A problem of Galambos on Oppenheim series expansions

By BAO-WEI WANG (Wuhan) and JUN WU (Wuhan)

Abstract

In this paper, we investigate the Hausdorff dimension of exceptional sets in the metric properties of digits of Oppenheim series expansions and answer a question posed by Galambos.

1. Introduction

For any $x \in(0,1]$, the algorithm

$$
\begin{equation*}
x=x_{1}, \quad d_{n}=\left[1 / x_{n}\right]+1, \quad x_{n}=1 / d_{n}+a_{n} / b_{n} \cdot x_{n+1}, \tag{1}
\end{equation*}
$$

where $a_{n}=a_{n}\left(d_{1}, \ldots, d_{n}\right)$ and $b_{n}=b_{n}\left(d_{1}, \ldots, d_{n}\right)$ are positive integer valued functions and $[y]$ denotes the integer part of y, leads to the Oppenheim expansion [12]

$$
\begin{equation*}
x \sim \frac{1}{d_{1}}+\frac{a_{1}}{b_{1}} \frac{1}{d_{2}}+\cdots+\frac{a_{1} a_{2} \ldots a_{n}}{b_{1} b_{2} \ldots b_{n}} \frac{1}{d_{n+1}}+\ldots \tag{2}
\end{equation*}
$$

By (1),

$$
\begin{equation*}
\frac{1}{d_{n}}<x_{n} \leq \frac{1}{d_{n}-1} \tag{3}
\end{equation*}
$$

and hence by the last equality in (1),

$$
\begin{equation*}
d_{n+1}>\frac{a_{n}}{b_{n}} d_{n}\left(d_{n}-1\right) \tag{4}
\end{equation*}
$$

The expansion defined by (1) and (2) is convergent and its sum is equal to x. A sufficient condition for a series on the right hand side in (2) to be the expansion of its sum by the algorithm (1) is (see [12])

$$
\begin{equation*}
d_{n+1} \geq \frac{a_{n}}{b_{n}} d_{n}\left(d_{n}-1\right)+1 \quad \text { for all } n \geq 1 \tag{5}
\end{equation*}
$$

Definition 1.1. We call the expansion (2) (obtained by the algorithm (1)) restricted Oppenheim expansion of x if a_{n} and b_{n} depend on the last denominator d_{n} only and if the function

$$
\begin{equation*}
h_{n}(j)=\frac{a_{n}(j)}{b_{n}(j)} j(j-1) \tag{6}
\end{equation*}
$$

is integer-valued, for all $n \geq 1$ and $j \geq 2$.
In the present paper, we deal with restricted Oppenheim expansions only. In this case, (4) and (5) are equivalent.

The representation (2) under (1) was first studied by Oppenheim [12], including Lüroth ([11]), Engel, Sylvester expansions ([2]) and Cantor infinite product ([13]) as special cases. Oppenheim established the arithmetical properties, including the question of rationality of the expansion. The foundations of the metric theory of such expansions were laid down by Galambos [5], [6], [7], [9], see also the monographs of Galambos [8], Schweiger [14], Vervaat [15], Dajani and Kraaikamp [1]. From [8], Chapter 6, it can be seen that the integer approximations $T_{n}(x)$ to the ratios $d_{n}(x) / h_{n-1}\left(d_{n-1}(x)\right)$ defined by

$$
\begin{equation*}
T_{n}(x)<\frac{d_{n}(x)}{h_{n-1}\left(d_{n-1}(x)\right)} \leq T_{n}(x)+1, \quad n \geq 1 \tag{7}
\end{equation*}
$$

where $h_{0}(x) \equiv 1$, plays an important role in the metric theory of Oppenheim expansions, see Galambos [8] Chapter VI. Moreover, they are stochastically independent and are distributed as the denominators in the Lüroth expansion. Galambos, see [8] Page 132, posed the question to calculate the Hausdorff dimension of the set

$$
B_{m}=\left\{x \in(0,1]: 1 \leq T_{n}(x) \leq m \text { for all } n \geq 1\right\}, \quad m \geq 2,
$$

and compare this with the Lüroth case. In [16], the second author concerned this problem under the condition $h_{n}(j)$ is of order $t(t \geq 1)$, see [16] for the definition. In this paper, we continue to consider this problem. Under more natural conditions, we obtain the Hausdorff dimension of B_{m} and thus answer
the question of Galambos. To obtain the lower bound of the Huasdorff dimension of a fractal set, a mass distribution is needed, which is a necessary (and sufficient) tool for this. The mass distribution constructed here is quite technical and subtle.

We use $|\cdot|$ to denote the diameter of a subset of $(0,1], \operatorname{dim}_{H}$ to denote the Hausdorff dimension and 'cl' the closure of a subset of $(0,1]$ respectively.

2. Hausdorff dimension of B_{m}

For any $m \geq 2$, let

$$
B_{m}=\left\{x \in(0,1]: 1 \leq T_{n}(x) \leq m \text { for all } n \geq 1\right\}
$$

By (7), it is easy to check that

$$
\begin{equation*}
B_{m}=\left\{x \in(0,1]: 1<\frac{d_{n}(x)}{h_{n-1}\left(d_{n-1}(x)\right)} \leq m+1 \text { for all } n \geq 1\right\} \tag{8}
\end{equation*}
$$

where $h_{0}(n) \equiv 1$. Thus in order to calculate the Hausdorff dimensions of B_{m}, $m \geq 2$, it is sufficient to consider the following sets

$$
C_{m}=\left\{x \in(0,1]: 1<\frac{d_{n}(x)}{h_{n-1}\left(d_{n-1}(x)\right)} \leq m \text { for all } n \geq 1\right\}, \quad m \geq 3
$$

From now on, we fix $m \geq 3$ be a positive integer.
Lemma 2.1. For any integer $a \geq 1$, let $S(a)$ be determined by the following equation

$$
\begin{equation*}
\sum_{a<b \leq m a}\left(\frac{a}{b(b-1)}\right)^{S(a)}=1 \tag{9}
\end{equation*}
$$

