Publ. Math. Debrecen **70/1-2** (2007), 45–58

A problem of Galambos on Oppenheim series expansions

By BAO-WEI WANG (Wuhan) and JUN WU (Wuhan)

Abstract. In this paper, we investigate the Hausdorff dimension of exceptional sets in the metric properties of digits of Oppenheim series expansions and answer a question posed by Galambos.

1. Introduction

For any $x \in (0, 1]$, the algorithm

$$x = x_1, \quad d_n = [1/x_n] + 1, \quad x_n = 1/d_n + a_n/b_n \cdot x_{n+1},$$
 (1)

where $a_n = a_n(d_1, \ldots, d_n)$ and $b_n = b_n(d_1, \ldots, d_n)$ are positive integer valued functions and [y] denotes the integer part of y, leads to the OPPENHEIM expansion [12]

$$x \sim \frac{1}{d_1} + \frac{a_1}{b_1} \frac{1}{d_2} + \dots + \frac{a_1 a_2 \dots a_n}{b_1 b_2 \dots b_n} \frac{1}{d_{n+1}} + \dots$$
(2)

By (1),

$$\frac{1}{d_n} < x_n \le \frac{1}{d_n - 1},\tag{3}$$

and hence by the last equality in (1),

$$d_{n+1} > \frac{a_n}{b_n} d_n (d_n - 1).$$
(4)

Mathematics Subject Classification: Primary: 11K55; Secondly: 28A78, 28A80. Key words and phrases: Oppenheim series expansion, Hausdorff dimension.

The expansion defined by (1) and (2) is convergent and its sum is equal to x. A sufficient condition for a series on the right hand side in (2) to be the expansion of its sum by the algorithm (1) is (see [12])

$$d_{n+1} \ge \frac{a_n}{b_n} d_n (d_n - 1) + 1 \quad \text{for all } n \ge 1.$$
 (5)

Definition 1.1. We call the expansion (2) (obtained by the algorithm (1)) restricted Oppenheim expansion of x if a_n and b_n depend on the last denominator d_n only and if the function

$$h_n(j) = \frac{a_n(j)}{b_n(j)} j(j-1)$$
(6)

is integer-valued, for all $n \ge 1$ and $j \ge 2$.

In the present paper, we deal with restricted Oppenheim expansions only. In this case, (4) and (5) are equivalent.

The representation (2) under (1) was first studied by OPPENHEIM [12], including LÜROTH ([11]), Engel, Sylvester expansions ([2]) and Cantor infinite product ([13]) as special cases. Oppenheim established the arithmetical properties, including the question of rationality of the expansion. The foundations of the metric theory of such expansions were laid down by GALAMBOS [5], [6], [7], [9], see also the monographs of GALAMBOS [8], SCHWEIGER [14], VERVAAT [15], DAJANI and KRAAIKAMP [1]. From [8], Chapter 6, it can be seen that the integer approximations $T_n(x)$ to the ratios $d_n(x)/h_{n-1}(d_{n-1}(x))$ defined by

$$T_n(x) < \frac{d_n(x)}{h_{n-1}(d_{n-1}(x))} \le T_n(x) + 1, \quad n \ge 1,$$
(7)

where $h_0(x) \equiv 1$, plays an important role in the metric theory of Oppenheim expansions, see GALAMBOS [8] Chapter VI. Moreover, they are stochastically independent and are distributed as the denominators in the Lüroth expansion. GALAMBOS, see [8] Page 132, posed the question to calculate the Hausdorff dimension of the set

$$B_m = \{ x \in (0,1] : 1 \le T_n(x) \le m \text{ for all } n \ge 1 \}, \quad m \ge 2,$$

and compare this with the Lüroth case. In [16], the second author concerned this problem under the condition $h_n(j)$ is of order t ($t \ge 1$), see [16] for the definition. In this paper, we continue to consider this problem. Under more natural conditions, we obtain the Hausdorff dimension of B_m and thus answer

the question of Galambos. To obtain the lower bound of the Huasdorff dimension of a fractal set, a mass distribution is needed, which is a necessary (and sufficient) tool for this. The mass distribution constructed here is quite technical and subtle.

We use $|\cdot|$ to denote the diameter of a subset of (0, 1], dim_H to denote the Hausdorff dimension and 'cl' the closure of a subset of (0, 1] respectively.

2. Hausdorff dimension of B_m

For any $m \geq 2$, let

$$B_m = \{ x \in (0,1] : 1 \le T_n(x) \le m \text{ for all } n \ge 1 \}.$$

By (7), it is easy to check that

$$B_m = \left\{ x \in (0,1] : 1 < \frac{d_n(x)}{h_{n-1}(d_{n-1}(x))} \le m+1 \text{ for all } n \ge 1 \right\},$$
(8)

where $h_0(n) \equiv 1$. Thus in order to calculate the Hausdorff dimensions of B_m , $m \geq 2$, it is sufficient to consider the following sets

$$C_m = \left\{ x \in (0,1] : 1 < \frac{d_n(x)}{h_{n-1}(d_{n-1}(x))} \le m \text{ for all } n \ge 1 \right\}, \quad m \ge 3.$$

From now on, we fix $m \ge 3$ be a positive integer.

