\boldsymbol{n}-commuting maps on prime rings

By TSIU-KWEN LEE (Taipei), KUN-SHAN LIU (Taipei) and WEN-KWEI SHIUE (Hualien)

Abstract

We prove a result concerning additive n-commuting maps on prime rings and then apply it to n-commuting linear generalized differential polynomials.

1. Results

Throughout, unless specially stated, R always denotes a prime ring with center \mathcal{Z}. We let U be the maximal ring of right quotients of R and let Q stand for the symmetric Martindale quotient ring of R. The center C of U (and Q) is called the extended centroid of R. See [3] for its details. An additive map $d: R \rightarrow R$ is called a derivation if $(x y)^{d}=x^{d} y+x y^{d}$ for all $x, y \in R$. A map $f: R \rightarrow U$ is called n-commuting on a subset S of R, where n is a positive integer, if $\left[f(x), x^{n}\right]=0$ for all $x \in S$. The map f is merely called commuting if it is 1-commuting. The study of these mappings was initiated by Posner's Theorem: The existence of a nonzero derivation commuting on R implies the commutativity of R [21, Theorem 2]. More related results have been obtained in [17]-[19], [4], [5], [13]-[6]. Also, see [11], [1], [2] for n-commuting maps. Applying [2, Theorem 1.1] and [1, Theorem 4.4] we have the result: Let R be a prime

[^0]ring such that either char $R=0$ or a prime $p>n$, or $\operatorname{deg}(R)>n$. Then every additive n-commuting map of R into U is commuting. The goal of this paper is to prove a theorem related to the result above and then apply it to some applications on n-commuting linear differential polynomials. We now state the main result:

Theorem 1.1. Let R be a prime ring with center \mathcal{Z}, its maximal ring of right quotients U and n a fixed positive integer. Suppose that $f: R \rightarrow U$ is an additive n-commuting map such that f is \mathcal{Z}-linear if $\mathcal{Z} \neq 0$. Then there exist $\lambda \in C$ and a map $\mu: R \rightarrow C$ such that $f(x)=\lambda x+\mu(x)$ for all $x \in R$, unless $R \cong \mathrm{M}_{2}(\mathrm{GF}(2))$.

Here, $\mathrm{GF}(2)$ denotes the Galois field of two elements. The following gives a counterexample for the case $R=\mathrm{M}_{2}(\mathrm{GF}(2))$.

Example 1.2. Let $R=\mathrm{M}_{2}(\mathrm{GF}(2))$ and let $f: R \rightarrow R$ be defined by

$$
f\left(\begin{array}{ll}
\alpha & \beta \\
\gamma & \delta
\end{array}\right)=\left(\begin{array}{cc}
\alpha+\gamma & 0 \\
0 & \beta+\delta
\end{array}\right) \quad \text { for }\left(\begin{array}{ll}
\alpha & \beta \\
\gamma & \delta
\end{array}\right) \in R .
$$

Then f is a GF(2)-linear map. A direct computation proves that $\left[f(x), x^{6}\right]=0$ for all $x \in R$. However, $\left[f\left(\begin{array}{ll}0 & 1 \\ 0 & 0\end{array}\right),\left(\begin{array}{ll}0 & 1 \\ 0 & 0\end{array}\right)\right]=\left(\begin{array}{ll}0 & 1 \\ 0 & 0\end{array}\right)$. Hence, f is a 6 -commuting linear map but it is not commuting.

We now apply Theorem 1.1 to n-commuting linear generalized differential polynomials. To state these results precisely, let us recall some notation. We denote by $\operatorname{Der}(U)$ the set of all derivations of U. For $d \in \operatorname{Der}(U)$ and $x \in U$, one usually writes x^{d} for $d(x)$. Also, if $\beta \in C$, define $x^{d \beta}=x^{d} \beta$. It follows that $\operatorname{Der}(U)$ forms a right C-module. Let \mathbf{D} be the C-submodule of $\operatorname{Der}(U)$ defined by

$$
\begin{aligned}
\mathbf{D}=\{ & \delta \in \operatorname{Der}(U) \mid I^{\delta} \subseteq R \text { for some nonzero ideal } I, \\
& \text { depending on } \delta, \text { of } R\} .
\end{aligned}
$$

