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Complex rotundity of Musielak–Orlicz function spaces
equipped with the Orlicz norm

By CUIXIA HAO (Edmonton), LIFANG LIU (Xiamen) and
TINGFU WANG†

Abstract. The criteria for complex extreme points, complex rotundity, com-
plex locally uniformly rotund points, complex local uniform rotundity and com-
plex uniform rotundity in complex Musielak–Orlicz function spaces equipped with
the Orlicz norm are given.

0. Introduction

Many mathematicians worked on rotundity properties in real Banach
spaces ([2], [6], [7]) because these properties are very important in geom-
etry of Banach spaces and its applications. In the recent years, many
mathematicians have developed the investigations concerning the geomet-
ric theory of complex Banach spaces, because its applications are irreplace-
able by the geometric theory of real Banach spaces. Let D be a domain (an
open connected subset) in the complex plane and let f be a complex-valued
analytic function on D. Then the classical maximum modulus principle
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says that either |f(z)| has no maximum on D or |f(z)| is a constant on D.
If f is analytic and has values in a complex Banach space, it is well known
that the theorem still holds. However, the strong form of the maximum
modulus theorem, where if |f(z)| is constant then f(z) is also constant, is
no longer true in general. In 1967, E. Thorp and R. Whitley (see [11])
first investigated the structure of complex extreme points and showed that
the strong form of the maximum modulus principle holds for a complex
Banach space X if and only if each point of norm one is a “complex extreme
point” of the unit sphere of X. In 1975, J. Globevnik (see [5]) investi-
gated complex rotundity and complex uniform rotundity, and pointed out
that L1[0,1] is complex uniformly rotund (real space L1[0,1] is not even
rotund). Many mathematicians discussed complex rotundity in general
Banach spaces (see [3], [4], [8]–[10] and [13]). It is well known that into
the class of Musielak–Orlicz spaces include a lot of classical spaces such
as Lp (1 ≤ p ≤ ∞), Orlicz spaces etc. At the end of 1980’s, C. Wu and
H. Sun discussed complex extreme points, complex rotundity and com-
plex uniform rotundity in Orlicz spaces (see [14]–[17]). Next T. Wang and
Y. Teng (see [12]) introduced the concepts of complex locally uniformly
rotund points and complex local uniform rotundity, and obtained criteria
for them in Musielak–Orlicz spaces. But the above discussion was pro-
ceeded in the case of the Luxemburg norm. For the Orlicz norm, only one
result on complex extreme points of Musielak–Orlicz sequence spaces was
given by C. Wu and H. Sun (see [14]) in 1991. In this paper, we discuss
complex rotundity, complex locally uniformly rotund points, complex lo-
cal uniform rotundity and complex uniform rotundity in Musielak–Orlicz
function spaces equipped with the Orlicz norm. The conclusions that we
get seem to be clear and they differ a lot from the corresponding results
concerning the Luxemburg norm.

Let N denote the set of natural numbers, R and C denote the sets of
real and complex numbers, respectively. Let (X, ‖·‖) be a complex Banach
space and S(X) be the unit sphere of X.

Let (T, Σ, µ) be a nonatomic, complete and σ-finite measure space and
L0 (resp. Lc) be the space of all (equivalence classes of) Σ-measurable real
(resp. complex) functions defined on T . In the whole paper the equality of
two functions of variable t (resp. two sequences with n) is understood in
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the sense “for µ-a.e. t ∈ T” (resp. “for all n ∈ N”). Similarly, “for t ∈ A”
means “for µ-a.e. t ∈ A”, where A ∈ Σ.

A point x ∈ S(X) is called a complex extreme point if for any y ∈ X

with y 6= 0 the inequality max|λ|≤1 ‖x + λy‖ > 1 holds.

A complex Banach space X is called complex rotund (CR for short)
if every point x ∈ S(X) is a complex extreme point.

