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A Matkowski–Sutô type equation

By PÁL BURAI (Debrecen)

Abstract. In the present paper we deal with the following equation:

ϕ−1 (αϕ(x) + (1− α)ϕ(y)) + ψ−1 ((1− α)ψ(x) + αψ(y)) = x + y,

where ϕ and ψ are strictly monotone and continuous functions on the same interval. We

give the continuously differentiable solutions.

1. Introduction

In [6], Daróczy and Páles have solved the so-called Matkowski–Sutô prob-
lem without any regularity assumption. In order to formulate this problem pre-
cisely, we need the following definitions:

Definition 1. Let I ⊂ R be a nonempty open interval and let CM(I) denote
the class of all continuous, strictly monotone functions defined on I.

Definition 2. A continuous function M : I2 → I is called a mean on I if

min{x, y} ≤ M(x, y) ≤ max{x, y}

for all x, y ∈ I.
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Definition 3. A mean M : I2 → I is called quasi-arithmetic on I if there
exists ϕ ∈ CM(I) such that

M(x, y) = ϕ−1

(
ϕ(x) + ϕ(y)

2

)
=: Aϕ(x, y)

for every x, y ∈ I.

Definition 4. Let p ∈ R be a real constant and I ⊂ R a nonempty interval.
Let us define the following function on I:

χp(x) :=





x if p = 0

epx if p 6= 0
(x ∈ I).

Definition 5. Let ϕ,Φ ∈ CM(I). We say that ϕ and Φ are equivalent on I,
if there exist real constants a, b (a 6= 0) so that

ϕ(x) = aΦ(x) + b (1)

for every x ∈ I. We write ϕ ∼ ψ on I or, ϕ(x) ∼ ψ(x) if x ∈ I.

Daróczy and Páles have determined all those functions ϕ,ψ ∈ CM(I) for
which the functional equation

Aϕ(x, y) + Aψ(x, y) = x + y (2)

holds for every x, y ∈ I. In [6], they have proved the following:

Theorem 1. If ϕ,ψ ∈ CM(I) satisfy the functional equation (2) for every

x, y ∈ I, then there exists p ∈ R such that

ϕ ∼ χp, ψ ∼ χ−p on I.

In the present paper we are examining a functional equation similar to (2).
We need the following definition to formulate our problem.

Definition 6. The mean M : I2 → I is called weighted-quasi-arithmetic on I

if there exist ϕ ∈ CM(I) and α ∈ ] 0, 1[ such that

M(x, y) = ϕ−1
(
αϕ(x) + (1− α)ϕ(y)

)
=: Aϕ(x, y; α)

for every x, y ∈ I.
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If α = 1
2 , we get the class of quasi-arithmetic means.

We give the continuously differentiable solutions of the following Matkowski–
Sutô type equation:

Aϕ(x, y;α) + Aψ(x, y; 1− α) = x + y, x, y ∈ I. (3)

The proof consists of two main parts. After the extendability of the solutions
is verified (by a very similar method as in [4], more information in [2], [3], [6]),
we solve the equation (3), assuming that the unknown functions are continuously
differentiable on a subinterval of I, and we extend our solutions applying the
extension theorem.

Surprisingly, the continuously differentiable solutions of the equations (2) and
(3) are the same. Thus we “know” the solutions ahead, so we prove the extension
theorem first.

2. The extension theorem

The following lemma allows us to work with functions which are equivalent
to each other.

Lemma 1. Assume that ϕ,ψ ∈ CM(I) are solutions of the functional equa-

tion (3). If ϕ ∼ Φ and ψ ∼ Ψ on I, then Φ, Ψ are also solutions of the functional

equation (3).

Proof. Easy calculation. ¤

Because of the previous lemma, we can assume without loss of generality
that ϕ and ψ are strictly monotone increasing, furthermore

α < 1− α.

If 1
2 < α < 1, let β := 1− α and interchange ϕ with ψ, then we get

Aϕ(x, y;β) + Aψ(x, y; 1− β) = x + y, x, y ∈ I,

where 0 < β < 1
2 .

Lemma 2. Let ϕ : [A,B] → R be a continuous and strictly monotone

increasing function that satisfies

γ :=
B −A

ϕ(B)− ϕ(A)
≥ 1. (4)
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Furthermore, suppose that the function

f(t) := t− αϕ(t) t ∈ [A,B] (5)

satisfies the functional equation

(1− α)f(x) + αf(y) = f(x + y −Aϕ(x, y; α)) (6)

for every x, y ∈ [A,B]. Then

ϕ(x) =
1
γ

x− σ

γ
(7)

holds for every x ∈ [A,B], where

σ =
Aϕ(B)−Bϕ(A)

ϕ(B)− ϕ(A)
.