Lemma 2.1. For any integer $a \ge 1$, let S(a) be determined by the following equation

$$\sum_{a < b \le ma} \left(\frac{a}{b(b-1)}\right)^{S(a)} = 1.$$
(9)

Then

$$\lim_{a \to +\infty} S(a) = 1.$$

PROOF. Since

$$\sum_{a < b \le ma} \left(\frac{a}{b(b-1)}\right) = 1 - \frac{1}{m} < 1,$$

we have $S(a) \leq 1$ for all $a \geq 1$.

On the other hand, for any 1/2 < s < 1,

$$\sum_{a < b \le ma} \left(\frac{a}{b(b-1)}\right)^s \ge \sum_{a \le b \le ma} \left(\frac{a}{b(b-1)}\right)^s - \left(\frac{1}{a-1}\right)^s$$

$$\geq \int_{a}^{ma} \frac{a^{s}}{x^{2s}} dx - \left(\frac{1}{a-1}\right)^{s}$$
$$= \frac{1}{1-2s} ((ma)^{1-2s} - a^{1-2s}) \cdot a^{s} - \left(\frac{1}{a-1}\right)^{s}$$
$$= \frac{(1-m^{1-2s}) \cdot a^{1-s}}{2s-1} - \left(\frac{1}{a-1}\right)^{s} > 1, \ a \text{ is large enough}$$

Thus when a is large enough, S(a) > s. The proof of Lemma 2.1 is finished. \Box

We now state the mass distribution principle, see [4] Proposition 2.3, that will be used later.

Lemma 2.2. Let $E \subset (0,1]$ be a Borel set and μ be a measure with $\mu(E) > 0$. If for any $x \in E$,

$$\liminf_{r \to 0} \frac{\log \mu(B(x, r))}{\log r} \ge s_{t}$$

where B(x, r) denotes the open ball with center at x and radius r, then dim_H $E \ge s$.

Now we are in the position to prove the main result of this paper.

Theorem 2.3. Suppose $h_j(d) \ge d-1$ for all $j \ge 1$ and $d \ge 2$, then for each $m \ge 3$,

$$\dim_H C_m = 1.$$

PROOF. For any $j \ge 1$ and $d \ge 2$, define

$$G_j(d) = m \cdot h_j(d);$$

$$M_j(m) = G_{j-1} \circ G_{j-2} \circ \cdots \circ G_1(m), \quad M_1(m) := m.$$

From the assumption on $h_j(d)$, it is easy to check that

$$M_j(m) \ge m^j - m^{j-1} - \dots - m^2 - m \quad \text{for each } j \ge 1,$$

thus

$$\lim_{j \to \infty} M_j(m) = +\infty.$$
⁽¹⁰⁾

For any 0 < s < 1, from Lemma 2.1, since $\lim_{a\to\infty} S(a) = 1$, there exists $a_0 \in \mathbb{N}$ such that for any $a \ge a_0$, S(a) > s. By (10), there exists $k_0 \ge 1$ such that for any $k \ge k_0$,

$$M_k(m) \ge a_0 + 1.$$
 (11)

Define

$$E_m = \left\{ x \in (0,1] : d_j(x) = M_j(m) \text{ for all } 1 \le j \le k_0, \\ \text{and } 1 < \frac{d_{j+1}(x)}{h_j(d_j(x))} \le m \text{ for all } j \ge k_0 \right\}.$$

It is clear that $E_m \subset C_m$. Now we estimate the Hausdorff dimension of E_m .

For any $x \in E_m$, since $h_j(d) \ge d-1$ for all $j \ge 1$ and $d \ge 2$, by (5), we have, for any $k \ge k_0$,

$$d_k(x) \ge h_{k-1}(d_{k-1}(x)) + 1 \ge d_{k-1}(x) \ge \dots \ge d_{k_0+1}(x)$$
$$\ge h_{k_0}(d_{k_0}(x)) + 1 \ge d_{k_0}(x) = M_{k_0}(m) \ge a_0 + 1,$$
(12)

and

$$h_k(d_k(x)) \ge d_k(x) - 1 \ge a_0.$$
 (13)

Now we introduce a symbolic space defined as follows:

For any $k \geq k_0$, let

$$D_k = \left\{ \sigma = (\sigma_1, \dots, \sigma_k) \in \mathbb{N}^k : \sigma_j = M_j(m) \text{ for all } 1 \le j \le k_0, \\ \text{and } 1 < \frac{\sigma_{j+1}}{h_j(\sigma_j)} \le m \text{ for all } k_0 \le j \le k-1 \right\},$$

and define

$$D = \bigcup_{k=k_0}^{\infty} D_k.$$

For any $k \ge k_0$ and $\sigma = (\sigma_1, \ldots, \sigma_k) \in D_k$, let J_{σ} and I_{σ} denote the following closed subintervals of (0, 1]:

$$J_{\sigma} = \bigcup_{h_k(\sigma_k) < d \le mh_k(\sigma_k)} \operatorname{cl}\{x \in (0, 1] : d_1(x) = \sigma_1, d_2(x) = \sigma_2, \dots, d_k(x) = \sigma_k, d_{k+1}(x) = d\},\$$
$$I_{\sigma} = \operatorname{cl}\{x \in (0, 1] : d_1(x) = \sigma_1, d_2(x) = \sigma_2, \dots, d_k(x) = \sigma_k\},\$$

and each J_σ is called an interval of kth-order. Finally, define

$$E = \bigcap_{k=k_0}^{\infty} \bigcup_{\sigma \in D_k} J_{\sigma}.$$

It is obvious that

$$E = E_m$$

From the proof of Theorem 6.1 in [8], we have, for any $k \ge k_0$ and $\sigma \in D_k$,

$$|I_{\sigma}| = \frac{a_1(\sigma_1)}{b_1(\sigma_1)} \cdot \frac{a_2(\sigma_2)}{b_2(\sigma_2)} \dots \frac{a_{k-1}(\sigma_{k-1})}{b_{k-1}(\sigma_{k-1})} \cdot \frac{1}{(\sigma_k - 1)\sigma_k},$$
(14)

thus by (6), we have

$$|J_{\sigma}| = \sum_{h_k(\sigma_k) < d \le mh_k(\sigma_k)} \frac{a_1(\sigma_1)}{b_1(\sigma_1)} \cdots \frac{a_k(\sigma_k)}{b_k(\sigma_k)} \cdot \frac{1}{(d-1)d}$$
$$= \frac{a_1(\sigma_1)}{b_1(\sigma_1)} \cdots \frac{a_k(\sigma_k)}{b_k(\sigma_k)} \left(\frac{1}{h_k(\sigma_k)} - \frac{1}{mh_k(\sigma_k)}\right)$$
$$= \left(1 - \frac{1}{m}\right) \frac{a_1(\sigma_1)}{b_1(\sigma_1)} \cdots \frac{a_k(\sigma_k)}{b_k(\sigma_k)} \cdot \frac{1}{h_k(\sigma_k)}$$
$$= \left(1 - \frac{1}{m}\right) \frac{a_1(\sigma_1)}{b_1(\sigma_1)} \cdots \frac{a_{k-1}(\sigma_{k-1})}{b_{k-1}(\sigma_{k-1})} \cdot \frac{1}{(\sigma_k - 1)\sigma_k}.$$
(15)

For any $k \geq k_0, \sigma \in D_k$, define

$$\mu(J_{\sigma}) = \prod_{i=k_0}^{k-1} \left(\frac{h_i(\sigma_i)}{\sigma_{i+1}(\sigma_{i+1}-1)} \right)^{S(h_i(\sigma_i))}, \quad \text{if } k \ge k_0 + 1, \tag{16}$$

and

$$5\mu(J_{\sigma}) = 1, \quad \text{if } \sigma \in D_{k_0}.$$

 μ is a probability mass distribution supported on $E_m,$ because

$$\sum_{\sigma_{k+1}=h_k(\sigma_k)+1}^{mh_k(\sigma_k)} \mu(J_{\sigma_1\sigma_2...\sigma_{k+1}})$$

=
$$\sum_{\sigma_{k+1}=h_k(\sigma_k)+1}^{mh_k(\sigma_k)} \prod_{i=k_0}^k \left(\frac{h_i(\sigma_i)}{\sigma_{i+1}(\sigma_{i+1}-1)}\right)^{S(h_i(\sigma_i))} = \mu(J_{\sigma_1\sigma_2...\sigma_k}),$$

and

$$\sum_{\sigma_{k_0+1}=h_{k_0}(\sigma_{k_0})+1}^{mh_{k_0}(\sigma_{k_0})} \mu(J_{\sigma_1\sigma_2...\sigma_{k_0+1}})$$

$$=\sum_{\sigma_{k_0+1}=h_{k_0}(\sigma_{k_0})+1}^{mh_{k_0}(\sigma_{k_0})} \left(\frac{h_{k_0}(\sigma_{k_0})}{\sigma_{k_0+1}(\sigma_{k_0+1}-1)}\right)^{S(h_{k_0}(\sigma_{k_0}))}$$
$$=1=\mu(J_{\sigma_1\sigma_2\dots\sigma_{k_0}}).$$

For any $x \in E_m$, we prove that

$$\liminf_{r \to 0} \frac{\log \mu(B(x, r))}{\log r} \ge s.$$
(17)

If (17) is proved, by Lemma 2.2, we have $\dim_H E_m \ge s$. Since 0 < s < 1 is arbitrary, this implies $\dim_H C_m = 1$.