A point x ∈ S(X) is called a complex locally uniformly rotund point
(C-LUR point for short) if for any ε > 0 there exists δ = δ(x, ε) > 0 such
that for all y ∈ X satisfying ‖y‖ > ε, the inequality max|λ|≤1 ‖x + λy‖ ≥
1 + δ holds.

A complex Banach space X is called complex locally uniformly rotund
(C-LUR for short) if every point x ∈ S(X) is a C-LUR point.

A complex Banach space X is called complex uniformly rotund (CUR
for short) if for any ε> 0 there exists δ = δ(ε) > 0 such that max

|λ|≤1
‖x +λy‖≥

1 + δ holds for all x ∈ S(X) and y ∈ X satisfying ‖y‖ > ε.

A function M : T×R → [0, +∞] is said to be a Musielak–Orlicz func-
tion if M has the following properties:

(1) M(·, u) ∈ L0 for any u ∈ R,

(2) M(t, ·) is even, convex, continuous at zero and left continuous on R+

(t ∈ T ),

(3) M(t, 0) = 0, limu→∞M(t, u) = ∞ and M(t, ut) < ∞ for some ut ∈
(0,+∞) (t ∈ T ).

N is called the complementary function of M if

N(t, v) = sup
u≥0

{u|v| −M(t, u)} (t ∈ T, v ∈ R).

Then N is also a Musielak–Orlicz function. For any t ∈ T , define

e(t) = sup{u ≥ 0 : M(t, u) = 0},

E(t) = sup{u ≥ 0 : M(t, u) < ∞},

A(t) = sup{v ≥ 0 : N(t, v) < ∞}.
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Let p−(t, u) (resp. p(t, u)) denote the left (resp. the right) derivative
of M(t, u) at u, assuming p(t, u) = −p−(t,−u) = ∞ for u ≥ E(t) and
p−(t, u) = −p(t,−u) = ∞ for u > E(t). Let q−(t, v) (resp. q(t, v)) be
the left (resp. the right) derivative of N(t, v) at v, assuming q(t, v) =
−q−(t,−v) = ∞ for v ≥ A(t) and q−(t, v) = −q(t,−v) = ∞ for v > A(t).
Then q(t, v) = sup{u ≥ 0 : p(t, u) ≤ v} and N(t, v) =

∫ |v|
0 q(t, s)ds for any

v ∈ R (t ∈ T ).

It is well known that there holds the Young inequality

|uv| ≤ M(t, u) + N(t, v) (t ∈ T, u, v ∈ R).

Moreover, |uv| = M(t, u) + N(t, v) if and only if p−(t, u) ≤ v ≤ p(t, u) or
q−(t, v) ≤ u ≤ q(t, v).

Given a Musielak–Orlicz function M , we define the convex modular
ρM : Lc → [0, +∞] by

ρM (x) =
∫

T
M(t, |x(t)|)dµ.

The linear space

{x ∈ Lc : ρM (λx) < ∞ for some λ > 0}

equipped with the Luxemburg norm

‖x‖M = inf
{

λ > 0 : ρM

(x

λ

)
≤ 1

}

or with the Orlicz norm

‖x‖0
M = sup{〈|x|, |y|〉 : ρN (y) ≤ 1}

is a complex Banach space, where 〈|x|, |y|〉 =
∫
T |x(t)||y(t)|dµ. We denote

it by LM or L0
M , respectively. These two norms are equivalent and the

inequalities ‖x‖M ≤ ‖x‖0
M ≤ 2‖x‖M hold for any x ∈ LM . It is known

that if there exists an Orlicz function M such that M(t, u) = M(u) for
any t ∈ T and u ∈ R, then LM becomes an Orlicz space. It is also known
that ‖x‖0

M = infk>0
1
k (1 + ρM (kx)) for any x ∈ LM , which is called the

Amemiya–Orlicz formula for the Orlicz norm.
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We say that for any T0 ∈ Σ, M satisfies condition ∆2(T0) (M ∈
∆2(T0) for short) if for any h > 1, there exist k > 1 and a nonnegative
function δ ∈ L0 with