Proof. If we write the functional equation (6) in detail, we get

(1− α)x− (1− α)αϕ(x) + αy − α2ϕ(y)

= x + y −Aϕ(x, y;α)− αϕ(x + y −Aϕ(x, y; α)). (8)

Reduce (8), then we have

αx+(1−α)y+α(1−α)ϕ(x)+α2ϕ(y) = Aϕ(x, y;α)+αϕ
(
x+y−Aϕ(x, y; α)

)
(9)

for every x, y ∈ [A,B]. By (9), with the substitutions

u := ϕ(x), v := ϕ(y), ϕ−1 := g,

we get

g

(
g(u) +

1− α

α
g(v) + (1− α)u + αv − 1

α
g(αu + (1− α)v)

)

= g(u) + g(v)− g(αu + (1− α)v)
(10)

for all u, v ∈ [ϕ(A), ϕ(B)].
Now let

b(u) :=
B −A

ϕ(B)− ϕ(A)
u +

Aϕ(B)−Bϕ(A)
ϕ(B)− ϕ(A)

− g(u) (11)

for u ∈ [ϕ(A), ϕ(B)]. It can readily be verified that b(ϕ(B)) = b(ϕ(A)) = 0.
(11) implies that

g(u) = γu + σ − b(u) u ∈ [ϕ(A), ϕ(B)], (12)
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where γ := B−A
ϕ(B)−ϕ(A) ≥ 1 and σ = Aϕ(B)−Bϕ(A)

ϕ(B)−ϕ(A) .
Using (10) and (12) we obtain that

g

(
(1− α)u + αv − b(u)− 1− α

α
b(v) +

1
α

b(αu + (1− α)v)
)

= γ

(
(1− α)u + αv − b(u)− 1− α

α
b(v) +

1
α

b(αu + (1− α)v)
)

+ σ

− b

(
(1− α)u + αv − b(u)− 1− α

α
b(v) +

1
α

b(αu + (1− α)v)
)

= γu + σ − b(u) + γv + σ − b(v)

− γ(αu + (1− α)v)− σ + b(αu + (1− αv)).

Rearranging this equation, we have that

(1− γ)b(u) +
(

1− γ
1− α

α

)
b(v) +

( γ

α
− 1

)
b(αu + (1− α)v)

= b

(
(1− α)u + αv − b(u)− 1− α

α
b(v) +

1
α

b(αu + (1− α)v)
)

(13)

for all u, v ∈ [ϕ(A), ϕ(B)]. We are going to prove that b(u) = 0 for every u ∈
[ϕ(A), ϕ(B)].

Assume that b(u) 6≡ 0 on [ϕ(A), ϕ(B)]. Then there are two possible cases:
1. case:
b has a positive value inside of the interval [ϕ(A), ϕ(B)]. b is continuous, so

there exists
0 < M := max

u∈[ϕ(A), ϕ(B)]
b(u).

Let
u0 := sup{u ∈ [ϕ(A), ϕ(B)] | b(u) = M}. (14)

Then there exists ε > 0 such that

u0 + (1− α)ε, u0 − αε ∈ [ϕ(A), ϕ(B)]

and
0 < b(u0 + (1− α)ε) < M and 0 < b(u0 − αε) ≤ M. (15)

Substituting u = u0 + (1− α)ε and v = u0 − αε into (13), we get

(1− γ)b(u0 + (1− α)ε) +
(

1− γ
1− α

α

)
b(u0 − αε) +

(γ

α
− 1

)
b(u0)

= b

(
u0 − b(u0 + (1− α)ε)− 1− α

α
b(u0 − αε) +

1
α

b(u0)
)

. (16)
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Let
v(ε) :=

1
α

b(u0)− b(u0 + (1− α)ε)− 1− α

α
b(u0 − αε). (17)

Because of (15) and (17) we have

M > αv(ε) = b(u0)− αb(u0 + (1− α)ε)− (1− α) b(u0 − αε) > 0. (18)

Using (16) and (17) we get

b(u0 + v(ε)) = (γ − 1)v(ε) +
1− α

α
b(u0) +

2α− 1
α

b(u0 − αε). (19)

Then by (4), (15), (18) and (19), we can write

(1− α)M = αb(u0 + v(ε)) + α(1− γ)v(ε) + (1− 2α)b(u0 − αε)

< αM + α(1− γ)v(ε) + (1− 2α)M = (1− α)M + α(1− γ)v(ε).

