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Solution of a regularity problem in equality
of Cauchy means

By JANUSZ MATKOWSKI (Zielona Góra and Katowice)

Abstract. In a recent paper [1] L. Losonczi solved the equality problem for
the Cauchy means assuming seven times differentiability of the involved functions
and some algebraic condition. In the present paper we show that this strong
regularity assumption can be made without any loss of generality. The algebraic
condition can also be reduced. This is a solution of Problem 7 in [2].

1. Introduction

Let I ⊂ R be an interval and let f, g : I → R be differentiable functions
such that g′ 6= 0 and f ′

g′ is invertible. Then, by the Cauchy mean value
theorem, the function Df,g : I2 → I,

Df,g :=





(
f ′

g′

)−1 (
f(x)− f(y)
g(x)− g(y)

)
, x 6= y

x, x = y

is correctly defined and it is called a Cauchy mean generated by f and g.
In a recent paper L. Losonczi [1] determined all families of functions
f1, g1, f2, g2 : I → R satisfying the equation Df1,g1 = Df2,g2 under the as-
sumption that these functions are seven times continuously differentiable
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and satisfy also an algebraic condition which says that a certain expres-
sion should either be identically zero, or it should be different from zero
everywhere. In the present paper we show that this strong regularity can
be assumed without any loss of generality. Moreover the algebraic condi-
tion can also be reduced (Remark 2). This is a solution of the Problem 7
presented in a survey paper by Zs. Páles [2].

2. Main result

Remark 1. Let I ⊂ R be an interval and suppose that f, g : I → R
are differentiable and g′ 6= 0. If f ′

g′ : I → R is one-to-one, then it is strictly
monotonic and continuous.

Proof. The assumption of g implies that g is invertible in the interval
J := g(I), the function g−1 is differentiable and (g−1)′(x) = 1/g′(g−1(x))
for x ∈ J . Put h := f ◦ g−1. Then h is differentiable and h′ = f ′

g′ ◦ g−1

is one-to-one in J . If f ′
g′ were not strictly monotonic then we would find

x, y, z ∈ J , x < y < z such that either

h′(y) < h′(x) < h′(z) or h′(z) < h′(x) < h′(y).

The first case cannot happen because h′(x) ∈ (h′(y), h′(z)) whence, by
the Darboux property of derivative, h′(x) = h′(u) for some u ∈ (y, z),
which contradicts the assumed injectivity of the function f ′

g′ . For the same

reason the second case also cannot happen. Thus the function f ′
g′ is strictly

monotonic and, by the Darboux property of the derivative h′, it must be
continuous. ¤

Theorem 1. Let I ⊂ R be an open interval, let f1, g1, f2, g2 : I → R
be differentiable functions and g′1 6= 0 6= g′2 in I. Suppose that

f ′1
g′1

and
f ′2
g′2

ore one-to-one. Then

Df1,g2 = Df2,g2

if, and only if,

γ

(
f(x)− f(y)

x− y

)
=

g(x)− g(y)
h(x)− h(y)

, x, y ∈ J, x 6= y, (1)
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where

J := g1(I), γ :=
f ′2
g′2
◦

(
f ′1
g′1

)−1

,

f := f1 ◦ g−1
1 , g := f2 ◦ g−1

1 , h := g2 ◦ g−1
1 .

Moreover, the functions f , g, h and γ are of the class C∞ except for a

nowhere dense set in J .

Proof. Since the iff part is easy (cf. [1]), we shall prove the “more-
over” statement.

Put

F (x, y) :=
f(x)− f(y)

x− y
, K(x, y) :=

g(x)− g(y)
h(x)− h(y)

, x, y ∈ J, x 6= y,

and

Jf :=
{

f(x)− f(y)
x− y

: x, y ∈ J, x 6= y

}
.

The function K is well defined because h′ 6= 0 in I. The strict monotonicity
of f ′ and g′

h′ (cf. Remark 1), and the Cauchy mean-value theorem imply
that

f ′(x)− f(x)− f(y)
x− y

6= 0, x, y ∈ J, x 6= y,

g′(x)− h′(x)K(x, y) 6= 0, x, y ∈ J, x 6= y.