By a derivation word we mean an additive map Δ from U into itself assuming the form $\Delta=\delta_{1} \delta_{2} \ldots \delta_{t}$, where $\delta_{i} \in \mathbf{D}$. If Δ is empty, we define $x^{\Delta}=x$ for $x \in U$. A linear generalized differential polynomial means a linear generalized polynomial with coefficients in U and with an indeterminate X
which are acted on by derivation words. Thus every linear generalized differential polynomial can be written in the form $\sum_{i} \sum_{j} a_{i j} X^{\Delta_{i}} b_{i j}$, where $a_{i j}, b_{i j} \in U$ and the Δ_{i} 's are derivation words.

Theorem 1.3. Let R be a noncommutative prime ring, $R \not \approx \mathrm{M}_{2}(\mathrm{GF}(2))$, and n a fixed positive integer. Suppose that

$$
\left[\psi(x), x^{n}\right]=0
$$

for all $x \in R$, where $\psi(x)$ is a linear generalized differential polynomial. Then $\psi(x)=\lambda x+\mu(x)$ for all $x \in R$, where $\lambda \in C$ and $\mu: R \rightarrow C$.

Proof. Applying the identities (1)-(5) given in [8, p. 155], we can find finitely many distinct regular words $\Delta_{0}, \Delta_{1}, \cdots, \Delta_{t}$ with $\Delta_{0}=\emptyset$ such that

$$
\begin{equation*}
\psi(x)=\sum_{i=0}^{t} \sum_{j} a_{i j} x^{\Delta_{i}} b_{i j} \tag{1.1}
\end{equation*}
$$

for all $x \in R$, where $a_{i j}, b_{i j} \in U$. By assumption,

$$
\begin{equation*}
\left[\sum_{i=0}^{t} \sum_{j} a_{i j} x^{\Delta_{i}} b_{i j}, x^{n}\right]=0 \tag{1.2}
\end{equation*}
$$

for all $x \in R$. Applying Kharchenko's Theorem [9, Theorem 2] to (1.2) yields

$$
\begin{equation*}
\left[\sum_{i=1}^{t} \sum_{j} a_{i j} y_{i} b_{i j}+\sum_{j} a_{0 j} x b_{0 j}, x^{n}\right]=0 \tag{1.3}
\end{equation*}
$$

for all $y_{i}, x \in R$. For $i>0$ we see that $\left[\sum_{j} a_{i j} y b_{i j}, x^{n}\right]=0$ for all $x, y \in R$ and so for all $x, y \in U$ (see [3, Theorem 6.4.1] or [7, Theorem 2]). In view of $\left[12\right.$, Theorem], we have $\left[\sum_{j} a_{i j} y b_{i j}, x\right]=0$ for all $x, y \in R$. Thus $\sum_{j} a_{i j} y b_{i j} \in C$ for all $y \in U$. In particular, $\sum_{i=1}^{t} \sum_{j} a_{i j} x^{\Delta_{i}} b_{i j} \in C$ for all $x \in U$. Thus (1.3) is reduced to [$\left.\sum_{j} a_{0 j} x b_{0 j}, x^{n}\right]=0$ for all $x \in U$. By Theorem 1.1, there exist $\lambda \in C$ and $\eta: R \rightarrow C$ such that $\sum_{j} a_{0 j} x b_{0 j}=$ $\lambda x+\eta(x)$ for all $x \in U$. We are now done by setting $\mu(x)=\eta(x)+$ $\sum_{i=1}^{t} \sum_{j} a_{i j} x^{\Delta_{i}} b_{i j} \in C$ for all $x \in R$. This proves the theorem.

A special case of Theorem 1.3 is the following
Theorem 1.4. Let R be a noncommutative prime ring, $R \nRightarrow \mathrm{M}_{2}(\mathrm{GF}(2))$, with a derivation $\delta, n \geq 1$. Suppose that $\left[\psi(x), x^{n}\right]=0$ for all $x \in R$, where $\psi(x)=\sum_{i=0}^{t} a_{i} x^{\delta^{i}}$ with $a_{i} \in R$. Then $a_{0} \in \mathcal{Z}$ and $\psi(x)=a_{0} x$ for all $x \in R$.