Then

$$
\lim _{a \rightarrow+\infty} S(a)=1
$$

Proof. Since

$$
\sum_{a<b \leq m a}\left(\frac{a}{b(b-1)}\right)=1-\frac{1}{m}<1
$$

we have $S(a) \leq 1$ for all $a \geq 1$.
On the other hand, for any $1 / 2<s<1$,

$$
\sum_{a<b \leq m a}\left(\frac{a}{b(b-1)}\right)^{s} \geq \sum_{a \leq b \leq m a}\left(\frac{a}{b(b-1)}\right)^{s}-\left(\frac{1}{a-1}\right)^{s}
$$

$$
\begin{aligned}
& \geq \int_{a}^{m a} \frac{a^{s}}{x^{2 s}} d x-\left(\frac{1}{a-1}\right)^{s} \\
& =\frac{1}{1-2 s}\left((m a)^{1-2 s}-a^{1-2 s}\right) \cdot a^{s}-\left(\frac{1}{a-1}\right)^{s} \\
& =\frac{\left(1-m^{1-2 s}\right) \cdot a^{1-s}}{2 s-1}-\left(\frac{1}{a-1}\right)^{s}>1, a \text { is large enough. }
\end{aligned}
$$

Thus when a is large enough, $S(a)>s$. The proof of Lemma 2.1 is finished.
We now state the mass distribution principle, see [4] Proposition 2.3, that will be used later.

Lemma 2.2. Let $E \subset(0,1]$ be a Borel set and μ be a measure with $\mu(E)>0$. If for any $x \in E$,

$$
\liminf _{r \rightarrow 0} \frac{\log \mu(B(x, r))}{\log r} \geq s
$$

where $B(x, r)$ denotes the open ball with center at x and radius r, then $\operatorname{dim}_{H} E \geq s$.
Now we are in the position to prove the main result of this paper.
Theorem 2.3. Suppose $h_{j}(d) \geq d-1$ for all $j \geq 1$ and $d \geq 2$, then for each $m \geq 3$,

$$
\operatorname{dim}_{H} C_{m}=1
$$

Proof. For any $j \geq 1$ and $d \geq 2$, define

$$
\begin{gathered}
G_{j}(d)=m \cdot h_{j}(d) ; \\
M_{j}(m)=G_{j-1} \circ G_{j-2} \circ \cdots \circ G_{1}(m), \quad M_{1}(m):=m .
\end{gathered}
$$

From the assumption on $h_{j}(d)$, it is easy to check that

$$
M_{j}(m) \geq m^{j}-m^{j-1}-\cdots-m^{2}-m \quad \text { for each } j \geq 1
$$

thus

$$
\begin{equation*}
\lim _{j \rightarrow \infty} M_{j}(m)=+\infty \tag{10}
\end{equation*}
$$

For any $0<s<1$, from Lemma 2.1, since $\lim _{a \rightarrow \infty} S(a)=1$, there exists $a_{0} \in \mathbb{N}$ such that for any $a \geq a_{0}, S(a)>s$. By (10), there exists $k_{0} \geq 1$ such that for any $k \geq k_{0}$,

$$
\begin{equation*}
M_{k}(m) \geq a_{0}+1 \tag{11}
\end{equation*}
$$

Define

$$
\begin{gathered}
E_{m}=\left\{x \in(0,1]: d_{j}(x)=M_{j}(m) \text { for all } 1 \leq j \leq k_{0}\right. \\
\text { and } \left.1<\frac{d_{j+1}(x)}{h_{j}\left(d_{j}(x)\right)} \leq m \text { for all } j \geq k_{0}\right\}
\end{gathered}
$$

It is clear that $E_{m} \subset C_{m}$. Now we estimate the Hausdorff dimension of E_{m}.
For any $x \in E_{m}$, since $h_{j}(d) \geq d-1$ for all $j \geq 1$ and $d \geq 2$, by (5), we have, for any $k \geq k_{0}$,

$$
\begin{align*}
d_{k}(x) & \geq h_{k-1}\left(d_{k-1}(x)\right)+1 \geq d_{k-1}(x) \geq \cdots \geq d_{k_{0}+1}(x) \\
& \geq h_{k_{0}}\left(d_{k_{0}}(x)\right)+1 \geq d_{k_{0}}(x)=M_{k_{0}}(m) \geq a_{0}+1, \tag{12}
\end{align*}
$$

and

$$
\begin{equation*}
h_{k}\left(d_{k}(x)\right) \geq d_{k}(x)-1 \geq a_{0} \tag{13}
\end{equation*}
$$

Now we introduce a symbolic space defined as follows:
For any $k \geq k_{0}$, let

$$
\begin{aligned}
D_{k}=\{ & \sigma=\left(\sigma_{1}, \ldots, \sigma_{k}\right) \in \mathbb{N}^{k}: \sigma_{j}=M_{j}(m) \text { for all } 1 \leq j \leq k_{0} \\
& \text { and } \left.1<\frac{\sigma_{j+1}}{h_{j}\left(\sigma_{j}\right)} \leq m \text { for all } k_{0} \leq j \leq k-1\right\}
\end{aligned}
$$

and define

$$
D=\bigcup_{k=k_{0}}^{\infty} D_{k}
$$

For any $k \geq k_{0}$ and $\sigma=\left(\sigma_{1}, \ldots, \sigma_{k}\right) \in D_{k}$, let J_{σ} and I_{σ} denote the following closed subintervals of $(0,1]$:

$$
\begin{aligned}
& J_{\sigma}=\bigcup_{h_{k}\left(\sigma_{k}\right)<d \leq m h_{k}\left(\sigma_{k}\right)} \operatorname{cl}\left\{x \in(0,1]: d_{1}(x)=\sigma_{1}, d_{2}(x)=\sigma_{2}, \ldots, d_{k}(x)=\sigma_{k}, d_{k+1}(x)=d\right\}, \\
& I_{\sigma}=\operatorname{cl}\left\{x \in(0,1]: d_{1}(x)=\sigma_{1}, d_{2}(x)=\sigma_{2}, \ldots, d_{k}(x)=\sigma_{k}\right\}
\end{aligned}
$$

and each J_{σ} is called an interval of k th-order. Finally, define

$$
E=\bigcap_{k=k_{0}}^{\infty} \bigcup_{\sigma \in D_{k}} J_{\sigma} .
$$

It is obvious that

$$
E=E_{m}
$$

From the proof of Theorem 6.1 in [8], we have, for any $k \geq k_{0}$ and $\sigma \in D_{k}$,

$$
\begin{equation*}
\left|I_{\sigma}\right|=\frac{a_{1}\left(\sigma_{1}\right)}{b_{1}\left(\sigma_{1}\right)} \cdot \frac{a_{2}\left(\sigma_{2}\right)}{b_{2}\left(\sigma_{2}\right)} \cdots \frac{a_{k-1}\left(\sigma_{k-1}\right)}{b_{k-1}\left(\sigma_{k-1}\right)} \cdot \frac{1}{\left(\sigma_{k}-1\right) \sigma_{k}} \tag{14}
\end{equation*}
$$

thus by (6), we have

$$
\begin{align*}
\left|J_{\sigma}\right| & =\sum_{h_{k}\left(\sigma_{k}\right)<d \leq m h_{k}\left(\sigma_{k}\right)} \frac{a_{1}\left(\sigma_{1}\right)}{b_{1}\left(\sigma_{1}\right)} \cdots \frac{a_{k}\left(\sigma_{k}\right)}{b_{k}\left(\sigma_{k}\right)} \cdot \frac{1}{(d-1) d} \\
& =\frac{a_{1}\left(\sigma_{1}\right)}{b_{1}\left(\sigma_{1}\right)} \cdots \frac{a_{k}\left(\sigma_{k}\right)}{b_{k}\left(\sigma_{k}\right)}\left(\frac{1}{h_{k}\left(\sigma_{k}\right)}-\frac{1}{m h_{k}\left(\sigma_{k}\right)}\right) \\
& =\left(1-\frac{1}{m}\right) \frac{a_{1}\left(\sigma_{1}\right)}{b_{1}\left(\sigma_{1}\right)} \cdots \frac{a_{k}\left(\sigma_{k}\right)}{b_{k}\left(\sigma_{k}\right)} \cdot \frac{1}{h_{k}\left(\sigma_{k}\right)} \\
& =\left(1-\frac{1}{m}\right) \frac{a_{1}\left(\sigma_{1}\right)}{b_{1}\left(\sigma_{1}\right)} \cdots \frac{a_{k-1}\left(\sigma_{k-1}\right)}{b_{k-1}\left(\sigma_{k-1}\right)} \cdot \frac{1}{\left(\sigma_{k}-1\right) \sigma_{k}} . \tag{15}
\end{align*}
$$

For any $k \geq k_{0}, \sigma \in D_{k}$, define

$$
\begin{equation*}
\mu\left(J_{\sigma}\right)=\prod_{i=k_{0}}^{k-1}\left(\frac{h_{i}\left(\sigma_{i}\right)}{\sigma_{i+1}\left(\sigma_{i+1}-1\right)}\right)^{S\left(h_{i}\left(\sigma_{i}\right)\right)}, \quad \text { if } k \geq k_{0}+1 \tag{16}
\end{equation*}
$$

and

$$
5 \mu\left(J_{\sigma}\right)=1, \quad \text { if } \sigma \in D_{k_{0}}
$$

μ is a probability mass distribution supported on E_{m}, because

$$
\begin{aligned}
& \sum_{\sigma_{k+1}=h_{k}\left(\sigma_{k}\right)+1}^{m h_{k}\left(\sigma_{k}\right)} \mu\left(J_{\sigma_{1} \sigma_{2} \ldots \sigma_{k+1}}\right) \\
& \quad=\sum_{\sigma_{k+1}=h_{k}\left(\sigma_{k}\right)+1}^{m h_{k}\left(\sigma_{k}\right)} \prod_{i=k_{0}}^{k}\left(\frac{h_{i}\left(\sigma_{i}\right)}{\sigma_{i+1}\left(\sigma_{i+1}-1\right)}\right)^{S\left(h_{i}\left(\sigma_{i}\right)\right)}=\mu\left(J_{\sigma_{1} \sigma_{2} \ldots \sigma_{k}}\right),
\end{aligned}
$$

and

$$
\sum_{\sigma_{k_{0}+1}=}^{m h_{k_{0}}\left(\sigma_{k_{0}}\right)}\left(\sigma_{k_{0}}\right)+1, ~ \mu\left(J_{\sigma_{1} \sigma_{2} \ldots \sigma_{k_{0}+1}}\right)
$$

$$
\begin{aligned}
& =\sum_{\sigma_{k_{0}+1}=h_{k_{0}}\left(\sigma_{k_{0}}\right)+1}^{m h_{k_{0}}\left(\sigma_{k_{0}}\right)}\left(\frac{h_{k_{0}}\left(\sigma_{k_{0}}\right)}{\sigma_{k_{0}+1}\left(\sigma_{k_{0}+1}-1\right)}\right)^{S\left(h_{k_{0}}\left(\sigma_{k_{0}}\right)\right)} \\
& =1=\mu\left(J_{\sigma_{1} \sigma_{2} \ldots \sigma_{k_{0}}}\right)
\end{aligned}
$$

For any $x \in E_{m}$, we prove that

$$
\begin{equation*}
\liminf _{r \rightarrow 0} \frac{\log \mu(B(x, r))}{\log r} \geq s \tag{17}
\end{equation*}
$$

If (17) is proved, by Lemma 2.2, we have $\operatorname{dim}_{H} E_{m} \geq s$. Since $0<s<1$ is arbitrary, this implies $\operatorname{dim}_{H} C_{m}=1$.