Take an arbitrary u0 ∈ Jf . Then u0 = F (x0, y0) for some x0, y0 ∈ J ,
x0 6= y0. The functions

ϕ(x) := F (x, y0), ψ(x) := K(x, y0)

are differentiable in a neighbourhood of x0 and, by the above inequalities,
ϕ′(x0) 6= 0 6= ψ′(x0). From (1) we have γ = ψ ◦ ϕ−1 in a neighbourhood
of u0. It follows that γ is differentiable at the point u0 and γ′(u0) 6= 0.
Consequently, γ is differentiable in the set Jf and γ′ 6= 0 in Jf .
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Differentiating both sides of (1) first with respect to x and then with
respect to y we get, for all x, y ∈ J , x 6= y,

γ′
(

f(x)− f(y)
x− y

)
f ′(x)(x− y)− f(x) + f(y)

(x− y)2

=
g′(x)[h(x)− h(y)]− h′(x)[g(x)− g(y)]

[h(x)− h(y)]2

(2)

and

γ′
(

f(x)− f(y)
x− y

) −f ′(y)(x− y) + f(x)− f(y)
(x− y)2

=
−g′(y)[h(x)− h(y)] + h′(y)[g(x)− g(y)]

[h(x)− h(y)]2
.

(3)

Since γ′ 6= 0 in Jf , dividing by sides of (2) and (3) we obtain, for all
x, y ∈ J , x 6= y,

f ′(x)(x− y)− f(x) + f(y)
f ′(y)(x− y)− f(x) + f(y)

=
g′(x)[h(x)− h(y)]− h′(x)[g(x)− g(y)]
g′(y)[h(x)− h(y)]− h′(y)[g(x)− g(y)]

,

which can be written in the form

f ′(x)− f(x)−f(y)
x−y

f ′(y)− f(x)−f(y)
x−y

=
g′(x)− h′(x) g(x)−g(y)

h(x)−h(y)

g′(y)− h′(y) g(x)−g(y)
h(x)−h(y)

, x, y ∈ J, x 6= y,

or, equivalently,

f ′(x)− F (x, y)
f ′(y)− F (x, y)

=
g′(x)− h′(x)K(x, y)
g′(y)− h′(y)K(x, y)

, x, y ∈ J, x 6= y. (4)

This equation suggests the following general idea of the proof. Let us
fix arbitrarily x0 ∈ J . By putting y = y1, y2, y3 6= x0 into this equation,
one obtains a system of linear equations with respect to the unknown f ′(x),
g′(x), h′(x). For the rest of the proof it would be sufficient to show that
for every y1, y2, y3 can be chosen so that this system of linear equations is
uniquely solvable. Then, since F and K are in terms of f , g, h only, this
results that f ′, g′, h′ enjoy the same regularity properties as F , K, i.e., as
f , g, h. Hence f , g, h would be infinitely times differentiable in J .
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It turns out however that it is not so easy to show that the respective
system is uniquely solvable. Therefore we are forced to consider some
special cases, and our result is weaker than one could expect.

Let us fix y1 ∈ J . Putting here y := y1, we obtain

h′(x) =
1

K(x, y1)

{
[h′(y1)K(x, y1)− g′(y1)]

f ′(x)− F (x, y1)
f ′(y1)− F (x, y1)

+ g′(x)
}

,

for all x ∈ J , x 6= y1, whence

h′(x) = Hf (x)f ′(x) +
g′(x)

K(x, y1)
+ H(x), x ∈ J, x 6= y1, (5)

where

Hf (x) :=
h′(y1)K(x, y1)− g′(y1)

K(x, y1)[f ′(y1)− F (x, y1)]
, x 6= y1;

H(x) :=
g′(y1)− h′(y1)K(x, y1)

K(x, y1)[f ′(y1)− F (x, y1)]
F (x, y1), x 6= y1,

and the functions Hf , H are continuously differentiable in J\{y1}.
Replacing h′(x) in (4) by the right-hand side of (5) we get

f ′(x)− F (x, y)
f ′(y)− F (x, y)

=
g′(x)−

[
Hf (x)f ′(x) + g′(x)

K(x,y1) + H(x)
]
K(x, y)

g′(y)− h′(y)K(x, y)
, (6)

for all x, y ∈ J\{y1}, x 6= y. Setting here a fixed y := y2 6= y1, we obtain

g′(x) = Gf (x)f ′(x) + G(x), x ∈ J\{y1, y2}, (7)

where

Gf (x) :=
K(x, y1)[g′(y2)− h′(y2)K(x, y2)]

[K(x, y1)−K(x, y2)][f ′(y2)− F (x, y2)]