We remark that Park and Jung studied the case: a derivation d on an $n!$-torsion-free semiprime ring R such that d^{2} is n-commuting on R, where $n \geq 2$ [20, Theorem 3.1]. Applying the theory of orthogonal completion for semiprime rings (see [3]), [20, Theorem 3.1] can be reduced to the prime case and so can be solved as a special case of Theorem 1.4. To prove it we first quote Chang's Theorem [6, Theorem 3.2]:

Theorem 1.5 (Chang [6]). Let R be a noncommutative prime ring with a derivation d. Suppose that $\sum_{i=1}^{n} a_{i} x^{d^{i}} \in \mathcal{Z}$, where $a_{i} \in R$. Then $\sum_{i=1}^{n} a_{i} x^{d^{i}}=0$ for all $x \in R$.

Before giving the proof of Theorem 1.4 we need the following generalization of Theorem 1.5

Theorem 1.6. Let R be a noncommutative prime ring with a derivation d. Suppose that $\sum_{i=0}^{n} a_{i} x^{d^{i}} \in \mathcal{Z}$, where $a_{i} \in R$. Then $a_{0}=0$ and $\sum_{i=0}^{n} a_{i} x^{d^{i}}=0$ for all $x \in R$.

Proof. In view of Theorem 1.5, it is enough to show that $a_{0}=0$. Obviously we can assume that $d \neq 0$. We set $\phi(x)=\sum_{i=0}^{n} a_{i} x^{d^{i}}$ for $x \in U$, and note that $[\phi(x), y]=0$ for all $x, y \in R$. According to [10, Theorem 2], $[\phi(x), y]=0$ for all $x, y \in U$ and so $\phi(x) \in C$ for all $x \in U$. In particular, $a_{0}=\phi(1) \in C$. Suppose that $a_{0} \neq 0$. Replacing $\phi(x)$ with $a_{0}^{-1} \phi(x)$ we reduce the proof to the case when $a_{0}=1$. The aim is to derive a contradiction.

Given $x, y \in U$, it follows directly from Leibniz's rule that $\phi(y x)=$ $\sum_{i=1}^{n} b_{i} x^{d^{i}}+\phi(y) x$ for some $b_{i} \in U$, depending on y. Therefore

$$
\sum_{i=1}^{n}\left(b_{i}-\phi(y) a_{i}\right) x^{d^{i}}=\phi(y x)-\phi(y) \phi(x) \in C
$$

for all $x, y \in U$. Theorem 1.5 now yields that $\phi(y x)=\phi(y) \phi(x)$ for all $x, y \in U$. Therefore $\phi: U \rightarrow C$ is a ring homomorphism. Next,
$\sum_{i=0}^{n} a_{i} x^{d^{i+1}}=\phi\left(x^{d}\right) \in C$ and so Theorem 1.5 yields that $x^{d} \in \operatorname{ker}(\phi)$. Since $d \neq 0, \operatorname{ker}(\phi) \neq 0$ as well. We see that $\operatorname{ker}(\phi)$ is a nonzero ideal of U and ϕ is a generalized differential polynomial identity on $\operatorname{ker}(\phi)$. Therefore [10, Theorem 2] implies that $\phi(x)=0$ for all $x \in U$. In particular, $1=$ $\phi(1)=0$, a contradiction. The proof is now complete.

Proof of Theorem 1.4. In view of Theorem 1.3, $\psi(x)=\lambda x+\mu(x)$ for all $x \in R$, where $\lambda \in C$ and $\mu: R \rightarrow C$. That is, $\sum_{i=0}^{t} a_{i} x^{\delta^{i}}-\lambda x \in C$ for all $x \in R$ and so for all $x \in U$ [10, Theorem 2]. In view of Theorem 1.6, $\sum_{i=0}^{t} a_{i} x^{\delta^{i}}-\lambda x=0$ for all $x \in U$. In particular, we set $x=1$ to get $a_{0}=\lambda \in \mathcal{Z}$, and hence $\sum_{i=1}^{t} a_{i} x^{\delta^{i}}=0$ for all $x \in U$. Thus $\psi(x)=a_{0} x$ for all $x \in R$. This proves the theorem.