Now we prove (17).
For any $x \in E_{m}$, there exists $\sigma=\left(\sigma_{1}, \sigma_{2}, \ldots, \sigma_{n}, \ldots\right)$ such that for any $k \geq k_{0},(\sigma \mid k):=\left(\sigma_{1}, \sigma_{2}, \ldots, \sigma_{k}\right) \in D_{k}$ and $d_{j}(x)=\sigma_{j}$ for each $j \geq 1$. Thus

$$
x \in J_{\sigma_{1} \sigma_{2} \ldots \sigma_{k}} \quad \text { for all } k \geq k_{0}
$$

From the proof of Theorem 6.1 in [8], we have, for any $k \geq k_{0}$, the right endpoint of the interval $J_{\sigma_{1} \sigma_{2} \ldots \sigma_{k}}$, i.e., $\max \left\{y \in(0,1]: y \in J_{\sigma_{1} \sigma_{2} \ldots \sigma_{k}}\right\}$, is

$$
\begin{align*}
\frac{1}{\sigma_{1}} & +\sum_{j=2}^{k} \frac{a_{1}\left(\sigma_{1}\right)}{b_{1}\left(\sigma_{1}\right)} \cdots \frac{a_{j-1}\left(\sigma_{j-1}\right)}{b_{j-1}\left(\sigma_{j-1}\right)} \cdot \frac{1}{\sigma_{j}}+\frac{a_{1}\left(\sigma_{1}\right)}{b_{1}\left(\sigma_{1}\right)} \cdots \frac{a_{k}\left(\sigma_{k}\right)}{b_{k}\left(\sigma_{k}\right)} \cdot \frac{1}{h_{k}\left(\sigma_{k}\right)} \\
= & \frac{1}{\sigma_{1}}+\sum_{j=2}^{k} \frac{a_{1}\left(\sigma_{1}\right)}{b_{1}\left(\sigma_{1}\right)} \cdots \frac{a_{j-1}\left(\sigma_{j-1}\right)}{b_{j-1}\left(\sigma_{j-1}\right)} \cdot \frac{1}{\sigma_{j}} \\
& +\frac{a_{1}\left(\sigma_{1}\right)}{b_{1}\left(\sigma_{1}\right)} \cdots \frac{a_{k-1}\left(\sigma_{k-1}\right)}{b_{k-1}\left(\sigma_{k-1}\right)} \cdot \frac{1}{\sigma_{k}\left(\sigma_{k}-1\right)} \\
= & \frac{1}{\sigma_{1}}+\frac{a_{1}\left(\sigma_{1}\right)}{b_{1}\left(\sigma_{1}\right)} \cdot \frac{1}{\sigma_{2}}+\cdots+\frac{a_{1}\left(\sigma_{1}\right)}{b_{1}\left(\sigma_{1}\right)} \cdots \frac{a_{k-1}\left(\sigma_{k-1}\right)}{b_{k-1}\left(\sigma_{k-1}\right)} \cdot \frac{1}{\sigma_{k}-1} \tag{18}
\end{align*}
$$

The left endpoint of the interval $J_{\sigma_{1} \sigma_{2} \ldots \sigma_{k}}$, i.e., $\min \left\{y \in(0,1]: y \in J_{\sigma_{1} \sigma_{2} \ldots \sigma_{k}}\right\}$, is

$$
\begin{aligned}
\frac{1}{\sigma_{1}} & +\sum_{j=2}^{k} \frac{a_{1}\left(\sigma_{1}\right)}{b_{1}\left(\sigma_{1}\right)} \ldots \frac{a_{j-1}\left(\sigma_{j-1}\right)}{b_{j-1}\left(\sigma_{j-1}\right)} \cdot \frac{1}{\sigma_{j}}+\frac{a_{1}\left(\sigma_{1}\right)}{b_{1}\left(\sigma_{1}\right)} \ldots \frac{a_{k}\left(\sigma_{k}\right)}{b_{k}\left(\sigma_{k}\right)} \cdot \frac{1}{m h_{k}\left(\sigma_{k}\right)} \\
= & \frac{1}{\sigma_{1}}+\sum_{j=2}^{k} \frac{a_{1}\left(\sigma_{1}\right)}{b_{1}\left(\sigma_{1}\right)} \ldots \frac{a_{j-1}\left(\sigma_{j-1}\right)}{b_{j-1}\left(\sigma_{j-1}\right)} \cdot \frac{1}{\sigma_{j}} \\
& +\frac{a_{1}\left(\sigma_{1}\right)}{b_{1}\left(\sigma_{1}\right)} \ldots \frac{a_{k-1}\left(\sigma_{k-1}\right)}{b_{k-1}\left(\sigma_{k-1}\right)} \cdot \frac{1}{m \sigma_{k}\left(\sigma_{k}-1\right)}
\end{aligned}
$$

$$
\begin{align*}
= & \frac{1}{\sigma_{1}}+\frac{a_{1}\left(\sigma_{1}\right)}{b_{1}\left(\sigma_{1}\right)} \cdot \frac{1}{\sigma_{2}}+\ldots \\
& +\frac{a_{1}\left(\sigma_{1}\right)}{b_{1}\left(\sigma_{1}\right)} \ldots \frac{a_{k-1}\left(\sigma_{k-1}\right)}{b_{k-1}\left(\sigma_{k-1}\right)} \cdot\left(\frac{1}{\sigma_{k}}+\frac{1}{m \sigma_{k}\left(\sigma_{k}-1\right)}\right) \tag{19}
\end{align*}
$$