∫
T0

δ(t)dµ < ∞ such that M(t, hu) ≤ kM(t, u)+ δ(t)
(t ∈ T0, u ∈ R). Given a Musielak–Orlicz function M , we define the
functional ξM : LM → R+ by ξM (x) = inf{λ > 0 : ρM (x

λ) < ∞}. For any
x ∈ L0

M , we define

k∗x = inf{k ≥ 0 : ρN (p ◦ kx) ≥ 1}, k∗∗x = sup{k ≥ 0 : ρN (p ◦ kx) ≤ 1}.
It is known (see [14]) that ‖x‖0

M = 1
k (1 + ρM (kx)) for a number k ∈

(0,∞) if and only if k∗x ≤ k ≤ k∗∗x . In the sequel for any x ∈ LM we
denote by Sx the set {t ∈ T : x(t) 6= 0}. By χ we denote the characteristic
function.

Lemma 0.1 (see [8]). For any Musielak–Orlicz function M , there

exists an ascending sequence (Tk)∞k=1 ⊂ Σ which satisfies
⋃∞

k=1 Tk = T ,

µ(Tk) < ∞ and sup{M(t, λ) : t ∈ Tk} < ∞ for any λ > 0 and k ∈ N.

Lemma 0.2 (see [14], Theorem 1). Let 0 6= x ∈ L0
M and A is the

function defined on page 3. Then:

(1) If ρN (AχSx) > 1, then ‖x‖0
M = 1

k (1 + ρM (kx)) for some k ∈ (0,∞)
and it is the only possibility to attain the norm ‖x‖0

M .

(2) If ρN (AχSx) ≤ 1, then ‖x‖0
M = 〈|x|, A〉 and if ρN (AχSx) < 1, then

‖x‖0
M can not be attained in which way ‖x‖0

M is then given.

Since C is complex uniformly rotund, so we have the following

Lemma 0.3 (see [1], Proposition 5.17). Let i be the complex number

satisfying i2 = −1. For any ε > 0 there exists δ ∈ (0, 1
2) such that if

u, v ∈ C and |v| ≥ ε
8 maxj∈I |u + jv|, then |u| ≤ 1−2δ

4

∑
j∈I |u + jv|, where

I := {±1,±i}.

1. Main results

Lemma 1.1. If ‖(1
4

∑
j∈I |x + jy|)‖0

M = 〈14
∑

j∈I |x + jy|, A〉, then

ρN (A) ≤ 1.

Proof. For any t∈T , 1
4

∑
j∈I |x(t)+jy(t)| 6=0. So, S 1

4

P
j ∈ I |x + jy|=T.

By Lemma 0.2, ρN (A) ≤ 1. ¤
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Theorem 1.2. If ρN (A) ≤ 1, then L0
M is CUR.

Proof. Otherwise, there exist ε > 0 and two sequences
(xn)∞n=1, (yn)∞n=1 ⊂ L0

M with ‖xn‖0
M = 1, ‖yn‖0

M ≥ ε such that ‖xn +
λyn‖0

M ≤ 1 + 1
n (|λ| ≤ 1). Denote

En =
{

t ∈ T : |yn(t)| ≥ ε

8
max
j∈I

|xn(t) + jyn(t)|
}

.

Then ‖ynχT\En
‖0

M ≤ ε
2(1 + 1

n) < 2ε
3 (n ≥ 3). Therefore ‖ynχEn‖0

M > ε
3

(n ≥ 3). If t ∈ En, then |xn(t)| < (1 − 2δ)1
4

∑
j∈I |xn(t) + jyn(t)|, where

δ ∈ (0, 1
2).

