Publ. Math. Debrecen 43 / 3-4 (1993), 255-263

Local set-valued solutions of the Jensen and Pexider functional equations

By WILHELMINA SMAJDOR (Katowice)

Abstract. Local solutions of the Jensen and Pexider functional equations for setvalued functions are given. The obtained results are applied to find a form of the locally Lipschitzian Nemytskii operator.

1. The Jensen functional equation

Z. FIFER in [2] (cf. also [5]) has proved that every set-valued Jensen function f defined in the interval $[0, \infty)$ with compact non-empty values in a normed space Y is of the form

(1)
$$f(x) = A(x) + B, \quad x \in [0, \infty)$$

where A is an additive set-valued function in $[0, \infty)$ with compact convex non-empty values in Y and B is a compact convex non-empty subset of Y. The main purpose of this paper is to give a local version of this result.

Example. The set-valued Jensen function given by the formula

$$f(x) = [0, 1 - x]$$
 for $x \in [0, 1]$

cannot be represented in the form (1).

Let $(Y, \|\cdot\|)$ be a normed space. We denote by c(Y) the family of all compact non-empty subsets of Y and cc(Y) the family of all convex sets from c(Y). The symbol \mathbb{R} stands for the set of all reals, and \mathbb{N} for the set of positive integers.

Let $I = [0, a) \subset \mathbb{R}$ be an interval. A set-valued function $F : I \to 2^Y$ is said to be a Jensen function if

$$F\left(\frac{x+y}{2}\right) = \frac{1}{2}\left[F(x) + F(y)\right]$$

¹⁹⁹¹ Mathematics Subject Classification: 39 B 99, 54 C 60, 26 E 25, 47 H 30

Key words and phrases: Jensen equation, Pexider equation, set-valued functions, Nemytskii operator, Lipschitzian functions.

for $x, y \in I$.

It is easily seen that the values of a Jensen function $F: I \to c(Y)$ belong to cc(Y).

We shall apply the following

Lemma 1. (cf. [7]). Let A, B and $C \neq 0$ be subsets of a topological Hausdorff vector space such that $A+C \subset B+C$. If B is convex and closed and C is bounded, then $A \subset B$.

The Hausdorff metric in the set of all closed bounded and non-empty subsets of a normed space Y will be denoted by d. The following lemma collects the main properties of d:

Lemma 2. (cf. [7]). (a) d(A+C, B+C) = d(A, B);

- (b) $d(\lambda A, \lambda B) = |\lambda| d(A, B);$
- (c) $d(A + C, B + D) \le d(A, B) + d(C, D)$

for A, B, C, D from cc(Y) and for any real number λ .

The main result of this paper is the following

Theorem 1. If Y is a normed space and F(0) is convex, then $F: I \to c(Y)$ is a Jensen function if and only if there exist sets $A, B \in cc(Y)$ and an additive function $a: \mathbb{R} \to Y$ such that

$$F(x) + xB = F(0) + xA + a(x) \quad \text{for all} \quad x \in I.$$

PROOF. The sufficiency is easily verifiable.

Necessity. Let $F: I \to c(Y)$ be a Jensen set-valued function. There exist an additive function $a: \mathbb{R} \to Y$ and a convex continuous (with respect to the Hausdorff metric d in cc(Y)) set-valued function $G: (0, a) \to cc(Y)$ such that

$$F(x) = a(x) + G(x)$$
 for all $x \in (0, a)$

(cf. K. NIKODEM [4]). Put G(0) := F(0). We notice that G is the Jensen function in I.

Let " \approx " denote Rådström's equivalence relation in cc(Y) defined by

 $(A, B) \approx (C, D)$ if and only if A + D = B + C

(cf. [7]). For any pair (A, B) denote by [A, B] the equivalence class containing this pair. Define the addition of two equivalence classes by

$$[A, B] + [C, D] = [A + C, B + D]$$

and multiplication with a $\lambda \geq 0$ by

$$\lambda[A,B] = [\lambda A, \lambda B].$$

256

The metric δ on the space of all equivalence classes is given by

$$\delta([A,B],[C,D]) = d(A+D,B+C).$$

The formula

$$g(x) = [G(x), G(0)]$$

introduces a function of the type $g: I \to (cc(Y) \times cc(Y))/\approx$. We shall show that g is additive. Since