If $\sigma_{k}-1>h_{k-1}\left(\sigma_{k-1}\right)$, from (18), (19), we know the gap between $J_{\sigma_{1} \sigma_{2} \ldots \sigma_{k}}$ and $J_{\sigma_{1} \ldots \sigma_{k-1} \sigma_{k}-1}$ is

$$
\begin{equation*}
\frac{a_{1}\left(\sigma_{1}\right)}{b_{1}\left(\sigma_{1}\right)} \cdots \frac{a_{k-1}\left(\sigma_{k-1}\right)}{b_{k-1}\left(\sigma_{k-1}\right)} \cdot \frac{1}{m\left(\sigma_{k}-1\right)\left(\sigma_{k}-2\right)} \tag{20}
\end{equation*}
$$

In the same way, if $\sigma_{k}+1 \leq m h_{k-1}\left(\sigma_{k-1}\right)$, from (18), (19), we know the gap between $J_{\sigma_{1} \sigma_{2} \ldots \sigma_{k}}$ and $J_{\sigma_{1} \ldots \sigma_{k-1} \sigma_{k}+1}$ is

$$
\begin{equation*}
\frac{a_{1}\left(\sigma_{1}\right)}{b_{1}\left(\sigma_{1}\right)} \cdots \frac{a_{k-1}\left(\sigma_{k-1}\right)}{b_{k-1}\left(\sigma_{k-1}\right)} \cdot \frac{1}{m \sigma_{k}\left(\sigma_{k}-1\right)} \tag{21}
\end{equation*}
$$

For any $0<r<\frac{1}{m}\left|I_{M_{1}(m) M_{2}(m) \ldots M_{k_{0}}(m)}\right|$, since

$$
\left(\sigma \mid k_{0}\right)=\left(M_{1}(m), M_{2}(m), \ldots, M_{k_{0}}(m)\right)
$$

and $\left|I_{(\sigma \mid k)}\right| \rightarrow 0$ as $k \rightarrow \infty$, there exists k (depends on x) such that

$$
\frac{1}{m}\left|I_{(\sigma \mid k+1)}\right|<r \leq \frac{1}{m}\left|I_{(\sigma \mid k)}\right|
$$

that is,

$$
\begin{align*}
& \frac{1}{m} \frac{a_{1}\left(\sigma_{1}\right)}{b_{1}\left(\sigma_{1}\right)} \cdots \frac{a_{k}\left(\sigma_{k}\right)}{b_{k}\left(\sigma_{k}\right)} \cdot \frac{1}{\sigma_{k+1}\left(\sigma_{k+1}-1\right)} \\
& \quad<r \leq \frac{1}{m} \frac{a_{1}\left(\sigma_{1}\right)}{b_{1}\left(\sigma_{1}\right)} \cdots \frac{a_{k-1}\left(\sigma_{k-1}\right)}{b_{k-1}\left(\sigma_{k-1}\right)} \cdot \frac{1}{\sigma_{k}\left(\sigma_{k}-1\right)} \tag{22}
\end{align*}
$$

By $(14),(20)$ and $(21), B(x, r)$ can intersect only one k th-order interval $J_{\sigma_{1} \sigma_{2} \ldots \sigma_{k}}$.
On the other hand, for every $h_{k}\left(\sigma_{k}\right)<j \leq m h_{k}\left(\sigma_{k}\right)$, from (14), we have

$$
\left|I_{\sigma_{1} \sigma_{2} \ldots \sigma_{k} j}\right| \geq \frac{a_{1}\left(\sigma_{1}\right)}{b_{1}\left(\sigma_{1}\right)} \cdots \frac{a_{k}\left(\sigma_{k}\right)}{b_{k}\left(\sigma_{k}\right)} \cdot \frac{1}{m h_{k}\left(\sigma_{k}\right)\left(m h_{k}\left(\sigma_{k}\right)-1\right)}
$$

Thus $B(x, r)$ can intersect at most

$$
\frac{4 r\left(m h_{k}\left(\sigma_{k}\right)\right)^{2}}{\frac{a_{1}\left(\sigma_{1}\right)}{b_{1}\left(\sigma_{1}\right)} \cdots \frac{a_{k}\left(\sigma_{k}\right)}{b_{k}\left(\sigma_{k}\right)}}:=l
$$

$(k+1)$-th-order intervals. Therefore

$$
\mu(B(x, r)) \leq \min \left\{\mu\left(J_{\sigma_{1} \sigma_{2} \ldots \sigma_{k}}\right), \sum_{i} \mu\left(J_{\sigma_{1} \sigma_{2} \ldots \sigma_{k} i}\right)\right\}
$$

where the sum is over all i such that $\max \left\{\sigma_{k+1}-l, h_{k}\left(\sigma_{k}\right)+1\right\} \leq i \leq \sigma_{k+1}+l$.
By (16), we have

$$
\begin{aligned}
\mu(B(x, r)) & \leq \mu\left(J_{\sigma_{1} \sigma_{2} \ldots \sigma_{k}}\right) \min \left\{1, \sum_{i}\left(\frac{h_{k}\left(\sigma_{k}\right)}{i(i-1)}\right)^{S\left(h_{k}\left(\sigma_{k}\right)\right)}\right\} \\
& \leq \mu\left(J_{\sigma_{1} \sigma_{2} \ldots \sigma_{k}}\right) \min \left\{1,2 l\left(\frac{1}{h_{k}\left(\sigma_{k}\right)}\right)^{S\left(h_{k}\left(\sigma_{k}\right)\right)}\right\} \\
& =\mu\left(J_{\sigma_{1} \sigma_{2} \ldots \sigma_{k}}\right) \min \left\{1, \frac{8 r\left(m h_{k}\left(\sigma_{k}\right)\right)^{2}}{\frac{a_{1}\left(\sigma_{1}\right)}{b_{1}\left(\sigma_{1}\right)} \ldots \frac{a_{k}\left(\sigma_{k}\right)}{b_{k}\left(\sigma_{k}\right)}}\left(\frac{1}{h_{k}\left(\sigma_{k}\right)}\right)^{S\left(h_{k}\left(\sigma_{k}\right)\right)}\right\} \\
& \leq \mu\left(J_{\sigma_{1} \sigma_{2} \ldots \sigma_{k}}\right) \cdot 1^{1-s} \cdot\left(\frac{8 r\left(m h_{k}\left(\sigma_{k}\right)\right)^{2}}{\frac{a_{1}\left(\sigma_{1}\right)}{b_{1}\left(\sigma_{1}\right)} \ldots \frac{a_{k}\left(\sigma_{k}\right)}{b_{k}\left(\sigma_{k}\right)}}\left(\frac{1}{h_{k}\left(\sigma_{k}\right)}\right)^{S\left(h_{k}\left(\sigma_{k}\right)\right)}\right)^{s} .
\end{aligned}
$$