By the assumption that ρN (A) ≤ 1 and by Lemma 0.2, we have

1 = ‖xn‖0
M =

〈|xn|, AχT\En

〉
+ 〈|xn|, AχEn〉

≤
〈

1
4

∑

j∈I

|xn + jyn|, AχT\En

〉
+ (1− 2δ)

〈
1
4

∑

j∈I

|xn + jyn|, AχEn

〉

=
〈

1
4

∑

j∈I

|xn + jyn|, A
〉
− 2δ

〈
1
4

∑

j∈I

|xn + jyn|, AχEn

〉

≤
∥∥∥∥
(

1
4

∑

j∈I

|xn + jyn|
)∥∥∥∥

0

M

− 2δ 〈|yn|, AχEn〉 ≤ 1 +
1
n
− 2δ‖ynχEn‖0

M

≤ 1 +
1
n
− 2δε

3
≤ 1− δε

3
(1)

for n large enough, which is a contradiction. ¤

Theorem 1.3. A point x ∈ S(L0
M ) is a complex extreme point if

and only if for any k ∈ (0,∞) satisfying ‖x‖0
M = 1

k (1 + ρM (kx) we have

µ{t ∈ T : k|x(t)| < e(t)} = 0.

Proof. Necessity. If µ{t ∈ T : k|x(t)| < e(t)} > 0, then there exist
T0 ∈ Σ with µT0 > 0 and c > 0 such that k|x(t)| + c ≤ e(t) (t ∈ T0). If
y = c

kχT0 , then y 6= 0 and

‖x + λy‖0
M ≤ 1

k

(
1 + ρM (k(x + λy))

)
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≤ 1
k
(1 + ρM (kxχT\T0

) + ρM

(
(k|x|+ c)χT0)

)

=
1
k
(1 + ρM (kxχT\T0

))

=
1
k
(1 + ρM (kx)) = 1 (|λ| ≤ 1).

This means that x is not a complex extreme point.

Sufficiency. Assume that there exist ε > 0 and y ∈ L0
M satisfying

‖y‖0
M > ε such that max|λ|≤1 ‖x + λy‖0

M ≤ 1. By Lemma 0.3, there exists
δ ∈ (0, 1

2) such that if u, v ∈ C and |v| ≥ ε
8 maxj |u + jv|, then |u| <

(1− 2δ)1
4

∑
j∈I |u + jv|. Let E = {t ∈ T : |y(t)| ≥ ε

8 maxj∈I |x(t) + jy(t)|}.
Then ‖yχT\E‖0

M ≤ ε
8‖(maxj∈I |x + jy|)‖0

M ≤ ε
8

∑
j∈I ‖x + jy‖0

M ≤ ε
2 .

Therefore ‖yχE‖0
M > ε

2 . If t ∈ E, then |x(t)| < (1−2δ)1
4

∑
j∈I |x(t)+jy(t)|.

If ‖(1
4

∑
j∈I |x + jy|)‖0

M = 〈14
∑

j∈I |x + jy|, A〉, then L0
M is CUR by

Theorem 1.2. If ‖(1
4

∑
j∈I |x + jy|)‖0

M = 1
k (1 + ρM (k

4

∑
j∈I |x + jy|)). In

this case, ‖x‖0
M = 1 and

1 ≥
∥∥∥∥
(

1
4

∑

j∈I

|x + jy|
)∥∥∥∥

0

M

=
1
k

(
1 + ρM

(
k

4

∑

j∈I

|x + jy|
))

≥ 1
k
(1 + ρM (kx)) ≥ ‖x‖0

M .

So ‖x‖0
M = 1

k (1 + ρM (kx)). By the condition that if k ∈ (0,∞) satisfying
‖x‖0

M = 1
k (1 + ρM (kx) we have µ{t ∈ T : k|x(t)| < e(t)} = 0, we get

k|x(t)| ≥ e(t) (t ∈ T ). Therefore,

1 = ‖x‖0
M =

1
k

(
1 + ρM (kxχT\E) + ρM (kxχE)

)

<
1
k

(
1 + ρM

(
k

4

∑

j∈I

|x + jy|χT\E

)
+ (1− 2δ)ρM

(
k

4

∑

j∈I

|x + jy|χE

))