Simplifying the previous inequality, we obtain that

0 < α(1− γ)v(ε),

which is a contradiction because of (4) and (18).
2. case:
b has a negative value in the interval [ϕ(A), ϕ(B)]; b is continuous, so there

exists
0 > m := min

u∈[ϕ(A), ϕ(B)]
b(u).

Let
u0 := inf{u ∈ [ϕ(A), ϕ(B)] | b(u) = m}. (20)

Then there exists ε > 0 such that

u0 + (1− α)ε, u0 − αε ∈ [ϕ(A), ϕ(B)]

and
0 > b(u0 + (1− α)ε) ≥ m and 0 > b(u0 − αε) > m. (21)

Similarly to the first case, we obtain the following:

(1− α)m = αb(u0 + v(ε)) + α(1− γ)v(ε) + (1− 2α)b(u0 − αε)

> αm + (1− 2α)m + α(1− γ)v(ε), (22)
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where we have used (21) and the definition of v(ε) is the same as in (17), further-
more

m < αv(ε) < 0. (23)

Using (22) and (23) we get
0 > α(1− γ)v(ε),

which leads to a contradiction because of (4) and (23). Thus b(u) = 0 for every
u ∈ [ϕ(A), ϕ(B)]. For this reason

ϕ−1 = g(u) = γu + σ u ∈ [ϕ(A), ϕ(B)],

that is
ϕ(x) =

1
γ

x− σ

γ
x ∈ [A,B]. ¤

Theorem 2. Let us assume that ϕ,ψ ∈ CM(I), 0 < α < 1
2 and (3) is

satisfied for all x, y ∈ I. If there exist a nonempty open interval K ⊂ I and p ∈ R
such that

ϕ ∼ χp and ψ ∼ χ−p on K, (24)

then

ϕ ∼ χp and ψ ∼ χ−p on I. (25)

Proof. Because of the Lemma 1, we can assume that

ϕ = χp and ψ = χ−p (26)

on K. Moreover, we can also assume that the open interval K is maximal, that
is, there is no strictly larger interval where the above equalities are satisfied. We
are going to prove that then K must be identical with I.

Let K = ] a, b[ and suppose the contrary, that K 6= I. Then at least one of
the endpoints of K is an interior point of I. Without loss of generality we can
assume that a ∈ I. We can also assume that b < ∞. If this is not true, let us
choose b∗ < b and work with this value. Because of the strict monotonicity and
continuity there exists 0 < δ < b− a so that

αϕ(x) + (1− α)ϕ(y) ∈ ϕ(K) and (1− α)ψ(x) + αψ(y) ∈ ψ(K) (27)

for all x ∈ ] a− δ, a[ , y ∈ ] b− δ, b[ .
1. case: p 6= 0.
(24) implies

ϕ−1(t) =
1
p

log t, if t ∈ ϕ(K) ⊂ R+ (28)
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and
ψ−1(t) = −1

p
log t, if t ∈ ψ(K) ⊂ R+. (29)

Using (24), (27), (28) and (29), from the functional equation (3) we obtain

1
p

log
(
αϕ(x) + (1− α)epy

)− 1
p

log
(
(1− α)ψ(x) + αe−py

)
= x + y (30)

for every x ∈ ] a− δ, a[ , y ∈ ] b− δ, b[ . Rearranging the functional equation (30),
we have

αϕ(x)− (1− α)epx = (1− α)epy (ψ(x)epx − 1)

for all x ∈ ] a− δ[ , y ∈ ] b− δ, b[ . Therefore

ψ(x)epx − 1 = 0, if x ∈ ] a− δ, a[ .

From this
ψ(x) = e−px

for all ] a− δ, b[ . For this reason

ϕ(x) = epx

for all ] a− δ, b[ which is larger than K. This contradicts the maximality of K.
2. case: p = 0.
Then

ϕ(x) = ψ(x) = x if x ∈ ] a, b[ . (31)

Let x ∈ ] a− δ, a[ , y ∈ ] b− δ, b[ . Using (3), (27) and (31), we get

αϕ(x) + (1− α)ψ(x) = x (32)

for every x ∈ ] a− δ, a[ . Then

αϕ(a− δ) + (1− α)ψ(a− δ) = a− δ.

