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On a projective class of Finsler metrics

By B. NAJAFI (Tehran), ZHONGMIN SHEN (Indianapolis)
and AKBAR TAYEBI (Tehran)

Abstract. In this paper, we study a class of Finsler metrics whose Douglas curva-

ture satisfies D i
j kl;mym = Tjkly

i. It is known that this class is closed under projective

change and all metrics with vanishing Douglas curvature or vanishing Weyl curvature

belong to it. Thus Finsler metrics in this class are called generalized Douglas–Weyl

(GDW) metrics. For a Randers metric F = α + β, we find a sufficient and necessary

condition for F to be a GDW metric.

1. Introduction

The Douglas (projective) curvature D i
j kl and the Weyl (projective) curvature

W i
k are two most important quantities in projective Finsler geometry. Finsler

metrics with D i
j kl=0 are called Douglas metrics and Finsler metrics with W i

k=0
are called Weyl metrics. It is well-known that a Finsler metric is a Weyl metric
if and only if it is of scalar flag curvature, namely, the flag curvature K(P, y) =
K(x, y) is independent of the section P containing y. Thus Weyl metrics are also
called metrics of scalar (flag) curvature, and being of scalar flag curvature is a
projective property.

Equations D i
j kl = 0 and W i

k = 0 are projectively invariant, namely, if a
Finsler metric F satisfies one of the equations, then any Finsler metric projectively
equivalent to F must satisfy the same equation. There is another projective
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invariant equation in Finsler geometry, that is, for some tensor Tjkl,

D i
j kl;mym = Tjkly

i, (1)

where D i
j kl;m denotes the horizontal covariant derivatives of D i

j kl with respect
to the Berwald connection of F . Equation (1) is equivalent to that for any linearly
parallel vector fields U = U(t), V = V (t) and W = W (t) along a geodesic c(t),
there is a function T = T (t) such that

d

dt
[Dċ(U, V,W )] = T ċ.

The geometric meaning of the above identity is that the rate of change of the
Douglas curvature along a geodesic is tangent to the geodesic.

For a manifold M , let GDW (M) denote the class of all Finsler metrics sat-
isfying (1) for some tensor Tjkl (Tjkl not fixed). In [2], Bácsó–Papp show that
GDW (M) is closed under projective changes. More precisely, if F is projectively
equivalent to a Finsler metric in GDW (M), then F ∈ GDW (M).

A natural question is: how large is GDW (M) and what kind of interesting
metrics does it have? It is obvious that all Douglas metrics belong to this class.
On the other hand, all Weyl metrics (metrics of scalar flag curvature) also belong
to this class. The later is really a surprising result, due to Sakaguchi [4]. In
this sense, we shall call Finsler metrics in GDW (M) GDW-metrics (generalized
Douglas–Weyl metrics).

In this paper, we are going to study and characterize GDW-metrics of Ran-
ders type on a manifold M . A Randers metric on a manifold M is a Finsler metric
in the following form

F = α + β,

where α =
√

aij(x)yiyj is a Riemannian metric and β = bi(x)yi is a 1-form on
M . One of the reasons why we would like to study Randers metrics for the above
problem is because that Randers metrics are “computable”.

Let

sij :=
1
2

(
∂bi

∂xj
− ∂bj

∂xi

)
.

Clearly, β is closed if and only if sij = 0. It is known that F = α+β is a Douglas
metric if and only if β is closed (see [1]). On the other hand, Shen–Yildirim [6]
recently find a sufficient and necessary condition for F = α + β to be of scalar
flag curvature, that is,

R̄i
k =

(
λ− 1

n− 1
tmm

) {
α2δi

k − ajkyiyj
}
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+ α2tik + t00δ
i
k − tk0y

i − ti0yk − 3si
0sk0, (2)

sij|k =
1

n− 1
{
aiksm

j|m − ajksm
i|m

}
, (3)

where tij := simsm
j , R̄i

k denotes the Riemann curvature tensor of α and λ = λ(x)
is a scalar function on M . Here sij|k denote the coefficients of the covariant
derivative of sij with respect to α. We use aij and aij to lower or lift the indices
of a tensor.

Theorem 1.1. Let F = α + β be a Randers metric on an n-dimensional

manifold M . F is a GDW metric if and only if (3) holds.

Thus any Randers metrics of scalar curvature belongs to GDW (M). This
verifies Sakaguchi’s theorem for Randers metrics. The following Randers metric
actually satisfies both (2) and (3).

Example 1.1 ([5]). Let a ∈ Rn be a constant vector. Define F = α + β on an
open ball Bn(1/

√
|a|) in Rn by

F : =

√
(1− |a|2|x|4)|y|2 + (|x|2〈a, y〉 − 2〈a, x〉〈x, y〉)2

1− |a|2|x|4

− |x|2〈a, y〉 − 2〈a, x〉〈x, y〉
1− |a|2|x|4 .

Then F is of scalar flag curvature. Thus it satisfies (2) and (3). See more examples
in [3].