$$2g\left(\frac{x}{2}\right) = \left[2G\left(\frac{x}{2}\right), \ 2G(0)\right] =$$
$$= [G(x) + G(0), G(0) + G(0)] = [G(x), G(0)] = g(x)$$

for all $x \in I$, thus we get

$$g(x+y) = 2g\left(\frac{x+y}{2}\right) = 2\left[G\left(\frac{x+y}{2}\right), G(0)\right] = 2\left[\frac{G(x) + G(y)}{2}, G(0)\right] = \left[G(x) + G(y), 2G(0)\right] = \left[G(x), G(0)\right] + \left[G(y), G(0)\right] = g(x) + g(y)$$

for all $x, y \in I$ such that $x + y \in I$. Moreover

$$\delta(g(x), g(y)) = \delta([G(x), G(0)], \ [G(y), G(0)]) =$$

= $d(G(x) + G(0), \ G(0) + G(y)) = d(G(x), G(y))$

for $x, y \in I$. Therefore for every $x \in (0, a)$ we have

$$\lim_{y \to x} \delta(g(x), g(y)) = \lim_{y \to x} d(G(x), G(y)) = 0.$$

Thus g is continuous in (0, a) and it is an additive function. Consequently there is an equivalence pair [A, B] for which

$$g(x) = x[A, B], \quad x \in I.$$

This equality can be rewritten in the following form

$$[G(x), G(0)] = [xA, xB], \quad x \in I,$$

whence by the definition of the relation " \approx " we have

$$G(x) + xB = G(0) + xA, \quad x \in I.$$

Adding a(x) to both sides of the above equality we obtain

$$F(x) + xB = F(0) + xA + a(x), \quad x \in I$$

and the proof is complete.

Wilhelmina Smajdor

Remark 1. Professor K. NIKODEM pointed out that the above theorem can be extended to set-valued functions defined in arbitrary intervals [a, b].

Remark 2. Theorem 1 generalizes FIFER's result (see Theorem 1 in [2]). In fact, let Y be a Banach space and let $I = [0, \infty)$. Then

$$F(x) + xB = F(0) + xA + a(x),$$

where $A, B \in cc(Y)$ and $a : \mathbb{R} \to Y$ is an additive function, hence

$$F(2^n) + 2^n B = F(0) + 2^n A + 2^n a(1), \quad n \in \mathbb{N}.$$

Thus

(2)
$$\frac{1}{2^n}F(2^n) + B = \frac{1}{2^n}F(0) + A + a(1), \quad n \in \mathbb{N}.$$

Now we observe that the sequence of sets with terms $\frac{1}{2^n}F(2^n)$, $n \in \mathbb{N}$ fulfils the Cauchy condition. Indeed,

$$\begin{split} d\left(\frac{1}{2^n}F(2^n), \ \frac{1}{2^m}F(2^m)\right) &= d\left(\frac{1}{2^n}F(2^n) + B, \ \frac{1}{2^m}F(2^m) + B\right) = \\ &= d\left(\frac{1}{2^n}F(0) + A + a(1), \ \frac{1}{2^m}F(0) + A + a(1)\right) = \\ &= d\left(\frac{1}{2^n}F(0), \ \frac{1}{2^m}F(0)\right) = \left|\frac{1}{2^n} - \frac{1}{2^m}\right| \|F(0)\| \end{split}$$

for $n, m \in \mathbb{N}$, where $||A|| = \sup\{||x|| : x \in A\}$. Consequently this sequence converges to a set $C \in cc(Y)$ (see [1]).

By (2) we get

$$C + B = A + a(1)$$

and

$$F(x) + xB = F(0) + x[C + B - a(1)] + a(x).$$

Using Rådström's Lemma 1 we have

$$F(x) = F(0) + a(x) + x(C - a(1)).$$

2. The Pexider functional equation

In the paper [6] K. NIKODEM characterized set-valued solutions of the Pexider functional equation

(3)
$$F(x+y) = G(x) + H(y)$$

with three unknown functions F, G and H. In this section we shall establish a form of a local set-valued solution of equation (3).

Theorem 2. If Y is a normed space, then set-valued functions F, G, $H: I \to cc(Y)$ fulfil equation (3) for $x, y \in I$ such that $x + y \in I$ if and only if there exist sets $A, B, K, L \in cc(Y)$ and an additive function $a: \mathbb{R} \to Y$ such that

$$F(x) + xB = K + L + xA + a(x),$$

$$G(x) + xB = K + xA + a(x),$$

$$H(x) + xB = L + xA + a(x)$$

for $x \in I$.