From (13), we have, for any $n \geq k_{0}$,

$$
h_{n}\left(\sigma_{n}\right) \geq a_{0}
$$

thus

$$
\begin{equation*}
S\left(h_{n}\left(\sigma_{n}\right)\right) \geq s \quad \text { for all } n \geq k_{0} \tag{23}
\end{equation*}
$$

Combining (6), (16) and (23), we have

$$
\begin{aligned}
\mu(B(x, r)) \leq & {\left[\prod_{i=k_{0}}^{k-1} \frac{h_{i}\left(\sigma_{i}\right)}{\sigma_{i+1}\left(\sigma_{i+1}-1\right)}\left(\frac{8 r\left(m h_{k}\left(\sigma_{k}\right)\right)^{2}}{\frac{a_{1}\left(\sigma_{1}\right)}{b_{1}\left(\sigma_{1}\right)} \cdots \frac{a_{k}\left(\sigma_{k}\right)}{b_{k}\left(\sigma_{k}\right)}}\right)\left(\frac{1}{h_{k}\left(\sigma_{k}\right)}\right)^{S\left(h_{k}\left(\sigma_{k}\right)\right)}\right]^{s} } \\
= & \left(h_{k_{0}}\left(M_{k_{0}}(m)\right) \frac{a_{k_{0}+1}\left(\sigma_{k_{0}+1}\right)}{b_{k_{0}+1}\left(\sigma_{k_{0}+1}\right)} \ldots \frac{a_{k-1}\left(\sigma_{k-1}\right)}{b_{k-1}\left(\sigma_{k-1}\right)} \frac{1}{\sigma_{k}\left(\sigma_{k}-1\right)}\right)^{s} \\
& \cdot\left(\frac{8 r\left(m h_{k}\left(\sigma_{k}\right)\right)^{2}}{\frac{a_{1}\left(\sigma_{1}\right)}{b_{1}\left(\sigma_{1}\right)} \cdots \frac{a_{k}\left(\sigma_{k}\right)}{b_{k}\left(\sigma_{k}\right)}}\right)^{s} \cdot\left(\frac{1}{h_{k}\left(\sigma_{k}\right)}\right)^{s S\left(h_{k}\left(\sigma_{k}\right)\right)} \\
= & \left(h_{k_{0}}\left(M_{k_{0}}(m)\right) \cdot \frac{b_{1}\left(M_{1}(m)\right)}{a_{1}\left(M_{1}(m)\right)} \cdots \frac{b_{k_{0}}\left(M_{k_{0}}(m)\right)}{a_{k_{0}}\left(M_{k_{0}}(m)\right)}\right)^{s}
\end{aligned}
$$

$$
\begin{aligned}
& \cdot\left(\frac{8 r\left(m h_{k}\left(\sigma_{k}\right)\right)^{2}}{\sigma_{k}\left(\sigma_{k}-1\right) \frac{a_{k}\left(\sigma_{k}\right)}{b_{k}\left(\sigma_{k}\right)}} \cdot\left(\frac{1}{h_{k}\left(\sigma_{k}\right)}\right)^{S\left(h_{k}\left(\sigma_{k}\right)\right)}\right)^{s} \\
\leq & c_{1}^{s}\left(r \cdot h_{k}\left(\sigma_{k}\right)\left(\frac{1}{h_{k}\left(\sigma_{k}\right)}\right)^{S\left(h_{k}\left(\sigma_{k}\right)\right)}\right)^{s}
\end{aligned}
$$

where c_{1} is a positive constant which does not depend on x and r.
From the definition of $S(a)$, we have

$$
\begin{aligned}
1 & =\sum_{a<b \leq m a}\left(\frac{a}{b(b-1)}\right)^{S(a)} \\
& \geq(m-1) a\left(\frac{a}{m a(m a-1)}\right)^{S(a)} \geq(m-1) a\left(\frac{a}{m a \cdot m a}\right)^{S(a)} \\
& =(m-1) a\left(\frac{1}{m^{2} a}\right)^{S(a)}
\end{aligned}
$$

thus

$$
\frac{a}{a^{S(a)}} \leq \frac{m^{2 S(a)}}{m-1} \leq \frac{m^{2}}{m-1}
$$

and this implies

$$
h_{k}\left(\sigma_{k}\right)\left(\frac{1}{h_{k}\left(\sigma_{k}\right)}\right)^{S\left(h_{k}\left(\sigma_{k}\right)\right)} \leq \frac{m^{2}}{m-1} .
$$

Therefore

$$
\begin{equation*}
\mu(B(x, r)) \leq c_{2}^{s} \cdot r^{s} \tag{24}
\end{equation*}
$$

where c_{2} is a positive constant which does not depend on x and r.
From (24), we know (17) holds. This completes the proof of Theorem 2.3.
From (8) and Theorem 2.3, we have
Corollary 2.4. Suppose $h_{j}(d) \geq d-1$ for all $j \geq 1$ and $d \geq 2$, then for each $m \geq 2$, we have $\operatorname{dim}_{H} B_{m}=1$.