=
1
k

(
1 + ρM

(
k

4

∑

j∈I

|x + jy|
)
− 2δρM

(
k

4

∑

j∈I

|x + jy|χE

))
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≤ 1
k

(
1 + ρM

(
k

4

∑

j∈I

|x + jy|
))

− 2δ

k
ρM

(
kx

1− 2δ
χE

)

≤
∥∥∥∥
(

1
4

∑

j∈I

|x + jy|
)∥∥∥∥

0

M

− 2δ

k
ρM

(
kx

1− 2δ
χE

)
< 1. (2)

This is a contradiction, which finishes the proof. ¤

Theorem 1.4. The space L0
M is CR if and only if e(t) = 0 for µ-a.e.

t ∈ T or ρN (A) ≤ 1.

Proof. The proof of Sufficiency is trivial by Theorems 1.2 and 1.3.

Necessity. Otherwise, there exists T0 ∈ Σ such that µT0 > 0, e(t) > 0
for t ∈ T0 and ρN (AχT\T0

) > 1. Take x ∈ L0
M such that Sx = T\T0.

By Lemma 0.2, there exists k ∈ (0,∞) such that ‖x‖0
M = 1

k (1 + ρM (kx)).
However, k|x(t)| = 0 < e(t) (t ∈ T0). By Theorem 1.3, x is not a complex
extreme point. ¤

Theorem 1.5. If x ∈ S(L0
M ). Then x is a C-LUR point if and only

if for k ∈ (0,∞) satisfying ‖x‖0
M = 1

k (1 + ρM (kx)), there holds:

(1) µ{t ∈ T : k|x(t)| < e(t)} = 0,

(2) If there exist s ∈ (0, 1) and T0 ∈ Σ with µT0 > 0 satisfying

ρM ( kx
1−sχT0) < ∞, then M ∈ ∆2(T0).

Proof. Necessity. Since “C-LUR ⇒ CR”, the necessity of condition
(1) is trivial.

If (2) does not hold, then there exist s ∈ (0, 1) and T0 ∈ Σ with
µT0 > 0 satisfying ρM ( kx

1−sχT0) < ∞, but M /∈ ∆2(T0). There exists
z ∈ L0

M with Sz = T0 such that ρM (z) ≤ 1 and ξM (z) = 1. Define yn with
yn = s

kzχT\Tn
, where the sequence (Tn)∞n=1 satisfies Lemma 0.1. Then

‖yn‖0
M = s

k‖zχT\Tn
‖0

M ≥ s
kξM (z) = s

k > 0. But

‖x + λyn‖0
M ≤ 1

k
(1 + ρM (k(x + λyn)))

≤ 1
k

(
1 + ρM (kx) +

∫

T\Tn

M

(
t, (1− s)

k|x(t)|
1− s

+ s|z(t)|
)

dµ

)
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≤ ‖x‖0
M +

1− s

k
ρM

(
kxχT\Tn

1− s

)
+

s

k
ρM

(
zχT\Tn

)

→ ‖x‖0
M = 1.

This shows that x is not a C-LUR point.

Sufficiency. Assume that there exist ε > 0 and (yn)∞n=1 ⊂ L0
M with

‖yn‖0
M > ε satisfying

‖x + λyn‖0
M ≤ 1 +

1
n

(∀ |λ| ≤ 1).

Denote

En =
{

t ∈ T : |yn(t)| ≥ ε

8
max
j∈I

|x(t) + jyn(t)|
}

.

Then ‖ynχT\En
‖0

M ≤ ε
2(1 + 1

n) < 2ε
3 (n ≥ 3). Therefore ‖ynχEn‖0

M > ε
3

(n ≥ 3). If t ∈ En, then

|x(t)| < (1− 2δ)
1
4

∑

j∈I

|x(t) + jyn(t)|,

where δ ∈ (0, 1
2). By Theorem 1.2, it is sufficient to discuss two cases.