2. Proof of Theorem 1.1

We begin with the following special case.
Lemma 2.1. Theorem 1.1 holds if $R=\mathrm{M}_{m}(C)$, the $m \times m$ matrix ring over a field C, unless $m=2$ and $C=\mathrm{GF}(2)$.

Proof. For $n=1$ we are done by Brešar's Theorem [4, Theorem A]. Therefore, we always assume $n>1$. Let $\left\{e_{i j} \mid 1 \leq i, j \leq m\right\}$ be the set of usual matrix units of R. The aim is to prove that there exists $\lambda \in C$ such that $f\left(e_{i j}\right)-\lambda e_{i j} \in C$ for all $1 \leq i, j \leq m$. Indeed, we then have $f(x)-\lambda x \in C$ for all $x \in R$ as f is C-linear. Hence, the lemma is proved by setting $\mu(x)=f(x)-\lambda x \in C$ for $x \in R$.

For $m \geq 3$ we claim that

$$
\begin{equation*}
[f(u), e]=0 \text { if } u^{2}=e u=u e=0 \quad \text { and } \quad e=e^{2} \quad \text { for } e, u \in R . \tag{2.1}
\end{equation*}
$$

Indeed, $(e+u)^{n}=e$ since $n>1$. Thus, by assumption, $0=[f(e+u)$, $\left.(e+u)^{n}\right]=[f(e)+f(u), e]=[f(u), e]$, as desired. We claim that there exist $\lambda_{i j} \in C$ such that

$$
\begin{equation*}
f\left(e_{i j}\right)-\lambda_{i j} e_{i j} \in C \quad \text { and so } \quad\left[f\left(e_{i j}\right), e_{i j}\right]=0 \tag{2.2}
\end{equation*}
$$

for $i \neq j$. Let $1 \leq p \leq m$ be distinct from i, j. Note that $e_{p p}{ }^{2}=e_{p p}$ and $e_{i j}{ }^{2}=0=e_{p p} e_{i j}=e_{i j} e_{p p}$. Thus, by (2.1), $\left[f\left(e_{i j}\right), e_{p p}\right]=0$ follows. Write
$f\left(e_{i j}\right)=\sum_{s, t} \alpha_{s t} e_{s t}$, where $\alpha_{s t} \in C$. A direct computation proves that

$$
\begin{equation*}
f\left(e_{i j}\right)=\sum_{s=1}^{m} \alpha_{s s} e_{s s}+\alpha_{i j} e_{i j}+\alpha_{j i} e_{j i} . \tag{2.3}
\end{equation*}
$$

Since the idempotent $e_{i p}+e_{p p}$ satisfies $e_{i j}\left(e_{i p}+e_{p p}\right)=0=\left(e_{i p}+e_{p p}\right) e_{i j}$, by (2.1) we have $\left[f\left(e_{i j}\right), e_{i p}+e_{p p}\right]=0$ and so $\left[f\left(e_{i j}\right), e_{i p}\right]=0$. Applying (2.3) we obtain that $\alpha_{i i} e_{i p}+\alpha_{j i} e_{j p}=\alpha_{p p} e_{i p}$. Hence, $\alpha_{j i}=0$ and $\alpha_{i i}=\alpha_{p p}$. On the other hand, the idempotent $e_{p j}+e_{p p}$ satisfies $e_{i j}\left(e_{p j}+e_{p p}\right)=\left(e_{p j}+\right.$ $\left.e_{p p}\right) e_{i j}=0$. By (2.1) again, $\left[f\left(e_{i j}\right), e_{p j}+e_{p p}\right]=0$ and so $\left[f\left(e_{i j}\right), e_{p j}\right]=0$. Applying (2.3) and $\alpha_{j i}=0$ we obtain that $\alpha_{p p} e_{p j}=\alpha_{j j} e_{p j}$ and so $\alpha_{p p}=$ $\alpha_{j j}$. This implies that $f\left(e_{i j}\right)-\alpha_{i j} e_{i j} \in C$. Set $\lambda_{i j}=\alpha_{i j} \in C$. In particular, $\left[f\left(e_{i j}\right), e_{i j}\right]=0$. This proves (2.2).