So far, we have not found a Randers metric satisfying (3), but not (2). We
conjecture that such examples exist.

2. Randers metrics

Let F = α+β be a Randers metric on a manifold M , where α =
√

aij(x)yiyj

and β = bi(x)yi. Let

rij :=
1
2
(bi|j + bj|i), sij :=

1
2
(bi|j − bj|i),

where bi|j denote the coefficients of the covariant derivative of β with respect to α.
The spray coefficients of F are given by

Gi = Ḡi +
r00 − 2s0α

2F
yi + αsi

0,
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where Ḡi denote the spray coefficients of α. Let

Πi := Gi − 1
n + 1

∂Gm

∂ym
, Π̄i := Ḡi − 1

n + 1
∂Ḡm

∂ym
.

Observe that
∂(αsm

0)
∂ym

=
ym

α
sm

0 + αsm
m = 0.

Thus we have
Πi = Π̄i + αsi

0. (4)

By definition, the Douglas curvature is given by

D i
j kl :=

∂3Πi

∂yj∂yk∂yl
.

Since Π̄i are always quadratic in y, we get

D i
j kl =

∂3

∂yj∂yk∂yl

(
αsi

0

)
= αjkls

i
0 + αjksi

l + αjls
i
k + αkls

i
j , (5)

where
αj = α−1yj

αjk = α−3Ajk

αjkl = −α−5{Ajkyl + Ajlyk + Aklyj},

where Aij := α2aij − yiyj .
It is easy to show that F is a Douglas metric if and only if si

0 = 0. This fact
is due to Bácsó–Matsumoto [1].

Let G̃ = yi ∂
∂xi − 2G̃i ∂

∂yi where

G̃i := Ḡi + αsi
0. (6)

Let “‖” and “|” denote the covariant differentiations with respect to G̃ and Ḡ

respectively. Then

D i
j kl‖mym = D i

j kl|mym − 2α
∂

∂yp
(D i

j kl)s
p
0

+ α−1[α2si
p + yps

i
0]D

p
j kl − α−1[α2sp

j + sp
0yj ]D i

p kl

− α−1[α2sp
k + sp

0yk]D i
j pl − α−1[α2sp

l + sp
0yl]D i

j kp. (7)
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Since “|” is a differentiation with respect to α, aij|m = 0. Thus

α|m = 0, αj|m = 0, αjk|m = 0, αjkl|m = 0.

We obtain

D i
j kl|mym = αjkls

i
0|0 + αjksi

l|0 + αjls
i
k|0 + αkls

i
j|0

= −α−5
{
Ajkyl + Ajlyk + Aklyj

}
si

0|0 + α−3
{
Ajksi

l|0 + Ajls
i
k|0 + Akls

i
j|0

}
.

Differentiating (5) yields

∂

∂yp
(D i

j kl) = αjklps
i
0 + αjkls

i
p + αjkps

i
l + αjlps

i
k + αklps

i
j ,

where

αjklp = 3α−5yp{ajkyl + ajlyk + aklyj} − α−3
{
ajkalp + ajlakp + aklajp

}

+ 3α−5
{
ykylajp + yjylakp + yjykalp

}− 15α−7yjykylyp.

We get

αjklps
p
0 = −α−5

{
Ajksl0 + Ajlsk0 + Aklsj0

}

+ 2α−5
{
sj0ykyl + sk0yiyl + sl0yjyk

}

αjkps
p
0 = −α−3

{
yksj0 + yjsk0

}

αjlps
p
0 = −α−3

{
ylsj0 + yjsl0

}
, αklps

p
0 = −α−3

{
yksl0 + ylsk0

}
.

Then we obtain

− 2α
∂

∂yp
(D i

j kl)s
p
0 = 2α−4

{
Ajksl0 + Ajlsk0 + Aklsj0

}
si

0

+ 2α−4{Ajkyl + Ajlyk + Aklyj}ti0 − 4α−4
{
ykylsj0 + yjylsk0 + yjyksl0

}
si

0

+ 2α−2
{
yksj0 + yjsk0

}
si

l + 2α−2
{
ylsj0 + yjsl0

}
si

k

+ 2α−2
{
yksl0 + ylsk0

}
si

j .

By (5), we can also easily get

α−1[α2si
p + yps

i
0]D

p
j kl = −α−2{Ajkyl + Ajlyk + Aklyj}ti0

+ α−2
{
Ajktil + Ajlt

i
k + Aklt

i
j

}− α−4
{
Ajksl0 + Ajlsk0s

i
0 + Aklsj0

}
si

0.

− α−1[α2sp
j + sp

0yj ]Di
pkl = α−2

{
ykslj + ylskj

}
+ 2α−4ykylsj0s

i
0
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− α−2(α2skj − s0jyk)si
l − α−2(α2slj − s0jyl)si

k

+ α−4
{
yjyksl0 + yjylsk0

}
si

0 − α−2yjsk0s
i
l − α−2yjsl0s

i
k

− α−4yjAklt
i
0 − α−4Aklsj0s

i
0 − α−2Aklt

i
j .