Case I. ‖(1
4

∑
j∈I |x+jyn|)‖0

M = 1
kn

(1+ρM (kn
4

∑
j∈I |x+jyn|)) (n ∈ N)

and kn →∞. In virtue of (2), we obtain

1 = ‖x‖0
M ≤ 1 +

1
n
− 2δ

kn
ρM

(
kn

4

∑

j∈I

|x + jyn|χEn

)

≤ 1 +
1
n
− 2δ

kn
ρM (knynχEn) ≤ 1 +

1
n
− 2δ‖ynχEn‖0

M +
2δ

kn

≤ 1− δε

3
(3)

for n large enough, which is a contradiction.

Case II. ‖(1
4

∑
j∈I |x + jyn|)‖0

M = 1
kn

(
1 + ρM (kn

4

∑
j∈I |x + jyn|)

)
(n ∈ N) and kn → k < ∞. From

1 +
1
n
≥

∥∥∥∥
(

1
4

∑

j∈I

|x + jyn|
)∥∥∥∥

0

M

=
1
kn

(
1 + ρM

(
kn

4

∑

j∈I

|x + jyn|
))
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≥ 1
kn

(
1 + ρM (knx)

) ≥ ‖x‖0
M = 1,

taking n →∞, we get 1 = ‖x‖0
M = 1

k (1 + ρM (kx)).

II-1. infn ρM ( kx
1−δχEn) = a > 0. Then in virtue of (2), we get for n

large enough,

‖x‖0
M ≤ 1 +

1
n
− 2δ

kn
ρM

(
kx

1− δ
χEn

)
≤ 1 +

1
n
− 2δ

kn
a ≤ 1− δa

k
.

This is a contradiction.

II-2. infn ρM ( kx
1−δχEn) = 0. Passing to a subsequence of (En)∞n=1 if

necessary we can assume that

∞∑

n=1

ρM

(
kx

1− δ
χEn

)
< ∞.

Denote E =
⋃∞

n=1 En. Then ρM ( kx
1−δχE) < ∞. By the assumption, we

have M ∈ ∆2(E). So there exist K > 1 and a nonnegative function δ ∈ L0

with
∫
E δ(t)dµ < ∞ satisfying

M

(
t,

12
ε

u

)
≤ KM(t, u) + δ(t) (t ∈ E).

Take η > 0 such that if Ω ∈ E ∩ Σ and µΩ < η, then
∫
Ω δ(t)dµ < 1

2 . Take
D > 0 large enough such that µ{t ∈ E : M(t, 1) > D} < η

3 and ε
D < 1.

Let

F = {t ∈ E : M(t, 1) ≤ D}, z =
ε2

12D
χF .

Without loss of generality, we may assume that εµE ≤ 1. Then

‖z‖0
M ≤ ε

12

(
1 + ρM

(
12
ε

z

))
=

ε

12

(
1 +

∫

F
M

(
t,

ε2

12D
· 12

ε

)
dµ

)

≤ ε

12

(
1 +

ε

D

∫

F
M(t, 1)dµ

)
≤ ε

12

(
1 +

ε

D
·D · µF

)
<

ε

6
.

Thus for any y ∈ L0
M , we have

‖yχ{t∈E:M(t,1)≤D,|y(t)|< ε2

12D
}‖

0
M ≤ ‖z‖0

M <
ε

6
.
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Combining this with ‖ynχEn‖0
M > ε

3 (n ≥ 3) and defining

Fn =
{

t ∈ En : M(t, 1) > D or |yn(t)| ≥ ε2

12D

}
,

we get ‖ynχFn‖0
M > ε

6 (n ≥ 3).

II-2-1. Without loss of generality, assume that µFn < η (n ∈ N).
Notice that ‖12

ε ynχFn‖M ≥ ‖6
εynχFn‖0

M > 1, Fn ⊂ En⊂E and kn→ k > 1.
For n large enough, there hold the inequalities

1 ≤ ρM

(
12
ε

ynχFn

)
≤ ρM

(
12
ε

knynχFn

)

≤ KρM (knynχFn) +
∫

Fn

δ(t)dµ ≤ KρM (knynχFn) +
1
2
.