Next, we write $f\left(e_{i i}\right)=\sum_{s, t} \beta_{i s t} e_{s t}$, where $\beta_{i s t} \in C$. By assumption, we have $\left[f\left(e_{i i}\right), e_{i i}\right]=0$. This implies $f\left(e_{i i}\right) e_{i i}=e_{i i} f\left(e_{i i}\right)$ and so $e_{i i} f\left(e_{i i}\right) e_{p p}=0$ for all $p \neq i$. Hence $\beta_{i i p}=0$. Using the fact that $e_{i i}+e_{i j}$ is an idempotent where $j \neq i$, we have that

$$
0=\left[f\left(e_{i i}+e_{i j}\right), e_{i i}+e_{i j}\right]=\left[f\left(e_{i i}\right), e_{i j}\right]+\left[f\left(e_{i j}\right), e_{i i}\right] .
$$

Note that $f\left(e_{i j}\right)-\lambda_{i j} e_{i j} \in C$. This implies that

$$
\begin{equation*}
\left[f\left(e_{i i}\right), e_{i j}\right]+\left[\lambda_{i j} e_{i j}, e_{i i}\right]=0 \tag{2.4}
\end{equation*}
$$

Right-multiplying by $e_{p p}$ where $p \neq j$, we see that $\beta_{i j p}=0$ and so $f\left(e_{i i}\right)$ is diagonal, that is, $\beta_{i s t}=0$ for $s \neq t$ and so $f\left(e_{i i}\right)=\sum_{t=1}^{m} \beta_{i t t} e_{t t}$. Making use of (2.4), we get $\left[\sum_{t=1}^{m} \beta_{i t t} e_{t t}, e_{i j}\right]+\left[\lambda_{i j} e_{i j}, e_{i i}\right]=0$ and so $\beta_{i i i}=\beta_{i j j}+\lambda_{i j}$. Let $1 \leq k \leq m$ be such that $k \neq i, j$. By assumption,

$$
\begin{aligned}
0 & =\left[f\left(e_{i i}+e_{k j}+e_{j i}\right),\left(e_{i i}+e_{k j}+e_{j i}\right)^{n}\right] \\
& =\left[\sum_{t=1}^{m} \beta_{i t t} e_{t t}+\lambda_{k j} e_{k j}+\lambda_{j i} e_{j i}, e_{i i}+e_{k i}+e_{j i}\right] \\
& =\left(\beta_{i k k}-\beta_{i i i}+\lambda_{k j}\right) e_{k i}+\left(\beta_{i j j}-\beta_{i i i}+\lambda_{j i}\right) e_{j i},
\end{aligned}
$$

since $n>1$. This implies that $\left(\lambda_{k j}-\lambda_{i k}\right) e_{k i}+\left(\lambda_{j i}-\lambda_{i j}\right) e_{j i}=0$, since $\beta_{i i i}-\beta_{i k k}=\lambda_{i k}$. That is, $\lambda_{j i}=\lambda_{i j}$ and $\lambda_{k j}=\lambda_{i k}=\lambda_{k i}$. So $\beta_{i i i}=$
$\beta_{i j j}+\lambda_{i j}=\beta_{i k k}+\lambda_{i k}$. But $\lambda_{i k}=\lambda_{j k}=\lambda_{k j}=\lambda_{i j}$, this implies that $\beta_{i j j}=\beta_{i k k}$ and so

$$
f\left(e_{i i}\right)-\lambda_{i j} e_{i i}=\sum_{s=1}^{m} \beta_{i s s} e_{s s}-\lambda_{i j} e_{i i}=\beta_{i j j} \sum_{s=1}^{m} e_{s s} \in C .
$$

