-void H_{s}-zero-set $S \subset\left(X_{1} \times X_{2}\right)$. There exists a a countably additive $\lambda: \operatorname{Baire}(H) \rightarrow E$ with marginals μ_{1} and μ_{2} and $\lambda(S) \geq \gamma$ if and only if for any $f_{i} \in C_{b}\left(X_{i}\right), f_{i} \geq 0$ $(i=1,2)$, and $f_{1}\left(x_{1}\right)+f_{2}\left(x_{2}\right) \geq 1$ on S, we have $\mu_{1}\left(f_{1}\right)+\mu_{2}\left(f_{2}\right) \geq \gamma$.

Proof. (a) We have $\lambda^{(1)}(f)=\lambda(f \otimes 1), f \in C\left(X_{1}^{\sim}\right)$, and $\lambda^{(2)}(f)=\lambda(1 \otimes f)$, $f \in C\left(X_{2}^{\sim}\right)$. This means for any compact B_{i} in $X_{i}^{\sim}, i=1,2, \lambda\left(B_{1} \times X_{2}^{\sim}\right)=$ $\lambda^{(1)}\left(B_{1} \cap X_{1}\right)$ and $\lambda\left(X_{1}^{\sim} \times B_{2}\right)=\lambda^{(2)}\left(B_{2} \cap X_{2}\right)$. Take an increasing net $\left\{C_{\alpha}\right\}$ of compact subsets of X_{1} such that $\lambda\left(\left(X_{1}^{\sim} \backslash C_{\alpha}\right) \times X_{2}^{\sim}\right) \downarrow 0$ (here we are very much using that $\left.\lambda^{(1)} \in M_{(o, t)}^{+}\left(X_{1}, E\right)\right)$. First we prove that for any compact G_{δ}-set $Z \subset$
$\left(X_{1}^{\sim} \times\left(\tilde{X}_{2} \backslash X_{2}\right)\right), \lambda(Z)=0$. Let $\psi_{1}: X_{1}^{\sim} \times X_{2}^{\sim} \rightarrow X_{1}^{\sim}$ and $\psi_{2}: X_{1}^{\sim} \times X_{2}^{\sim} \rightarrow X_{2}^{\sim}$ be the canonical mappings; they are continuous and open. This means $\psi_{2}(Z)$ is a compact G_{δ} subset of $\left(\tilde{X}_{2} \backslash X_{2}\right)$. Now $\lambda(Z) \leq \lambda\left(X_{1}^{\sim} \times\left(\psi_{2}(Z)\right)=0\right.$ and so $\lambda(Z)=0$ $\left(\right.$ note $\left.\lambda^{(2)} \in M_{(o, \sigma)}^{+}\left(X_{2}, E\right)\right)$. Fix any compact G_{δ}-set $Z \subset\left(X_{1}^{\sim} \times \tilde{X}_{2}\right) \backslash\left(X_{1} \times X_{2}\right)$ and take a compact $C \subset X_{1}$. This means $Z \cap\left(C \times X_{2}^{\sim}\right) \subset\left(X_{1}^{\sim} \times\left(X_{2}^{\sim} \backslash X_{2}\right)\right)$ and $\psi_{2}\left(Z \cap\left(C \times \tilde{X}_{2}\right)\right)$ is compact G_{δ}-set in $\left(X_{2}^{\sim} \backslash X_{2}\right)$. Thus $\lambda\left(Z \cap\left(C \times X_{2}^{\sim}\right)=0\right.$, for every compact $C \subset X_{1}$. Now $\lambda(Z)=\lambda\left(Z \cap\left(C \times X_{2}^{\sim}\right)\right)+\lambda\left(Z \cap\left(\left(X_{1}^{\sim} \backslash C\right) \times X_{2}^{\sim}\right)\right) \leq$ $\lambda\left(\left(X_{1}^{\sim} \backslash C\right) \times X_{2}^{\sim}\right)=\lambda^{(1)}\left(X_{1}^{\sim} \backslash C\right)$. Taking sup over C as C increases over compact subsets of X_{1} and using the tightness property of $\lambda^{(1)}$, we get $\lambda(Z)=0$. Since E is a weakly σ-distributive vector lattice, we get $\lambda(B)=0$ for every Baire set $B \subset \tilde{X}_{1} \times \tilde{X}_{2} \backslash\left(X_{1} \times X_{2}\right)([11])$.