Remark 2.5. Let $a_{n}\left(d_{1}, \ldots, d_{n}\right)=1, b_{n}\left(d_{1}, \ldots, d_{n}\right)=d_{n}\left(d_{n}-1\right)$, $(n=1,2, \ldots)$. Then the algorithm (1) leads to the Lüroth expansion of x,

$$
\begin{equation*}
x=\frac{1}{d_{1}(x)}+\ldots+\frac{1}{d_{1}(x)\left(d_{1}(x)-1\right) \ldots d_{n-1}(x)\left(d_{n-1}(x)-1\right) d_{n}(x)}+\ldots \tag{25}
\end{equation*}
$$

Here $h_{n}(j)=1$ and $T_{n}(x)=d_{n}(x)-1$. For the Lüroth series, with the help of the theory of self similar set, see [3], Chapter 9, the Hausdorff dimension s of the B_{m} is determined by the following equation

$$
\sum_{2 \leq b \leq m+1}\left(\frac{1}{b(b-1)}\right)^{s}=1
$$

To some extent, Lüroth series expansion stands as a special case to say that the assumption on h_{j} in the main theorem is not superfluous. Moreover, we can obtain: if $l \leq h_{j}\left(d_{j}(x)\right) \leq L$, for all $x \in C_{m}=B_{m-1}$ and j larger than some fixed integer k_{0}, then one can has

$$
0<\inf _{l \leq a \leq L} S(a) \leq \operatorname{dim}_{H} C_{m} \leq \sup _{l \leq a \leq L} S(a)<1
$$

We now list some special cases which satisfy the assumption in Theorem 2.3.
Example 1. Engel expansion. Let $a_{n}\left(d_{1}, \ldots, d_{n}\right)=1, b_{n}\left(d_{1}, \ldots, d_{n}\right)=d_{n}$, ($n=1,2, \ldots$). Then (2), together with the algorithm (1), become Engel expansion of x,

$$
\begin{equation*}
x=\frac{1}{d_{1}(x)}+\frac{1}{d_{1}(x) d_{2}(x)}+\cdots+\frac{1}{d_{1}(x) d_{2}(x) \ldots d_{n}(x)}+\ldots \tag{26}
\end{equation*}
$$

In this case, $h_{n}(j)=j-1$ and $T_{n}(x)=\frac{d_{n}(x)}{d_{n-1}(x)-1}-1$ if $\frac{d_{n}(x)}{d_{n-1}(x)-1}$ is an integer and $\left[\frac{d_{n}(x)}{d_{n-1}(x)-1}\right]$ otherwise. By Corollary 2.4, we have for each $m \geq 2$,

$$
\operatorname{dim}_{H}\left\{x \in(0,1]: 1 \leq T_{n}(x) \leq m \text { for all } n \geq 1\right\}=1
$$

Example 2. Sylvester expansion. Choose $a_{n}\left(d_{1}, \ldots, d_{n}\right)=1, b_{n}\left(d_{1}, \ldots, d_{n}\right)=1$, $(n=1,2, \ldots)$. We get the Sylvester expansion of x,

$$
\begin{equation*}
x=\frac{1}{d_{1}(x)}+\frac{1}{d_{2}(x)}+\cdots+\frac{1}{d_{n}(x)}+\ldots \tag{27}
\end{equation*}
$$

Here $h_{n}(j)=j(j-1)$ and $T_{n}(x)=\frac{d_{n}(x)}{d_{n-1}(x)\left(d_{n-1}(x)-1\right)}-1$ if $\frac{d_{n}(x)}{d_{n-1}(x)\left(d_{n-1}(x)-1\right)}$ is an integer and $\left[\frac{d_{n}(x)}{d_{n-1}(x)\left(d_{n-1}(x)-1\right)}\right.$] otherwise. By Corollary 2.4, we have for each $m \geq 2$,

$$
\operatorname{dim}_{H}\left\{x \in(0,1]: 1 \leq T_{n}(x) \leq m \text { for all } n \geq 1\right\}=1
$$

Example 3. Cantor product. Take $a_{n}\left(d_{1}, \ldots, d_{n}\right)=d_{n}+1$, $b_{n}\left(d_{1}, \ldots, d_{n}\right)=d_{n},(n=1,2, \ldots)$, the expansion (2) yields the Cantor product,

$$
\begin{equation*}
1+x=\left(1+\frac{1}{d_{1}(x)}\right)\left(1+\frac{1}{d_{2}(x)}\right) \ldots\left(1+\frac{1}{d_{n}(x)}\right) \ldots \tag{28}
\end{equation*}
$$

Here $h_{n}(j)=j^{2}-1$ and $T_{n}(x)=\frac{d_{n}(x)}{d_{n-1}^{2}(x)-1}-1$ if $\frac{d_{n}(x)}{d_{n-1}^{2}(x)-1}$ is an integer and $\left[\frac{d_{n}(x)}{d_{n-1}^{2}(x)-1}\right]$ otherwise. By Corollary 2.4, we have for each $m \geq 2$,

$$
\operatorname{dim}_{H}\left\{x \in(0,1]: 1 \leq T_{n}(x) \leq m \text { for all } n \geq 1\right\}=1
$$

Example 4. Modified Engel expansion. Let $a_{n}\left(d_{1}, \ldots, d_{n}\right)=1$, $b_{n}\left(d_{1}, \ldots, d_{n}\right)=d_{n}-1,(n=1,2, \ldots)$. We get the modified Engel expansion of x,

$$
\begin{equation*}
x=\frac{1}{d_{1}(x)}+\cdots+\frac{1}{\left(d_{1}(x)-1\right)\left(d_{2}(x)-1\right) \ldots\left(d_{n-1}(x)-1\right) d_{n}(x)}+\ldots \tag{29}
\end{equation*}
$$