Now we prove (17).

For any $x \in E_m$, there exists $\sigma = (\sigma_1, \sigma_2, \ldots, \sigma_n, \ldots)$ such that for any $k \ge k_0, (\sigma|k) := (\sigma_1, \sigma_2, \ldots, \sigma_k) \in D_k$ and $d_j(x) = \sigma_j$ for each $j \ge 1$. Thus

$$x \in J_{\sigma_1 \sigma_2 \dots \sigma_k}$$
 for all $k \ge k_0$

From the proof of Theorem 6.1 in [8], we have, for any $k \geq k_0$, the right endpoint of the interval $J_{\sigma_1\sigma_2...\sigma_k}$, i.e., $\max\{y \in (0,1] : y \in J_{\sigma_1\sigma_2...\sigma_k}\}$, is

$$\frac{1}{\sigma_{1}} + \sum_{j=2}^{k} \frac{a_{1}(\sigma_{1})}{b_{1}(\sigma_{1})} \cdots \frac{a_{j-1}(\sigma_{j-1})}{b_{j-1}(\sigma_{j-1})} \cdot \frac{1}{\sigma_{j}} + \frac{a_{1}(\sigma_{1})}{b_{1}(\sigma_{1})} \cdots \frac{a_{k}(\sigma_{k})}{b_{k}(\sigma_{k})} \cdot \frac{1}{h_{k}(\sigma_{k})}$$

$$= \frac{1}{\sigma_{1}} + \sum_{j=2}^{k} \frac{a_{1}(\sigma_{1})}{b_{1}(\sigma_{1})} \cdots \frac{a_{j-1}(\sigma_{j-1})}{b_{j-1}(\sigma_{j-1})} \cdot \frac{1}{\sigma_{j}}$$

$$+ \frac{a_{1}(\sigma_{1})}{b_{1}(\sigma_{1})} \cdots \frac{a_{k-1}(\sigma_{k-1})}{b_{k-1}(\sigma_{k-1})} \cdot \frac{1}{\sigma_{k}(\sigma_{k}-1)}$$

$$= \frac{1}{\sigma_{1}} + \frac{a_{1}(\sigma_{1})}{b_{1}(\sigma_{1})} \cdot \frac{1}{\sigma_{2}} + \cdots + \frac{a_{1}(\sigma_{1})}{b_{1}(\sigma_{1})} \cdots \frac{a_{k-1}(\sigma_{k-1})}{b_{k-1}(\sigma_{k-1})} \cdot \frac{1}{\sigma_{k}}.$$
(18)

The left endpoint of the interval $J_{\sigma_1\sigma_2...\sigma_k}$, i.e., $\min\{y \in (0,1] : y \in J_{\sigma_1\sigma_2...\sigma_k}\}$, is

$$\frac{1}{\sigma_1} + \sum_{j=2}^k \frac{a_1(\sigma_1)}{b_1(\sigma_1)} \cdots \frac{a_{j-1}(\sigma_{j-1})}{b_{j-1}(\sigma_{j-1})} \cdot \frac{1}{\sigma_j} + \frac{a_1(\sigma_1)}{b_1(\sigma_1)} \cdots \frac{a_k(\sigma_k)}{b_k(\sigma_k)} \cdot \frac{1}{mh_k(\sigma_k)}$$
$$= \frac{1}{\sigma_1} + \sum_{j=2}^k \frac{a_1(\sigma_1)}{b_1(\sigma_1)} \cdots \frac{a_{j-1}(\sigma_{j-1})}{b_{j-1}(\sigma_{j-1})} \cdot \frac{1}{\sigma_j}$$
$$+ \frac{a_1(\sigma_1)}{b_1(\sigma_1)} \cdots \frac{a_{k-1}(\sigma_{k-1})}{b_{k-1}(\sigma_{k-1})} \cdot \frac{1}{m\sigma_k(\sigma_k - 1)}$$

$$= \frac{1}{\sigma_1} + \frac{a_1(\sigma_1)}{b_1(\sigma_1)} \cdot \frac{1}{\sigma_2} + \dots + \frac{a_1(\sigma_1)}{b_1(\sigma_1)} \dots \frac{a_{k-1}(\sigma_{k-1})}{b_{k-1}(\sigma_{k-1})} \cdot \left(\frac{1}{\sigma_k} + \frac{1}{m\sigma_k(\sigma_k - 1)}\right).$$
(19)