− α−1[α2sp
k + sp

0yk]Di
plj = α−2

{
ylsjk + yjslk

}
+ 2α−4ylyjsk0s

i
0

− α−2(α2slk − s0kyl)si
j − α−2(α2sjk − s0kyj)si

l

+ α−4
{
ykylsj0 + ykyjsl0

}
si

0 − α−2yksl0s
i
j − α−2yksj0s

i
l

− α−4ykAjlt
i
0 − α−4Aljsk0s

i
0 − α−2Ajlt

i
k.

− α−1[α2sp
l + sp

0yl]Di
pkj = α−2

{
yksjl + yjskl

}
+ 2α−4ykyjsl0s

i
0

− α−2(α2skl − s0lyk)si
j − α−2(α2sjl − s0lyj)si

k

+ α−4
{
ylyksj0 + ylyjsk0

}
si

0 − α−2ylsk0s
i
j − α−2ylsj0s

i
k

− α−4ylAjkti0 − α−4Akjsl0s
i
0 − α−2Ajktil.

Plugging the above identities into (7), we get

D i
j kl‖mym = α−5

{
AjkHi

l + AjlH
i
k + AklH

i
j

}
, (8)

where
Hi

j := α2si
j|0 − yjs

i
0|0.

3. Proof of Theorem 1.1

First we are going to prove the following

Theorem 3.1. Let F = α + β be a Randers metric on an n-dimensional

manifold M . F is a GDW-metric if and only if

α2sij|0 = si0|0yj − sj0|0yi. (9)

Proof. Let F = α + β be a Randers metric on a manifold. Let G denote
the spray of F and G̃ the spray defined in (6). Since G̃ and G are projectively
equivalent, the following conditions are equivalent

(i) there is a tensor Tjkl such that D i
j kl;mym = Tjkly

i,

(ii) there is a tensor Djkl such that

D i
j kl‖mym = Djkly

i, (10)
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where D i
j kl;m and D i

j kl‖m denote the covariant derivatives of D i
j kl with respect

to the Berwald connections of G and G̃, respectively. This equivalence is essen-
tially proved in [2]. Thus the argument is omitted here.

Assume that F is a GDW-metric. Then (10) holds for some tensor Djkl. By
(8), we have

Djkly
i = α−5

{
AjkHi

l + AjlH
i
k + AklH

i
j

}
. (11)

Contracting (11) with yi yields

Djkl = −α−5
{
Ajksl0|0 + Ajlsk0|0 + Aklsj0|0

}
. (12)

Plugging (12) into (11), we get

Ajk

{
Hi

l + sl0|0yi
}

+ Ajl

{
Hi

k + sk0|0yi
}

+ Akl

{
Hi

j + sj0|0yi
}

= 0. (13)

Contracting (13) with akl we obtain

Hi
j + sj0|0yi = 0. (14)

This is obviously equivalent to (9).
Conversely, if (9) holds, or equivalently, (14) holds, it follows from (8) that

D i
jkl‖mym = Djkly

i,

where Djkl are given by (12). Thus F is a GDW-metric. ¤

To prove Theorem 1.1, one just needs to prove the equivalence between (3)
and (9).

Lemma 3.2. (3) is equivalent to (9).

Proof. Suppose that (3) holds. Then

sij|k = λ
{
aiksm

j|m − ajksm
i|m

}
, (15)

where λ = 1/(n− 1) (in fact, λ can be any scalar function). Contracting it with
yk yields

sij|0 = λ
{
yis

m
j|m − yjs

m
i|m

}
. (16)

Contracting (16) with yj yields

si0|0 = λ
{
yis

m
0|m − α2sm

i|m
}
. (17)
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Thus
sj0|0 = λ

{
yjs

m
0|m − α2sm

j|m
}
. (18)

By (17)–(18),

si0|0yj − sj0|0yi = λα2
{
sm

j|myi − sm
i|myj

}

= λα2
{
aiksm

jm − ajksm
m|i

}
yk = α2sij|0.

The last identity follows from (16). Then we obtain (9).
Conversely, assume that (9) holds. First differentiating (9) with respect to

yk, yl and ym yields

2aklsij|m + 2akmsij|l + 2almsij|k

= sik|lajm + sik|majl + sil|kajm + sim|kajl + sil|majk + sim|lajk

− sjk|laim − sjk|mail − sjl|kaim − sjm|kail − sjl|maik − sjm|laik.

Contracting it with alm, we get

nsij|k = sik|j − sjk|i + aiksm
j|m − ajksm

im. (19)

It follows from (19) that

nsik|j = sij|k + sjk|i + aijs
m
km − ajksm

im (20)

nsjk|i = −sij|k + sik|j + aijs
m
km − aiksm

jm. (21)

Subtracting (21) from (20), we get

sik|j − sjk|i =
2

n + 1
sij|k +

1
n + 1

{
aiksm

jm − ajksm
im

}
. (22)

Plugging (22) back into (19) yields

sij|k =
1

n− 1
{
aiksm

jm − ajksm
im

}
.

We are done. ¤
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