PROOF. The sufficiency is easily seen. To prove necessity take $x, y \in I$. We have

(4)
$$F\left(\frac{x+y}{2}\right) = G\left(\frac{x}{2}\right) + H\left(\frac{y}{2}\right)$$

and

(5)
$$F\left(\frac{x+y}{2}\right) = G\left(\frac{y}{2}\right) + H\left(\frac{x}{2}\right).$$

Hence

(6)
$$2F\left(\frac{x+y}{2}\right) = G\left(\frac{x}{2}\right) + G\left(\frac{y}{2}\right) + H\left(\frac{x}{2}\right) + H\left(\frac{y}{2}\right).$$

Putting y = x in (4) and x = y in (5) we get

(7)
$$F(x) + F(y) = G\left(\frac{x}{2}\right) + G\left(\frac{y}{2}\right) + H\left(\frac{x}{2}\right) + H\left(\frac{y}{2}\right).$$

The comparison of equalities (6) and (7) gives

$$F\left(\frac{x+y}{2}\right) = \frac{1}{2}\left[F(x) + F(y)\right]$$

for $x, y \in I$. In virtue of Theorem 1 there are sets $A, B \in cc(Y)$ and an additive function $a : \mathbb{R} \to Y$ such that

$$F(x) + xB = F(0) + xA + a(x), \quad x \in I$$

Putting x + y instead of x in the above equality and applying equation (3) we obtain

$$G(x) + H(y) + (x + y)B = G(0) + H(0) + xA + yA + a(x) + a(y)$$

for all $x, y \in I$ for which $x + y \in I$. Hence for y = 0 we have

$$G(x) + xB = G(0) + xA + a(x), \quad x \in I$$

Similarly

$$H(y) + yB = H(0) + yA + a(y), \quad y \in I$$

Putting K := G(0), L := H(0) and applying the equality F(0) = G(0) + H(0) we get the assertion of the theorem.

Wilhelmina Smajdor

3. Application

Let $(X, |\cdot|), (Y, |\cdot|)$ be normed spaces and let $U \subset X$ be a convex set with zero. Denote by lip(U, I) the set of all functions $\phi : U \to I$ such that

$$\sup_{x\neq\overline{x}}\frac{|\phi(x)-\phi(\overline{x})|}{|x-\overline{x}|}<\infty,$$

where supremum is taken over all $x, \overline{x} \in U$. In the set lip(U, I) we introduce the metric defined by the formula

$$D(\phi_1, \phi_2) := |\phi_1(0) - \phi_2(0)| + \sup_{x \neq \overline{x}} \frac{|\phi_1(x) - \phi_2(x) - \phi_1(\overline{x}) + \phi_2(\overline{x})|}{|x - \overline{x}|}.$$

Let $\operatorname{Lip}(U, Y)$ denote the set

$$\left\{\phi: U \to cc(Y): \sup_{x \neq \overline{x}} \frac{d(\phi(x), \phi(\overline{x}))}{|x - \overline{x}|} < \infty\right\}.$$

In this set the metric may be defined by

$$\rho(\phi_1, \phi_2) := d(\phi_1(0), \phi_2(0)) + \sup_{x \neq \overline{x}} \frac{d(\phi_1(x) + \phi_2(\overline{x}), \phi_1(\overline{x}) + \phi_2(x))}{|x - \overline{x}|}$$

Every set-valued function $h: U \times \mathbb{R} \to cc(Y)$ generates the Nemytskii operator \mathcal{N}

(8)
$$\mathcal{N}(\phi)(x) := h(x, \phi(x)), \quad x \in U$$

mapping the space of all functions $\phi: U \to \mathbb{R}$ with values in the space of all functions $\phi: U \to cc(Y)$.