Thus we can assume that
ϕ(a− δ) ≥ a− δ. (33)

Let x, y ∈ [a− δ, a], then (3) and (32) imply

(1− α)
x− αϕ(x)

1− α
+ α

y − αϕ(y)
1− α

= ψ (x + y −Aϕ(x, y; α))
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for every x, y ∈ ] a− δ, a[ . Using the functional equation (32) again, we obtain

αx+(1−α)y+(1−α)αϕ(x)+α2ϕ(y) = Aϕ(x, y;α)+αϕ(x+y−Aϕ(x, y; α)) (34)

for all x, y ∈ ] a− δ, a[ . Let

f(t) := t− αϕ(t) t ∈ ] a− δ, a[ . (35)

Then we have from (34) and (35) that

(1− α)f(x) + αf(y) = f(x + y −Aϕ(x, y; α))

for every x, y ∈ ] a− δ, a[ . Because of (33)

γ :=
a− (a− δ)

ϕ(a)− ϕ(a− δ)
≥ δ

a− (a− δ)
= 1,

consequently the assumptions of Lemma 2 are satisfied, thus

ϕ(x) =
1
γ

x− σ

γ
x ∈ [a− δ, a] (36)

and

ψ(x) =
x− αϕ(x)

1− α
=

(1− α
γ )x + ασ

γ

1− α
x ∈ [a− δ, a]. (37)

Since ϕ(a) = a, from (36) we obtain

σ = (1− γ)a. (38)

So

ϕ(x) =
1
γ

x− 1− γ

γ
a x ∈ [A, B] (39)

ψ(x) =
γ − α

γ(1− α)
x +

(1− γ)α
γ(1− α)

a x ∈ [A, B] (40)

ϕ−1(x) = γx + (1− γ)a x ∈ ϕ([A,B]) (41)

ψ−1(x) =
γ(1− α)
γ − α

x− (1− γ)α
γ − α

a x ∈ ψ([A,B]). (42)

Let y ∈ [a, b] and x ∈ [a− δ, a], then by (3), (39), (40), (41) and (42), we get(
γ − αγ +

γ(1− α)
γ − α

α− 1
)

y +
(

1− γ − α + αγ − 1− γ

γ − α
α2

)
a = 0 (43)

for every y ∈ [a, b]. Thus

γ − αγ +
γ(1− α)
γ − α

α− 1 = 0. (44)

Using (4) and (44), we have
γ = 1. (45)

¤
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3. Continuously differentiable solutions

Lemma 3. Let K ⊂ R be a nonempty open interval, f, g : K → R+ contin-

uous functions, and α ∈ ] 0, 1[ \ { 1
2}. If

α2f(u)g(v)− (1− α)2f(v)g(u) =
(
αg(v)− (1− α)g(u)

)
f
(
αu + (1− α)v

)
(46)

holds for every u, v ∈ K and f is continuously differentiable on J ⊂ K, then g is

continuously differentiable on J too.

Proof. Let v0 be fixed and u an arbitrary value in J . Then from (46) we
get

[
(1− α)f

(
(αu + (1− α)v0

)− (1− α)2f(v0)
]
g(u)

=
[
αf

(
αu + (1− α)v0

)− α2f(u)
]
g(v0).

If (1 − α)f((αu + (1 − α)v0) − (1 − α)2f(v0) = 0 on some interval where v0 is
fixed, then f is constant, thus g is also constant on the same interval. So we can
assume that there exists a fixed value v0 in J so that (1−α)f((αu+(1−α)v0)−
(1− α)2f(v0) 6= 0, (u ∈ J). Then

g(u) =

(
αf

(
(αu + (1− α)v0

)− (1− α)2f(u)
)
g(v0)

(1− α)f
(
(αu + (1− α)v0

)− (1− α)2f(v0)
.

Because of the differentiability of f there exists g′(u) for every u ∈ J . Using the
assumption of the lemma, g′ is continuous. ¤

Theorem 3. Let K ⊂ R be a nonempty open interval, f, g : K → R+

continuous functions, α ∈ ] 0, 1[ \ { 1
2}. If (46) is satisfied, then there exists a

nonempty interval J ⊂ K such that f and g are continuously differentiable on J .

Proof. Because of the previous lemma it is sufficient to show that f is
continuously differentiable on a nonempty subinterval of K.