So ρM (knynχFn) ≥ 1
2K . Then in virtue of (3),

1 = ‖x‖0
M ≤ 1 +

1
n
− 2δ

kn
ρM (knynχEn) ≤ 1 +

1
n
− 2δ

kn
ρM (knynχFn)

≤ 1 +
1
n
− 2δ

kn
· 1
2K

≤ 1− δ

2Kk
.

This is a contradiction.

II-2-2. Without loss of generality, assume that µFn ≥ η (n ∈ N).
Notice that for t ∈ T , if e(t) > 0, then M(t, e(t)

1−δ ) > 0. If e(t) = 0, then
M(t, ε2

12D ) > 0. So, there exists c > 0 small enough such that

µ

{
t ∈ Fn : e(t) > 0 and M

(
t,

e(t)
1− δ

)
< c

or e(t) = 0 and M

(
t,

ε2

12D

)
< c

}
<

η

3
.

Since µ{t ∈ E : M(t, 1) > D} < η
3 , setting

Hn =
{

t ∈ Fn : M(t, 1) ≤ D, e(t) > 0 ⇒ M

(
t,

e(t)
1− δ

)
≥ c,

e(t) = 0 ⇒ M

(
t,

ε2

12D

)
≥ c

}
,
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we get µHn ≥ η
3 . If t ∈ Hn and e(t) > 0, we have for n large enough,

M

(
t,

kn

4

∑

j∈I

|x(t) + jyn(t)|
)
≥ M

(
t,

kn|x(t)|
1− 2δ

)

≥ M

(
t,

k|x(t)|
1− δ

)
≥ M

(
t,

e(t)
1− δ

)
≥ c.

If t ∈ Hn and e(t) = 0, for n large enough there hold the inequalities

M

(
t,

kn

4

∑

j∈I

|x(t) + jyn(t)|
)
≥ M

(
t, kn|yn(t)|) ≥ M(t, |yn(t)|)

≥ M

(
t,

ε2

12D

)
≥ c.

So ρM (kn
4

∑
j∈I |x + jyn|χHn) ≥ 1

3cη. Then in virtue of (3), we obtain

1 = ‖x‖0
M ≤ 1 +

1
n
− 2δ

kn
· cη

3
→ 1− δcη

3k
.

This is a contradiction, which finishes the proof. ¤
Theorem 1.6. The following assertions are equivalent:

(1) L0
M is CUR,

(2) L0
M is C-LUR,

(3) ρN (A) ≤ 1 or e(t) = 0 for µ-a.e. t ∈ T and M ∈ ∆2.

Proof. The implications (1)⇒ (2) and (2)⇒ “ρN (A) ≤ 1 or e(t) = 0
for µ-a.e. t ∈ T” are trivial by Theorem 1.4. Let L0

M is C-LUR and
ρN (A) > 1 but M /∈ ∆2. There exists z ∈ L0

M such that ρM (z) ≤ 1 and
ξM (z) = 1. Take n0 large enough such that ρN (AχTn0

) > 1, where the
sequence (Tn)∞n=1 is from Lemma 0.1. We can find x ∈ S(L0

M ) with Sx =
Tn0 . By Lemma 0.2, there exists k > 0 such that ‖x‖0

M = 1
k (1 + ρM (kx)).

Define
yn =

1
k
zχT\Tn

(n ∈ N).

Then ‖yn‖0
M = 1

k‖zχT\Tn
‖0

M ≥ 1
kξM (z) = 1

k (n ∈ N). But if n > n0, there
holds

‖x + λyn‖0
M ≤ 1

k

(
1 + ρM (k(x + λyn))

)
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≤ 1
k

(
1 + ρM (kxχTn) + ρM (zχT\Tn

)
)

→ 1
k
(1 + ρM (kx)) = ‖x‖0

M = 1.

This contradicts the fact that x is a C-LUR point.

(3) ⇒ (1). The proof is similar to the proof of sufficiency of Theo-
rem 1.5, so we omit it here. ¤
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