In the paper [8] it has been proved that the Nemytskii operator \mathcal{N} mapping the space $\operatorname{lip}(U, C)$ into $\operatorname{Lip}(U, Z)$, where C is a convex cone with zero in Y and Z is a normed space, and globally Lipschitzian must be of the form

$$\mathcal{N}(\phi)(x) = A(x, \phi(x)) + B(x),$$

where $A := U \times C \to cc(Z)$, $A(x, \cdot)$ is an additive set-valued function and $B \in \text{Lip}(U, Z)$. In this part of the paper we are going to give the following analogue of MATKOWSKI's theorem (cf. [3]) for set-valued functions:

Theorem 3. Let $(X, |\cdot|), (Y, |\cdot|)$ be normed spaces and $U \subset X$ be a convex set such that $0 \in U$. Assume that $h: U \times I \to cc(Y)$ and the Nemytskii operator \mathcal{N} generated by h satisfies the two conditions (i) $\mathcal{N}: lip(U, I) \to Lip(U, Y)$;

(ii) there is c > 0 such that

$$\rho\left[\mathcal{N}(\phi_1), \mathcal{N}(\phi_2)\right] \le cD(\phi_1, \phi_2), \quad \phi_1, \phi_2 \in \operatorname{lip}(U, I),$$

then there exist set-valued functions $A, B: U \to cc(Y)$ for which

$$h(x,y) + yB(x) = yA(x) + h(x,0), \quad x \in U, \quad y \in I$$

Moreover there exists a constant $l \ge 0$ such that

(9)
$$d[A(x_1) + B(x_2), A(x_2) + B(x_1)] \le l|x_1 - x_2|, \quad x_1, x_2 \in U.$$

PROOF. Fix $y \in [0, a)$. The constant function $\phi(x) = y$, $x \in U$ belongs to lip(U, I). It follows by (i) that

$$h(\cdot, y) \in \operatorname{Lip}(U, Y), \quad y \in I.$$

In particular the function h is continuous with respect to the first variable for every fixed y belonging to I.

Using the definition of ρ and (ii) we have

(10)
$$\frac{d[h(t,\phi_1(t)) + h(\bar{t},\phi_2(\bar{t})), \ h(\bar{t},\phi_1(\bar{t})) + h(t,\phi_2(t))]}{|t-\bar{t}|} \le cD(\phi_1,\phi_2)$$

for all $\phi_1, \phi_2 \in \operatorname{Lip}(U, Y), t, \overline{t} \in U, t \neq \overline{t}$. Let us take $x \in U, x \neq 0$ and $\overline{x} \in U$ such that $|\overline{x}| < |x|$. Fix $y_1, y_2, \overline{y}_1, \overline{y}_2 \in I$ and define

(11)
$$\phi_i(t) = \begin{cases} \overline{y}_i, & |t| \le |\overline{x}| \\ \frac{y_i - \overline{y}_i}{|x| - |\overline{x}|} (|t| - |\overline{x}|) + \overline{y}_i, & |\overline{x}| \le |t| \le |x| \\ y_i, & |t| \ge |x| \end{cases}$$

for $t \in U$ and i = 1, 2. It is evident that $\phi_i \in lip(U, I)$. Moreover

$$D(\phi_1,\phi_2) = |\overline{y}_1 - \overline{y}_2| + \frac{|y_1 - y_2 - \overline{y}_1 + \overline{y}_2|}{|x| - |\overline{x}|}.$$

Putting in (10) ϕ_1 and ϕ_2 as given by (11), t = x, $\overline{t} = \overline{x}$ we get

(12)
$$\frac{d[h(x,y_1) + h(\overline{x},\overline{y}_2), h(\overline{x},\overline{y}_1) + h(x,y_2)]}{|x - \overline{x}|} \leq c \left[|\overline{y}_1 - \overline{y}_2| + \frac{|y_1 - y_2 - \overline{y}_1 + \overline{y}_2|}{|x| - |\overline{x}|} \right].$$

Obviously $\frac{|x-\overline{x}|}{|x|-|\overline{x}|} \geq 1$. Now for $\overline{x} = \lambda x$, where $0 < \lambda < 1$, we have

$$\frac{|x-\overline{x}|}{|x|-|\overline{x}|} = \frac{|x-\lambda x|}{|x|-\lambda|\overline{x}|} = 1,$$

whence $\liminf_{\overline{x}\to x} \frac{|x-\overline{x}|}{|x|-|\overline{x}|} = 1$. Taking the limit as $\overline{x} \to x$ in (12) and using the continuity of $h(\cdot, y)$ we obtain