+
Hf (x)K(x, y1)K(x, y2)]

K(x, y1)−K(x, y2)]
,

G(x) :=
H(x)K(x, y1)K(x, y2)]
K(x, y1)−K(x, y2)]
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− K(x, y1)[g′(y2)− h′(y2)K(x, y2)]F (x, y2)
[K(x, y1)−K(x, y2)][f ′(y2)− F (x, y2)]

,

and the functions Gf and G are continuously differentiable in J\{y1, y2}.
Replacing g′(x) in (6) by the right-hand side of (7) we obtain

f ′(x)− F (x, y)
f ′(y)− F (x, y)

(8)

=

[(
1− K(x,y)

K(x,y2)

)
Gf (x)−Hf (x)K(x, y)

]
f ′(x)+

(
1− K(x,y)

K(x,y2)

)
G(x)−H(x)K(x, y)

g′(y)− h′(y)K(x, y)

for all x, y ∈ J\{y1, y2}, x 6= y.
For the simplicity of notations put

F = F (x, y), F1 = F (x, y1), F2 = F (x, y2),

K = K(x, y), K1 = K(x, y1), K2 = K(x, y2).

From (8) we have, for all x, y ∈ J\{y1, y2}, x 6= y,

f ′(x)
{

g′(y)−h′(y)K − [
f ′(y)−F

][(
1− K

K1

)
Gf (x)−Hf (x)K

]}

= F
[
g′(y)− h′(y)K

]
+

[
f ′(y)− F

] [(
1− K

K1

)
G(x)−H(x)K

]
.

(9)

If for some x = x0 there is y ∈ J\{y1, y2}, y 6= x0 such that

g′(y)− h′(y)K − [
f ′(y)− F

] [(
1− K

K1

)
Gf (x)−Hf (x)K

]
6= 0 (10)

at the point (x0, y), then, by the continuity of the function on the left-hand
side, there is a δ > 0 such that for all x ∈ (x0 − δ, x0 + δ) ⊂ J\{y1, y2, y},

g′(y)− h′(y)K − [
f ′(y)− F

] [(
1− K

K1

)
Gf (x)−Hf (x)K

]
6= 0.

From (9) we get

f ′(x) =
F [g′(y)−h′(y)K] + [f ′(y)−F ]

[(
1− K

K1

)
G(x)−H(x)K

]

g′(y)−h′(y)K − [f ′(y)−F ]
[(

1− K
K1

)
Gf (x)−Hf (x)K

] (11)
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for all x ∈ (x0−δ, x0 +δ). Since the function on the right-hand side of this
formula is continuously differentiable with respect to x in (x0 − δ, x0 + δ),
we infer that f is twice continuously differentiable in (x0− δ, x0 + δ). Now
the formulas (8) and (6) imply that g and h are twice differentiable in
(x0 − δ, x0 + δ).

Suppose that for an x ∈ J there is no y ∈ J\{y1, y2, x0} such that
(10) holds true. Then either in every neighbourhood of x there is a point
x0 such (10) holds for all y ∈ J\{y1, y2}, y 6= x0, and we can argue as
previously, or there is a neighbourhood J0 of x0 such that

g′(y)− h′(y)K − (
f ′(y)− F

) [(
1− K

K1(x)

)
Gf (x)−Hf (x)K

]
= 0,

for all x ∈ J0, y ∈ J\{y1, y2, x}. Replacing here y by x and x by z and
taking into account the symmetry of F and K we can write this equation
in the form

g′(x)−Kh′(x) +
{[

Gf (z)
K1(z)

+ Hf (z)
]

K −Gf (z)
}

f ′(x)

=
{[

Gf (z)
K1(z)

+ Hf (z)
]

K −Gf (z)
}

F

(12)

for all x, z ∈ J0\{y1, y2}, x 6= z. Setting here z = z1, z2, z3 ∈ J0, z1 6= z2 6=
z3 6= z1, we obtain the system of linear equations

g′(x)−Mi(x)h′(x) + (aiMi(x) + bi)f ′(x) = Ni(x), i = 1, 2, 3, (13)

with respect to g′, h′, f ′, where

ai :=
Gf (zi)
K1(zi)

+ Hf (zi), bi := −Gf (zi), Mi(x) := K(x, zi), (14)

Ni(x) :=
{[

Gf (zi)
K1(zi)

+ Hf (zi)
]