We let $\lambda=\lambda_{i j} \in C$. Then $f\left(e_{s t}\right)-\lambda e_{s t} \in C$ for $1 \leq s, t \leq m$.
We assume next that $m=2$. By assumption, we have $\left[f\left(e_{11}\right), e_{11}\right]=0$, implying that $f\left(e_{11}\right)=\alpha e_{11}+\beta e_{22}$ for some $\alpha, \beta \in C$. Setting $\lambda_{11}=\alpha-\beta$ we have $f\left(e_{11}\right)-\lambda_{11} e_{11} \in C$. Analogously, $f\left(e_{22}\right)-\lambda_{22} e_{22} \in C$ for some $\lambda_{22} \in C$. As $|C|>2$, there exists $\alpha \in C$ with $\alpha \neq 0,1$. Note that $e_{11}+e_{12}$ and $e_{11}+\alpha e_{12}$ are two idempotents. Thus $\left[f\left(e_{11}+e_{12}\right), e_{11}+e_{12}\right]=0$ and $\left[f\left(e_{11}+\alpha e_{12}\right), e_{11}+\alpha e_{12}\right]=0$. Since f is C-linear and $\alpha \neq 0,1$, this implies $\left[f\left(e_{12}\right), e_{12}\right]=0$. So $f\left(e_{12}\right)-\lambda_{12} e_{12} \in C$ for some $\lambda_{12} \in C$. Analogously, $f\left(e_{21}\right)-\lambda_{21} e_{21} \in C$ for some $\lambda_{21} \in C$. On the other hand, $0=\left[f\left(e_{11}+e_{12}\right), e_{11}+e_{12}\right]=\left[f\left(e_{11}\right), e_{12}\right]+\left[f\left(e_{12}\right), e_{11}\right]=\left[\lambda_{11} e_{11}, e_{12}\right]+$ $\left[\lambda_{12} e_{12}, e_{11}\right]=\left(\lambda_{11}-\lambda_{12}\right) e_{12}$, implying that $\lambda_{11}=\lambda_{12}$. It follows from an analogous argument that $\lambda_{12}=\lambda_{22}$ and $\lambda_{11}=\lambda_{21}$. Set $\lambda=\lambda_{11}$. We see that $f\left(e_{i j}\right)-\lambda e_{i j} \in C$ for $i, j=1,2$. This proves the lemma.

Lemma 2.2. Let R be a prime PI-ring with center \mathcal{Z}. Then every \mathcal{Z}-linear map from R into $R C$ is defined by a linear generalized polynomial with coefficients in $R C$.

Proof. By Posner's Theorem for prime PI-rings, $R C$ is a finitedimensional central simple C-algebra. Moreover, $\mathcal{Z} \neq 0$ [22, Theorem 2.10] and C is the quotient field of \mathcal{Z}. Suppose that $f: R \rightarrow R C$ is a \mathcal{Z}-linear map. Then it is obvious that f is uniquely extended to a C-linear map from $R C$ into $R C$. Note that $R C \otimes_{C} R C^{o} \cong \operatorname{End}_{C}(R C)$ via a canonical map ϕ, defined by $\phi\left(\sum_{i} a_{i} \otimes b_{i}{ }^{o}\right)(x)=\sum_{i} a_{i} x b_{i}$ for $x \in R C$, where $R C^{o}$ denotes the ring opposite to $R C$. Thus there exist $a_{i}, b_{i} \in R C$ such that $f=\phi\left(\sum_{i} a_{i} \otimes b_{i}{ }^{o}\right)$. That is, $f(x)=\sum_{i} a_{i} x b_{i}$ for all $x \in R$, proving the lemma.

Lemma 2.3. If $x a-b x \in C$ for all $x \in R$, where $a, b \in U$, then either R is commutative or $a=b \in C$.

Proof. Suppose that R is not commutative. Choose a dense right ideal ρ of R such that $b \rho \subseteq R$. Let $y \in \rho$. Then $b y \in R$ and so (by) $a-$
$b(b y) \in C$. That is, $b(y a-b y) \in C$. Since $y a-b y \in C$, either $b \in C$ or $y a=b y$. If $b \in C$, then $R(a-b) \subseteq C$, implying that $a=b$ since R is not commutative. Suppose next that $y a=b y$ for all $y \in \rho$. In view of $[7$, Theorem 2], $y a=b y$ for all $y \in U$. In particular, set $y=1$. Then $a=b$ follows. So $[a, R] \subseteq C$, implying $a \in C$ again. This proves the lemma.