If $\sigma_k - 1 > h_{k-1}(\sigma_{k-1})$, from (18), (19), we know the gap between $J_{\sigma_1 \sigma_2 \dots \sigma_k}$ and $J_{\sigma_1 \dots \sigma_{k-1} \sigma_k - 1}$ is

$$\frac{a_1(\sigma_1)}{b_1(\sigma_1)} \dots \frac{a_{k-1}(\sigma_{k-1})}{b_{k-1}(\sigma_{k-1})} \cdot \frac{1}{m(\sigma_k - 1)(\sigma_k - 2)}.$$
(20)

In the same way, if $\sigma_k + 1 \leq mh_{k-1}(\sigma_{k-1})$, from (18), (19), we know the gap between $J_{\sigma_1\sigma_2...\sigma_k}$ and $J_{\sigma_1...\sigma_{k-1}\sigma_k+1}$ is

$$\frac{a_1(\sigma_1)}{b_1(\sigma_1)} \dots \frac{a_{k-1}(\sigma_{k-1})}{b_{k-1}(\sigma_{k-1})} \cdot \frac{1}{m\sigma_k(\sigma_k - 1)}.$$
(21)

For any $0 < r < \frac{1}{m} |I_{M_1(m)M_2(m)...M_{k_0}(m)}|$, since

$$(\sigma|k_0) = (M_1(m), M_2(m), \dots, M_{k_0}(m))$$

and $|I_{(\sigma|k)}| \to 0$ as $k \to \infty$, there exists k (depends on x) such that

$$\frac{1}{m}|I_{(\sigma|k+1)}| < r \leq \frac{1}{m}|I_{(\sigma|k)}|,$$

that is,

$$\frac{1}{m} \frac{a_1(\sigma_1)}{b_1(\sigma_1)} \cdots \frac{a_k(\sigma_k)}{b_k(\sigma_k)} \cdot \frac{1}{\sigma_{k+1}(\sigma_{k+1}-1)} < r \le \frac{1}{m} \frac{a_1(\sigma_1)}{b_1(\sigma_1)} \cdots \frac{a_{k-1}(\sigma_{k-1})}{b_{k-1}(\sigma_{k-1})} \cdot \frac{1}{\sigma_k(\sigma_k-1)}.$$
 (22)

By (14),(20) and (21), B(x, r) can intersect only one kth-order interval $J_{\sigma_1 \sigma_2 \dots \sigma_k}$. On the other hand, for every $h_k(\sigma_k) < j \le mh_k(\sigma_k)$, from (14), we have

$$|I_{\sigma_1\sigma_2\ldots\sigma_kj}| \ge \frac{a_1(\sigma_1)}{b_1(\sigma_1)}\ldots\frac{a_k(\sigma_k)}{b_k(\sigma_k)}\cdot\frac{1}{mh_k(\sigma_k)(mh_k(\sigma_k)-1)}$$

Thus B(x, r) can intersect at most

$$\frac{4r(mh_k(\sigma_k))^2}{\frac{a_1(\sigma_1)}{b_1(\sigma_1)}\cdots\frac{a_k(\sigma_k)}{b_k(\sigma_k)}} := l$$

(k+1)-th-order intervals. Therefore

$$\mu(B(x,r)) \le \min\left\{\mu(J_{\sigma_1\sigma_2\dots\sigma_k}), \sum_i \mu(J_{\sigma_1\sigma_2\dots\sigma_k}i)\right\},\$$

where the sum is over all *i* such that $\max\{\sigma_{k+1} - l, h_k(\sigma_k) + 1\} \le i \le \sigma_{k+1} + l$. By (16), we have

$$\begin{split} \mu(B(x,r)) &\leq \mu(J_{\sigma_1\sigma_2\dots\sigma_k}) \min\left\{1, \ \sum_i \left(\frac{h_k(\sigma_k)}{i(i-1)}\right)^{S(h_k(\sigma_k))}\right\} \\ &\leq \mu(J_{\sigma_1\sigma_2\dots\sigma_k}) \min\left\{1, \ 2l\left(\frac{1}{h_k(\sigma_k)}\right)^{S(h_k(\sigma_k))}\right\} \\ &= \mu(J_{\sigma_1\sigma_2\dots\sigma_k}) \min\left\{1, \ \frac{8r(mh_k(\sigma_k))^2}{\frac{a_1(\sigma_1)}{b_1(\sigma_1)}\dots\frac{a_k(\sigma_k)}{b_k(\sigma_k)}}\left(\frac{1}{h_k(\sigma_k)}\right)^{S(h_k(\sigma_k))}\right\} \\ &\leq \mu(J_{\sigma_1\sigma_2\dots\sigma_k}) \cdot 1^{1-s} \cdot \left(\frac{8r(mh_k(\sigma_k))^2}{\frac{a_1(\sigma_1)}{b_1(\sigma_1)}\dots\frac{a_k(\sigma_k)}{b_k(\sigma_k)}}\left(\frac{1}{h_k(\sigma_k)}\right)^{S(h_k(\sigma_k))}\right)^s. \end{split}$$