Now it is easy to define $\lambda: \operatorname{Baire}(H) \rightarrow E, \lambda(B)=\lambda\left(B^{0}\right), B^{0}$ being any Baire set in $X_{1}^{\sim} \times X_{2}^{\sim}$ such that $\left(X_{1} \times X_{2}\right) \cap B^{0}=B$; it is easily verified that it is well-defined and countably additive. Other things are easy to verify.
(b) The condition is trivially necessary. Now, for $i=1,2$, define $\mu_{i}^{\sim}(f)=$ $\mu_{i}\left(f_{\mid X_{i}}\right), \forall f \in C\left(X_{i}^{\sim}\right) ; \mu_{i}^{\sim} \in M_{o}^{+}\left(X_{i}^{\sim}, E\right)$. Let \bar{S} be the closure of S in $X_{1}^{\sim} \times X_{2}^{\sim}$. Using the given hypothesis and Theorem 2, we get a $\lambda^{\sim} \in M_{o}^{+}\left(\left(X_{1}^{\sim} \times X_{2}^{\sim}, E\right)\right.$ such that $\lambda^{\sim}(\bar{S}) \geq \gamma$ and its marginals are $\mu_{i}^{\sim}(i=1,2)$. By (a) λ^{\sim} arises from the countably additive λ : Baire $(H) \rightarrow E, \lambda(B)=\lambda\left(B^{0}\right), B^{0}$ being any Baire set in $X_{1}^{\sim} \times \tilde{X}_{2}$ such that $\left(X_{1} \times X_{2}\right) \cap B^{0}=B$.

Take a sequence $\left\{f_{n}\right\} \subset H_{s}, f_{n} \downarrow \chi_{S}$; this means $f_{n}^{\sim} \geq \chi_{\bar{S}}, \forall n$ and $f_{n}^{\sim} \downarrow$. Now $\lambda(S)=\lim \lambda\left(f_{n}\right)=\lim \lambda^{\sim}\left(f_{n}^{\sim}\right) \geq \lambda^{\sim}(\bar{S}) \geq \gamma$. This proves the result.

We are very thankful to the referee for making some very useful suggestions and also pointing out some typographical errors; this has improved the paper.

References

[1] E. D'aniello and J. D. M. Wright, Finding measures with given marginals, Quart. J. Math. 51 (2000), 405-416.
[2] A. Hirshberg and R. M. Shortt, A version of Strassen's theorem for vector-valued measures, Proc. Amer. Math. Soc. 126 (1998), 1669-1671.
[3] Pedro Jimenez Guerra and Maria J. Munoz-Bouzo, On a theorem of Strassen for vector-valued measures, Quart. J. Math. 53 (2002), 285-293.
[4] Jun Kawabe, A type of Strassen's theorem for positive vector measures in dual spaces, Proc. Amer. Math. Soc. 128 (2000), 3291-3300.
[5] Surjit Singh Khurana, Lattice-valued Borel measures, Rocky Mountain J. Math. 6 (1976), 377-382.
[6] Surjit Singh Khurana, Lattice-valued Borel measures II, Trans. Amer. Math. Soc. 235 (1978), 205-211.
[7] Peter Meyer-Nieberg, Banach Lattices, Springer-Verlag, 1991.
[8] V. Strassen, The existence of probability measures with given marginals, Ann. Math. Statist. 36 (1965), 423-439.
[9] J. D. M. Wright, Stone-algebra-valued measures and integrals, Proc. London Math. Soc. 19 (1969), 107-122.
[10] J. D. M. Wright, Vector lattice measures on locally compact spaces, Math Zeit. 120 (1971), 193-203.
[11] J. D. M. Wright, The measure extension problem for vector lattices, Ann. Inst. Fourier (Grenoble) 21 (1971), 65-85.
[12] J. D. M. Wright, Measures with values in partially ordered vector spaces, Proc. London Math. Soc. 25 (1972), 675-688.
[13] J. D. M. Wright, An algebraic characterization of vector lattices with Borel regularity property, J. London Math. Soc. 7 (1973), 277-285.

SURJIT SINGH KHURANA
DEPARTMENT OF MATHEMATICS
UNIVERSITY OF IOWA
IOWA CITY, IOWA 52242
USA
E-mail: khurana@math.uiowa.edu

[^0]: 2000 Mathematics Subject Classification: Primary: 60B05,46G10, 28B15; Secondary: 46E10, 28C15.
 Key words and phrases: Dedekind complete, order convergence, marginals.