(13)
$$d(h(x,y_1) + h(x,\overline{y}_2), h(x,\overline{y}_1) + h(x,y_2)) \le c|y_1 - y_2 - \overline{y}_1 + \overline{y}_2|$$

for all $x \neq 0$, $x \in U$ and $y_1, y_2, \overline{y}_1, \overline{y}_2 \in I$. The inequality (13) holds also for x = 0 on account of the continuity of $h(\cdot, y)$. Putting in (13) $y_1 = \overline{y}_2 = \frac{y+w}{2}, y_2 = y, \overline{y}_1 = w$, where $y, w \in I$, we get

$$d\left(2h\left(x,\frac{y+w}{2}\right),h(x,y)+h(x,w)\right) = 0,$$

whence

(14)
$$h\left(x,\frac{y+w}{2}\right) = \frac{1}{2}\left[h(x,y) + h(x,w)\right]$$

for all $x \in U$, $y, w \in I$. In virtue of Theorem 1 there exist two set-valued functions $A: U \times [0, +\infty) \to cc(Y)$, $B: U \to cc(Y)$ such that

(15)
$$h(x,y) + yB(x) = h(x,0) + A(x,y), \quad x \in U, \quad y \in I$$

and $A(x, \cdot)$ is additive. Putting $\overline{y}_1 = \overline{y}_2 = 0$ in (13) we have

(16)
$$d(h(x, y_1), h(x, y_2)) = d(h(x, y_1) + h(x, 0), h(x, y_2) + h(x, 0)) \le \le c|y_1 - y_2|$$

for all $x \in U$ and $y_1, y_2 \in [0, a)$. The inequality (16) implies the continuity of $h(x, \cdot), x \in U$ and by (15) the continuity of $A(x, \cdot)$. Thus there exists $A(x) \in cc(Y)$ for which $A(x, y) = yA(x), x \in U, y \in [0, +\infty)$. The first part of our theorem is proved. Now for $x_1, x_2 \in U$ and $y \in I$ we get

$$\begin{aligned} d(yB(x_1) + yA(x_2), \ yB(x_2) + yA(x_1)) &= \\ &= d(yB(x_1) + h(x_1, y) + yA(x_2) + h(x_2, y), \ yB(x_2) + h(x_2, y) + \\ &+ yA(x_1) + h(x_1, y)) = \\ &= d(yA(x_1) + h(x_1, 0) + yA(x_2) + h(x_2, y), \ yA(x_2) + h(x_2, 0) + \\ &+ yA(x_1) + h(x_1, y)) = \\ &= d(h(x_1, 0) + h(x_2, y), \ h(x_2, 0) + h(x_1, y)) \leq \\ &\leq d(h(x_1, 0), \ h(x_2, 0)) + d(h(x_2, y), \ h(x_1, y)). \end{aligned}$$

Since $h(\cdot, y) \in \operatorname{Lip}(U, Y)$ for $y \in I$ we can find a constant $l(y) \ge 0$ such that

$$d(B(x_1) + A(x_2), B(x_2) + A(x_1)) \le \frac{l(y)}{y} |x_1 - x_2|.$$

Taking $l := \inf \left\{ \frac{l(y)}{y} : y \in I \right\}$ we get the inequality (9) which ends the proof.

References

- C. CASTAING, M. VALADIER, Convex analysis and measurable multifunctions, *Lecture Notes in Math.* 580 (1967).
- [2] Z. FIFER, Set-valued Jensen functional equation, *Rev. Roumaine Math. Pures Appl.* 31 (1986), 297–302.
- [3] J. MATKOWSKI, On Nemytskii Lipschitzian operator, Acta Univ. Carolin. Math. Phys. 28 (1987), 79–82.
- [4] K. NIKODEM, A characterization of midconvex set-valued functions, Acta Univ. Carolin. – Math. Phys. 30 (1989), 125–129.
- [5] K. NIKODEM, K-convex and K-concave set-valued functions, Zeszyty Nauk. Politech. Lódz. Math. 559 (1989).
- [6] K. NIKODEM, Set-valued solutions of the Pexider functional equation, Funkcial. Ekvac. 31 (1988), 227–231.
- [7] H. RÅDSTRÖM, An embedding theorem for space of convex sets, Proc. Amer. Math. Soc. 3 (1952), 165–169.
- [8] A. SMAJDOR, W. SMAJDOR, Jensen equation and Nemytskii operator for set-valued functions, *Rad. Mat.* 5 (1989), 311–320.

WILHELMINA SMAJDOR INSTITUTE OF MATHEMATICS, SILESIAN UNIVERSITY BANKOWA 14, PL-40-007 KATOWICE POLAND

(Received January 7, 1992)