From (13), we have, for any $n \ge k_0$,

$$h_n(\sigma_n) \ge a_0,$$

thus

$$S(h_n(\sigma_n)) \ge s \quad \text{for all } n \ge k_0.$$
 (23)

Combining (6), (16) and (23), we have

$$\mu(B(x,r)) \leq \left[\prod_{i=k_0}^{k-1} \frac{h_i(\sigma_i)}{\sigma_{i+1}(\sigma_{i+1}-1)} \left(\frac{8r(mh_k(\sigma_k))^2}{\frac{a_1(\sigma_1)}{b_1(\sigma_1)} \cdots \frac{a_k(\sigma_k)}{b_k(\sigma_k)}}\right) \left(\frac{1}{h_k(\sigma_k)}\right)^{S(h_k(\sigma_k))}\right]^s$$
$$= \left(h_{k_0}(M_{k_0}(m))\frac{a_{k_0+1}(\sigma_{k_0+1})}{b_{k_0+1}(\sigma_{k_0+1})} \cdots \frac{a_{k-1}(\sigma_{k-1})}{b_{k-1}(\sigma_{k-1})} \frac{1}{\sigma_k(\sigma_k-1)}\right)^s$$
$$\cdot \left(\frac{8r(mh_k(\sigma_k))^2}{\frac{a_1(\sigma_1)}{b_1(\sigma_1)} \cdots \frac{a_k(\sigma_k)}{b_k(\sigma_k)}}\right)^s \cdot \left(\frac{1}{h_k(\sigma_k)}\right)^{sS(h_k(\sigma_k))}$$
$$= \left(h_{k_0}(M_{k_0}(m)) \cdot \frac{b_1(M_1(m))}{a_1(M_1(m))} \cdots \frac{b_{k_0}(M_{k_0}(m))}{a_{k_0}(M_{k_0}(m))}\right)^s$$

$$\cdot \left(\frac{8r(mh_k(\sigma_k))^2}{\sigma_k(\sigma_k-1)\frac{a_k(\sigma_k)}{b_k(\sigma_k)}} \cdot \left(\frac{1}{h_k(\sigma_k)}\right)^{S(h_k(\sigma_k))} \right)^s$$
$$\le c_1^s \left(r \cdot h_k(\sigma_k) \left(\frac{1}{h_k(\sigma_k)}\right)^{S(h_k(\sigma_k))} \right)^s,$$

where c_1 is a positive constant which does not depend on x and r.

From the definition of S(a), we have

$$1 = \sum_{a < b \le ma} \left(\frac{a}{b(b-1)}\right)^{S(a)}$$

$$\ge (m-1)a \left(\frac{a}{ma(ma-1)}\right)^{S(a)} \ge (m-1)a \left(\frac{a}{ma \cdot ma}\right)^{S(a)}$$

$$= (m-1)a \left(\frac{1}{m^2a}\right)^{S(a)},$$

thus

$$\frac{a}{a^{S(a)}} \leq \frac{m^{2S(a)}}{m-1} \leq \frac{m^2}{m-1},$$

and this implies

$$h_k(\sigma_k) \left(\frac{1}{h_k(\sigma_k)}\right)^{S(h_k(\sigma_k))} \leq \frac{m^2}{m-1}.$$

Therefore

$$\mu(B(x,r)) \le c_2^s \cdot r^s, \tag{24}$$

where c_2 is a positive constant which does not depend on x and r.

From (24), we know (17) holds. This completes the proof of Theorem 2.3. \Box

From (8) and Theorem 2.3, we have

Corollary 2.4. Suppose $h_j(d) \ge d-1$ for all $j \ge 1$ and $d \ge 2$, then for each $m \ge 2$, we have $\dim_H B_m = 1$.

Remark 2.5. Let $a_n(d_1, \ldots, d_n) = 1$, $b_n(d_1, \ldots, d_n) = d_n(d_n - 1)$, $(n = 1, 2, \ldots)$. Then the algorithm (1) leads to the Lüroth expansion of x,

$$x = \frac{1}{d_1(x)} + \ldots + \frac{1}{d_1(x)(d_1(x) - 1)\dots d_{n-1}(x)(d_{n-1}(x) - 1)d_n(x)} + \dots$$
(25)

55

Here $h_n(j) = 1$ and $T_n(x) = d_n(x) - 1$. For the Lüroth series, with the help of the theory of self similar set, see [3], Chapter 9, the Hausdorff dimension s of the B_m is determined by the following equation

$$\sum_{2 \le b \le m+1} \left(\frac{1}{b(b-1)}\right)^s = 1.$$

To some extent, Lüroth series expansion stands as a special case to say that the assumption on h_j in the main theorem is not superfluous. Moreover, we can obtain: if $l \leq h_j(d_j(x)) \leq L$, for all $x \in C_m = B_{m-1}$ and j larger than some fixed integer k_0 , then one can has

$$0 < \inf_{l \le a \le L} S(a) \le \dim_H C_m \le \sup_{l \le a \le L} S(a) < 1.$$

We now list some special cases which satisfy the assumption in Theorem 2.3.