Let us interchange u and v in (46). Then we obtain the following linear
system of equations for the unknown pair (g(u), g(v)):

[
α2f(u)− αf

(
αu + (1− α)v

)]
g(v)

+
[
(1− α)f

(
αu + (1− α)v

)− (1− α)2f(v)
]
g(u) = 0

[
(1− α)f

(
αv + (1− α)u

)− (1− α)2f(u)
]
g(v)

+
[
α2f(v)− αf

(
αv + (1− α)u

)]
g(u) = 0.

(47)
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(47) is a homogeneous linear system of equations for every fixed pair (u, v). Be-
cause of the positivity of g(u) and g(v) the determinant of the system is equal to
zero. Thus we obtain a functional equation, in which there is only one unknown
function:

(
α2f(u)− αf

(
αu + (1− α)v

))(
α2f(v)− αf

(
αv + (1− α)u

))

=
(
(1− α)f

(
αu + (1− α)v

)− (1− α)2f(v)
)

·
(
(1− α)f

(
αv + (1− α)u

)− (1− α)2f(u)
)
.

(48)

Rearranging the previous equation we get

[(
α4 − (1− α)4

)
f(u)− α3f

(
αu + (1− α)v

)

+ (1− α)3f
(
αv + (1− α)u

)]
f(v)

= α3f
(
αv + (1− α)u

)
f(u)− (1− α)3f

(
αu + (1− α)v

)

+
(
(1− α)3 − α3

)
f
(
αv + (1− α)u

)
f
(
αu + (1− α)v

)
.

(49)

Let

F (u, v) :=
(
α4 − (1− α)4

)
f(u)− α3f

(
αu + (1− α)v

)

+ (1− α)3f
(
αv + (1− α)u

)
, u, v ∈ K,

and
N := {(u, v) ∈ K2 | F (u, v) = 0}. (50)

Then F is continuous on K2, hence N is a closed subset of K2. Furthermore

F (u, u) = α(1− α)(1− 2α)f(u) 6= 0. (51)

So (u, u) cannot be an accumulation point of N for all u ∈ K. Thus for every
u0 ∈ K there exists ε0 > 0 so that

F (u, v) 6= 0 (u, v) ∈ G
(
(u0, u0), ε0

)
, (52)

namely there is J ⊂ K, such that

F (u, v) 6= 0 u, v ∈ J. (53)
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Using (49) and (53) we obtain

f(v) =
[
α3f

(
αv + (1− α)u

)
f(u)− (1− α)3f

(
αu + (1− α)v

)

+
(
(1− α)3 − α3

)
f
(
αv + (1− α)u

)
f
(
αu + (1− α)v

)]

·
[(

α4 − (1− α)4
)
f(u)− α3f

(
αu + (1− α)v

)

+ (1− α)3f
(
αv + (1− α)u

)]−1

(54)

for every u, v ∈ J . Let us now apply Járai’s theorem [8, Theorem 11.6] to (54)
with the following casting:

Z ⊂ R an open set, T = Y = K, Rk = Rs = R

D = K2, v = t, u = y

g1(t, y) = y, g2(t, y) = αt + (1− α)y, g3(t, y) = αy + (1− α)t

h(z1, z2, z3) =
α3z1z2 − (1− α)3z3 + ((1− α)3 − α)3z2z3

((1− α)4 − α4)z1 − α3z3 + (1− α)3z2
.

Then h and gi (i = 1, 2, 3) fulfil the assumptions of the above mentioned theorem
of Járai, since h is two times continuously differentiable, gi’s derivatives with
respect to y do not vanish and f is continuous.

We have to determine only the compact set C ⊂ K. It can be assumed that
K is bounded. Let K := ] a, b[ and

C := [(1− α + α2)a + α(1− α)b , α(1− α)a + (1− α + α2)b].

Because of Járai’s theorem mentioned above, f is a locally Lipschitz function
on K.

Applying another theorem of Járai [8, Theorem 14.2] to (54) with similar
casting as above, with fi := f a locally Lipschitz function, the previously men-
tioned f is differentiable almost everywhere. Using [8, Theorem 14.2] we obtain
that there exists a nonempty, open subinterval of K, where f is continuously
differentiable. ¤

Theorem 4. Let J ⊂ R be a nonempty open interval, f, g : J → R+

continuously differentiable functions, α ∈ ] 0, 1[ \ { 1
2}. If (46) is satisfied, then

there exists c ∈ R, c 6= 0 such that

f(u)g(u) = c u ∈ J. (55)
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Proof. Differentiate the functional equation (46) with respect to u and
substitute u = v, then we obtain the following functional equation:

α2f ′(u)g(u)− (1− α)2f(u)g′(u) = −(1− α)g′(u)f(u) + (2α− 1)αg(u)f ′(u).