Thus $h_{n}(j)=j$ and $T_{n}(x)=\frac{d_{n}(x)}{d_{n-1}(x)}-1$ if $\frac{d_{n}(x)}{d_{n-1}(x)}$ is an integer and $\left[\frac{d_{n}(x)}{d_{n-1}(x)}\right]$ otherwise. By Corollary 2.4, we have for each $m \geq 2$,

$$
\operatorname{dim}_{H}\left\{x \in(0,1]: 1 \leq T_{n}(x) \leq m \text { for all } n \geq 1\right\}=1
$$

Example 5. Daróczy-Kátai-Birthday expansion. Choose $a_{n}\left(d_{1}, \ldots, d_{n}\right)=d_{n}$, $b_{n}\left(d_{1}, \ldots, d_{n}\right)=1,(n=1,2, \ldots)$, the resulting series expansion of x takes the form,

$$
\begin{equation*}
x=\frac{1}{d_{1}(x)}+\frac{d_{1}(x)}{d_{2}(x)}+\cdots+\frac{d_{1}(x) d_{2}(x) \ldots d_{n-1}(x)}{d_{n}(x)}+\ldots \tag{30}
\end{equation*}
$$

The Daróczy-Kátai-Birthday expansion was introduced for the first time in Galambos [9]. Here $h_{n}(j)=j^{2}(j-1)$ and $T_{n}(x)=\frac{d_{n}(x)}{d_{n-1}^{2}(x)\left(d_{n-1}(x)-1\right)}-1$ if $\frac{d_{n}(x)}{d_{n-1}^{2}(x)\left(d_{n-1}(x)-1\right)}$ is an integer and $\left[\frac{d_{n}(x)}{d_{n-1}^{2}(x)\left(d_{n-1}(x)-1\right)}\right]$ otherwise. By Corollary 2.4 , we have for each $m \geq 2$,

$$
\operatorname{dim}_{H}\left\{x \in(0,1]: 1 \leq T_{n}(x) \leq m \text { for all } n \geq 1\right\}=1
$$

Remark 2.6. A modification of (1) and (3) to the algorithm $0<x \leq 1$, $x=x_{1}$, and

$$
\begin{equation*}
\frac{1}{D_{n}+1}<x_{n} \leq \frac{1}{D_{n}}, \quad \frac{1}{D_{n}}-x_{n}=\frac{a_{n}}{b_{n}} \cdot x_{n+1} \tag{31}
\end{equation*}
$$

generates an alternating series representation

$$
\begin{equation*}
x \sim \frac{1}{D_{1}}-\frac{a_{1}}{b_{1}} \frac{1}{D_{2}}+\cdots+(-1)^{n} \frac{a_{1} a_{2} \ldots a_{n}}{b_{1} b_{2} \ldots b_{n}} \frac{1}{D_{n+1}}+\ldots \tag{32}
\end{equation*}
$$

called alternating Oppenheim expansion. The metric theory for the alternating Oppenheim expansion was studied recently in [10]. Using the same method, we can get the corresponding results of Theorem 2.3 and Corollary 2.4 for this expansion.

Acknowledgement. This work was supported by the Kua-Shi-Ji foundation of Educational Committee and the Special Funds for Major State Basic Research Projects of China.

References

[1] K. Dajani and C. Kraaikamp, Ergodic Theory of Numbers, Carus Mathematical Monographs, 29, Mathematical Association of America, Washington, DC, 2002.
[2] P. Erdős, A. Rényi and P. Szüsz, On Engel's and Sylvester's series, Ann. Sci. Budapest, Sectio Math. 1 (1958), 7-32.
[3] K. J. Falconer, Fractal Geometry, Mathematical Foundations and Application, Wiley, 1990.
[4] K. J. Falconer, Techniques in Fractal Geometry, Wiley, 1997.
[5] J. Galambos, The ergodic properties of the denominators in the Oppenheim expansion of real numbers into infinite series of rationals, Quart. J. Math. Oxford Sec. Series 21 (1970), 177-191.
[6] J. Galambos, Further ergodic results on the Oppenheim series, Quart. J. Math. Oxford Sec. Series 25 (1974), 135-141.
[7] J. Galambos, On the speed of the convergence of the Oppenheim series, Acta Arith. 19 (1971), 335-342.
[8] J. Galambos, Reprentations of Real Numbers by Infinite Series, Lecture Notes in Math. 502, Springer, 1976.
[9] J. Galambos, Further metric results on series expansions, Publ. Math. Debrecen 52, no. 3-4 (1998), 377-384.
[10] J. Galambos, I. Kátai and M. Y. Lee, Metric properties of alternating Oppenheim expansions, Acta Arith. 109 (2003), 151-158.
[11] H. Jager and C. De Vroedt, Lüroth series and their ergodic properties, Proc. K. Nederl. Akad. Wet. A72 (1969), 31-42.
[12] A. Oppenheim, The representation of real numbers by infinite series of rationals, Acta Arith. 18 (1971), 115-124.
[13] A. RÉnyI, On Cantor's product, Colloq. Math. 6 (1958), 135-139.
[14] F. Schweiger, Ergodic Theory of Fibred Systems and Metric Number Theory, Oxford, Clarendon Press, 1995.
[15] W. Vervaat, Success Epochs in Bernoulli Trials, Mathematical Center Tracts 42, Amsterdam, Mathematisch Centrum, 1972.
[16] J. Wu, The Oppenheim series expansions and Hausdorff dimensions, Acta Arith. 107 (2003), 345-355.

BAO-WEI WANG
DEPARTMENT OF MATHEMATICS
WUHAN UNIVERSITY
WUHAN, HUBEI, 430072
P.R. CHINA

E-mail: bwei_wang@yahoo.com.cn
JUN WU
DEPARTMENT OF MATHEMATICS
HUAZHONG UNIVERSITY OF SCIENCE AND TECHNOLOGY
WUHAN, HUBEI, 430074
P.R. CHINA

E-mail: wujunyu@public.wh.hb.cn
(Received November 26, 2004; revised July 19, 2005)