Example 1. Engel expansion. Let $a_n(d_1, \ldots, d_n) = 1$, $b_n(d_1, \ldots, d_n) = d_n$, $(n = 1, 2, \ldots)$. Then (2), together with the algorithm (1), become Engel expansion of x,

$$x = \frac{1}{d_1(x)} + \frac{1}{d_1(x)d_2(x)} + \dots + \frac{1}{d_1(x)d_2(x)\dots d_n(x)} + \dots$$
(26)

In this case, $h_n(j) = j - 1$ and $T_n(x) = \frac{d_n(x)}{d_{n-1}(x)-1} - 1$ if $\frac{d_n(x)}{d_{n-1}(x)-1}$ is an integer and $\left[\frac{d_n(x)}{d_{n-1}(x)-1}\right]$ otherwise. By Corollary 2.4, we have for each $m \ge 2$,

$$\dim_H \{ x \in (0,1] : 1 \le T_n(x) \le m \text{ for all } n \ge 1 \} = 1.$$

Example 2. Sylvester expansion. Choose $a_n(d_1, \ldots, d_n) = 1$, $b_n(d_1, \ldots, d_n) = 1$, $(n = 1, 2, \ldots)$. We get the Sylvester expansion of x,

$$x = \frac{1}{d_1(x)} + \frac{1}{d_2(x)} + \dots + \frac{1}{d_n(x)} + \dots$$
(27)

Here $h_n(j) = j(j-1)$ and $T_n(x) = \frac{d_n(x)}{d_{n-1}(x)(d_{n-1}(x)-1)} - 1$ if $\frac{d_n(x)}{d_{n-1}(x)(d_{n-1}(x)-1)}$ is an integer and $\left[\frac{d_n(x)}{d_{n-1}(x)(d_{n-1}(x)-1)}\right]$ otherwise. By Corollary 2.4, we have for each $m \ge 2$,

$$\dim_H \{ x \in (0,1] : 1 \le T_n(x) \le m \text{ for all } n \ge 1 \} = 1.$$

Example 3. Cantor product. Take $a_n(d_1, \ldots, d_n) = d_n + 1$, $b_n(d_1, \ldots, d_n) = d_n$, $(n = 1, 2, \ldots)$, the expansion (2) yields the Cantor product,

$$1 + x = \left(1 + \frac{1}{d_1(x)}\right) \left(1 + \frac{1}{d_2(x)}\right) \dots \left(1 + \frac{1}{d_n(x)}\right) \dots$$
(28)

Here $h_n(j) = j^2 - 1$ and $T_n(x) = \frac{d_n(x)}{d_{n-1}^2(x) - 1} - 1$ if $\frac{d_n(x)}{d_{n-1}^2(x) - 1}$ is an integer and $\left[\frac{d_n(x)}{d_{n-1}^2(x) - 1}\right]$ otherwise. By Corollary 2.4, we have for each $m \ge 2$,

$$\dim_H \{ x \in (0,1] : 1 \le T_n(x) \le m \text{ for all } n \ge 1 \} = 1.$$

Example 4. Modified Engel expansion. Let $a_n(d_1, \ldots, d_n) = 1$,

 $b_n(d_1,\ldots,d_n) = d_n - 1, \ (n = 1,2,\ldots)$. We get the modified Engel expansion of x,

$$x = \frac{1}{d_1(x)} + \dots + \frac{1}{(d_1(x) - 1)(d_2(x) - 1)\dots(d_{n-1}(x) - 1)d_n(x)} + \dots$$
(29)

Thus $h_n(j) = j$ and $T_n(x) = \frac{d_n(x)}{d_{n-1}(x)} - 1$ if $\frac{d_n(x)}{d_{n-1}(x)}$ is an integer and $\left[\frac{d_n(x)}{d_{n-1}(x)}\right]$ otherwise. By Corollary 2.4, we have for each $m \ge 2$,

$$\dim_H \{ x \in (0,1] : 1 \le T_n(x) \le m \text{ for all } n \ge 1 \} = 1.$$

Example 5. Daróczy–Kátai-Birthday expansion. Choose $a_n(d_1, \ldots, d_n) = d_n$, $b_n(d_1, \ldots, d_n) = 1$, $(n = 1, 2, \ldots)$, the resulting series expansion of x takes the form,

$$x = \frac{1}{d_1(x)} + \frac{d_1(x)}{d_2(x)} + \dots + \frac{d_1(x)d_2(x)\dots d_{n-1}(x)}{d_n(x)} + \dots$$
(30)