Let us rearrange the previous equation

f ′(u)g(u) + f(u)g′(u) = 0,

then (
f(u)g(u)

)′ = 0 u ∈ J.

Consequently

f(u)g(u) = c 6= 0 because f(u)g(u) > 0 u ∈ J. ¤

Theorem 5. Let K ⊂ R be a nonempty open interval, f, g : K → R+

continuous functions, α ∈ ] 0, 1[ \ { 1
2}. If (46) is satisfied then there exists a

nonempty open interval J ⊂ K such that

f(u) = Au + B, g(u) =
c

Au + B
, u ∈ J, (56)

where A, B, c are real constants and Ac 6= 0.

Proof. Because of Theorem 2. there exists a nonempty open subinterval
J ⊂ K such that f and g are continuously differentiable on J . Using now The-
orem 3. we can effect the substitution g(u) = c

f(u) (u ∈ J) in the functional
equation (46), and we obtain

(
αf(u)− (1− α)f(v)

)(
αf(u) + (1− α)f(v)− f(αu + (1− α)v)

)
= 0,

for every u, v ∈ J . Let

F (u, v) := αf(u)− (1− α)f(v), u, v ∈ J,

then F (u, u) = (2α − 1)f(u) 6= 0. Similarly as in the proof of Theorem 3 we see
that there exists J∗ ⊂ J so that

F (u, v) 6= 0

for every u, v ∈ J∗. Thus

αf(u) + (1− α)f(v)− f(αu + (1− α)v) = 0, u, v ∈ J∗.

From this equation we obtain that f is Jensen-convex and Jensen-concave at
the same time (see [5] and [10]). According to the assumptions of the theorem,
f is continuous on J∗, so f is also affine on J∗ (see [1, Part I, Chapter 2.1.4,
Theorem 1, p. 46], [9, Part III, Chapter 2, Theorem 2, p. 316]). ¤
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We can give now the continuously differentiable solutions.

Theorem 6. Let I ⊂ R be a nonempty open interval, ϕ, ψ ∈ CM(I). As-

sume that ϕ and ψ are solutions of the functional equation (3). If there exists a

nonempty open interval J ⊂ I, such that ϕ and ψ are continuously differentiable

on J , then there is a constant p ∈ R so that

ϕ ∼ χp and ψ ∼ χ−p (57)

for every x ∈ I.

Proof. Let us differentiate (3) with respect to x and y respectively. Then
we obtain the following equations:

αϕ′(x)
ϕ′ (Aϕ(x, y; α))

+
(1− α)ψ′(x)

ψ′ (Aϕ(x, y; 1− α))
= 1 (58)

(1− α)ϕ′(y)
ϕ′ (Aϕ(x, y; α))

+
αψ′(y)

ψ′ (Aϕ(x, y; 1− α))
= 1 (59)

for every x, y ∈ J . Multiplying by αψ′(y) the first equation and by (1− α)ψ′(x)
the second one we get two more equations. Let us subtract the second of these
equations from the first one. Thus we get

α2ϕ′(x)ψ′(y)− (1− α)2ϕ′(y)ψ′(x)
ϕ′ (Aϕ(x, y; α))

= αψ′(y)− (1− α)ψ′(x) x, y ∈ J. (60)

Using the substitutions in (60)

ϕ(x) := u, ϕ(y) := v, ϕ′ ◦ ϕ−1 := f, ψ′ ◦ ϕ−1 := g,

we obtain that

α2f(u)g(v)− (1− α)2f(v)g(u) =
(
αg(v)− (1− α)g(u)

)
f
(
αu + (1− α)v

)
(61)

for every u, v ∈ K =: ϕ(J), where f and g are continuous functions on K. By
the previous theorems there exist a nonempty open interval J∗ ⊂ K and A, B, c,
(Ac 6= 0) real constants so that

f(u) = Au + B, g(u) =
c

Au + B
, u ∈ J∗. (62)

Consequently
ϕ′(x) = Aϕ(x) + B x ∈ ϕ−1(J∗) ⊂ I. (63)
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Then there exists p such that

ϕ(x) ∼ χp(x) x ∈ ϕ−1(J∗).

Using this and (62) we have

ψ(x) ∼ χ−p(x) x ∈ ϕ−1(J∗).

Therefore we obtain the solutions on a subinterval of I. We can extend them with
the aid of the extension theorem. So the proof is complete. ¤
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