K(x, zi)−Gf (zi)
}

F (x, zi). (15)

Now either there are z1, z2, z3 ∈ J0 and a nonempty open subinterval
J1 ⊂ J0 such that the determinant

∣∣∣∣∣∣

1 −M1(x) a1M1(x) + b1

1 −M2(x) a2M2(x) + b2

1 −M3(x) a3M3(x) + b3

∣∣∣∣∣∣
6= 0
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for all x ∈ J1 ⊂ J0\{y1, y2, z1, z2, z3}, or for all the choices of z1, z2, z3

this determinant is equal zero. Since the functions Mi and Ni, i = 1, 2, 3,
are of the class C1 in J1, in the first case the functions f ′, g′, h′ satisfying
system (13) must be also continuously differentiable in J1. Since

Mi(x) =
g(x)− γi

h(x)− ηi
, i = 1, 2, 3; x ∈ J1,

where γi := g(zi), ηi := h(zi), in the second case we have
∣∣∣∣∣∣∣∣∣∣∣∣∣∣

1 −g(x)− γ1

h(x)− η1
a1

g(x)− γ1

h(x)− η1
+ b1

1 −g(x)− γ2

h(x)− η2
a2

g(x)− γ2

h(x)− η2
+ b2

1 −g(x)− γ3

h(x)− η3
a3

g(x)− γ3

h(x)− η3
+ b3

∣∣∣∣∣∣∣∣∣∣∣∣∣∣

= 0, x ∈ J1.

Put ϕ := g ◦ h−1. Taking here x = h−1(u) for u ∈ h(J), we get
∣∣∣∣∣∣∣∣∣∣∣∣∣∣

1 −ϕ(u)− γ1

u− η1
a1

ϕ(u)− γ1

u− η1
+ b1

1 −ϕ(u)− γ2

u− η2
a2

ϕ(u)− γ2

u− η2
+ b2

1 −ϕ(u)− γ3

u− η3
a3

ϕ(u)− γ3

u− η3
+ b3

∣∣∣∣∣∣∣∣∣∣∣∣∣∣

= 0, u ∈ h(J1),

which reduces to the equation

(au + b)[ϕ(u)]2 − (cu + d)ϕ(u) + pu2 + qu + r

(u− η1)(u− η2)(u− η3)
= 0, u ∈ h(J1), (16)

where a, b, c, d, p, q, r are some real coefficients. Careful calculations show
that, for instance,

a = f ′(y1)h′(y2),

which proves the these coefficients do not vanish simultaneously. From
(16) we infer that ϕ, being of the form,

ϕ(u) =
(cu + d)±√Au3 + Bu2 + Cu + D

2(au + b)
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is regular in h(J1) except for at most one point. Since g = ϕ ◦ h, the
function g′ continuously differentiable in J1(except for at most one point)
iff so is h′. Now the continuous differentiability of f ′, g′, h′ is an easy
consequence of the formulas (5) and (7).

Thus we have shown that every neighbourhood of any point x0 ∈ J

contains a non-empty open interval on which the f ′, g′, h′ are continuously
differentiable and, consequently, f , g, h are twice differentiable in J except
for a nowhere dense set. Now the induction completes the proof. ¤

Remark 2. To avoid the regularity assumptions in paper [1] it is suf-
ficient to determine the solutions of equation (1) on a maximal nonempty
subinterval J0 of J on which the functions f , g, h are of the class of C∞, the
existence of which is guaranteed by Theorem 1, and then just observe that
J = J0. This approach allows to reduce an algebraic condition concerning
the Schwarzian derivative of some function assumed in [1].

Remark 3. Equation (4):

f ′(x)− f(x)−f(y)
x−y

f ′(y)− f(x)−f(y)
x−y

=
g′(x)− h′(x) g(x)−g(y)

h(x)−h(y)

g′(y)− h′(y) g(x)−g(y)
h(x)−h(y)

, x, y ∈ J, x 6= y,

which appeared in the proof suggests a different method in solving the
equality problem of Cauchy means than that applied in [1].

Acknowledgement. The author is extremely indebted to one of the
referees for pointing out a mistake in the previous version of this paper.
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POLAND

AND

INSTITUTE OF MATHEMATICS

SILESIAN UNIVERSITY

PL-40-007 KATOWICE

POLAND

E-mail: J.Matkowski@im.uz.zgora.pl

(Received February 17, 2003; revised June 16, 2003)