The Daróczy–Kátai-Birthday expansion was introduced for the first time in GALAMBOS [9]. Here $h_n(j) = j^2(j-1)$ and $T_n(x) = \frac{d_n(x)}{d_{n-1}^2(x)(d_{n-1}(x)-1)} - 1$ if $\frac{d_n(x)}{d_{n-1}^2(x)(d_{n-1}(x)-1)}$ is an integer and $\left[\frac{d_n(x)}{d_{n-1}^2(x)(d_{n-1}(x)-1)}\right]$ otherwise. By Corollary 2.4, we have for each $m \ge 2$,

$$\dim_H \{ x \in (0,1] : 1 \le T_n(x) \le m \text{ for all } n \ge 1 \} = 1.$$

Remark 2.6. A modification of (1) and (3) to the algorithm $0 < x \leq 1$, $x = x_1$, and

$$\frac{1}{D_n+1} < x_n \le \frac{1}{D_n}, \quad \frac{1}{D_n} - x_n = \frac{a_n}{b_n} \cdot x_{n+1}.$$
 (31)

generates an alternating series representation

$$x \sim \frac{1}{D_1} - \frac{a_1}{b_1} \frac{1}{D_2} + \dots + (-1)^n \frac{a_1 a_2 \dots a_n}{b_1 b_2 \dots b_n} \frac{1}{D_{n+1}} + \dots,$$
(32)

called alternating Oppenheim expansion. The metric theory for the alternating Oppenheim expansion was studied recently in [10]. Using the same method, we can get the corresponding results of Theorem 2.3 and Corollary 2.4 for this expansion.

ACKNOWLEDGEMENT. This work was supported by the KUA-SHI-JI foundation of Educational Committee and the Special Funds for Major State Basic Research Projects of China.

References

- K. DAJANI and C. KRAAIKAMP, Ergodic Theory of Numbers, Carus Mathematical Monographs, 29, Mathematical Association of America, Washington, DC, 2002.
- [2] P. ERDŐS, A. RÉNYI and P. SZÜSZ, On Engel's and Sylvester's series, Ann. Sci. Budapest, Sectio Math. 1 (1958), 7–32.
- [3] K. J. FALCONER, Fractal Geometry, Mathematical Foundations and Application, Wiley, 1990.
- [4] K. J. FALCONER, Techniques in Fractal Geometry, Wiley, 1997.
- [5] J. GALAMBOS, The ergodic properties of the denominators in the Oppenheim expansion of real numbers into infinite series of rationals, *Quart. J. Math. Oxford Sec. Series* 21 (1970), 177–191.
- [6] J. GALAMBOS, Further ergodic results on the Oppenheim series, Quart. J. Math. Oxford Sec. Series 25 (1974), 135–141.
- [7] J. GALAMBOS, On the speed of the convergence of the Oppenheim series, Acta Arith. 19 (1971), 335–342.
- [8] J. GALAMBOS, Reprentations of Real Numbers by Infinite Series, Lecture Notes in Math. 502, Springer, 1976.
- [9] J. GALAMBOS, Further metric results on series expansions, Publ. Math. Debrecen 52, no. 3–4 (1998), 377–384.
- [10] J. GALAMBOS, I. KÁTAI and M. Y. LEE, Metric properties of alternating Oppenheim expansions, Acta Arith. 109 (2003), 151–158.
- [11] H. JAGER and C. DE VROEDT, Lüroth series and their ergodic properties, Proc. K. Nederl. Akad. Wet. A72 (1969), 31-42.
- [12] A. OPPENHEIM, The representation of real numbers by infinite series of rationals, Acta Arith. 18 (1971), 115–124.
- [13] A. RÉNYI, On Cantor's product, Colloq. Math. 6 (1958), 135–139.
- [14] F. SCHWEIGER, Ergodic Theory of Fibred Systems and Metric Number Theory, Oxford, Clarendon Press, 1995.

58 B.-W. Wang and J. Wu : A problem of Galambos on Oppenheim series...

- [15] W. VERVAAT, Success Epochs in Bernoulli Trials, Mathematical Center Tracts 42, Amsterdam, Mathematisch Centrum, 1972.
- [16] J. WU, The Oppenheim series expansions and Hausdorff dimensions, Acta Arith. 107 (2003), 345–355.

BAO-WEI WANG DEPARTMENT OF MATHEMATICS WUHAN UNIVERSITY WUHAN, HUBEI, 430072 P.R. CHINA

 $\textit{E-mail: bwei_wang@yahoo.com.cn}$

JUN WU DEPARTMENT OF MATHEMATICS HUAZHONG UNIVERSITY OF SCIENCE AND TECHNOLOGY WUHAN, HUBEI, 430074 P.R. CHINA

E-mail: wujunyu@public.wh.hb.cn

(Received November 26, 2004; revised July 19, 2005)