We are now ready to the proof of Theorem 1.1.
Proof of Theorem 1.1. Suppose that $R \not \not \mathrm{M}_{2}(\mathrm{GF}(2))$. By assumption, we have $\left[f(x), x^{n}\right]=0$ for all $x \in R$. Suppose first that R is not a PI-ring. Then $\operatorname{deg}(R)=\infty$ in the sense of [1]. In view of [1, Theorem 4.4], there exist $a, b \in U$ and maps $\mu, \nu: R \rightarrow C$ such that $f(x)=x a+\mu_{1}(x)=b x+\nu_{2}(x)$ for all $x \in R$. Thus $x a-b x \in C$ for all $x \in R$. It follows from Lemma 2.3 that either R is commutative or $a=b \in C$. Since R is not a PI-ring, R is not commutative. So $a=b \in C$. We are done in this case by setting $\lambda=a \in C$.

Suppose next that R is a PI-ring. Then $\mathcal{Z} \neq 0$ [22, Theorem 2.10]. By assumption, f is a \mathcal{Z}-linear map. In view of Lemma 2.2, there exist finitely many $a_{i}, b_{i} \in R C$ such that $f(x)=\sum_{i} a_{i} x b_{i}$ for all $x \in R$. By assumption, we see that

$$
\begin{equation*}
\left[\sum_{i} a_{i} x b_{i}, x^{n}\right]=0 \tag{2.5}
\end{equation*}
$$

for all $x \in R$ and hence for all $x \in R C$ ([3, Theorem 6.4.1] or [7, Theorem 2]). Define F to be the algebraic closure of C if C is infinite. Otherwise, let $F=C$. Then (2.5) holds for all $x \in R C \otimes_{C} F$. Note that $x \in R C \otimes_{C} F \cong \mathrm{M}_{m}(F)$ for some $m \geq 1$. Define $g: R C \otimes_{C} F \rightarrow R C \otimes_{C} F$ by $g(x)=\sum_{i} a_{i} x b_{i}$ for all $x \in R C \otimes_{C} F$. Then, by Lemma 2.1, there exist $c \in F$ and $\nu: R C \otimes_{C} F \rightarrow F$ such that $g(x)=c x+\nu(x)$ for all $x \in R C \otimes_{C} F$. Choose a basis $\left\{\beta_{1}, \beta_{2}, \ldots\right\}$ of F over C with $\beta_{1}=1$. Write $c=\lambda \beta_{1}+\sum_{j=2}^{s} \lambda_{j} \beta_{j}$ for some $s \geq 1$ and $\lambda, \lambda_{j} \in C$. Set $\mu(x)=g(x)-\lambda x$ for $x \in R C$. Then $\mu(x) \in C$ for $x \in R C$. Note that $f(x)=g(x)$ for all $x \in R$. Thus we see that $f(x)=\lambda x+\mu(x)$ for all $x \in R$, proving the theorem.

Acknowledgements The authors would like to thank the referee for her/his useful comments. In particular, the neat proof of Theorem 1.6 is
suggested by referee. The first-named author is supported by a grant from NSC of R.O.C. (Taiwan).

References

[1] K. I. BEIDAR, On functional identities and commuting additive mappings, Comm. Algebra 26(6) (1998), 1819-1850.
[2] K. I. Beidar, Y. Fong, P.-H. Lee and T.-L. Wong, On additive maps of prime rings satisfying the Engel condition, Comm. Algebra 25, no. 12 (1997), 3889-3902.
[3] K. I. Beidar, W. S. Martindale 3rd and A. V. Mikhalev, Rings with Generalized Identities, Monographs and Textbooks in Pure and Applied Mathematics, 196, Marcel Dekker, Inc., New York, 1996.
[4] M. BREŠAR, Centralizing mappings and derivations in prime rings, J. Algebra 156 (1993), 385-394.
[5] M. Brešar and C. R. Miers, Commuting maps on Lie ideals, Comm. Algebra 23, no. 14 (1995), 5539-5553.
[6] J.-C. Chang, On fixed power central (α, β)-derivations, Bull. Inst. Math. Acad. Sinica 15 (1987), 163-178.
[7] C.-L. Chuang, GPIs having coefficients in Utumi quotient rings, Proc. Amer. Math. Soc. 103 (1988), 723-728.
[8] V. K. Kharchenko, Differential identities of prime rings, Algebra i Logika 17 (1978), 220-238, (Engl. Transl., Algebra and Logic 17 (1978), 154-168.).
[9] V. K. Kharchenko, Differential identities of semiprime rings, Algebra i Logika 18 (1979), 86-119, (Engl. Transl., Algebra and Logic 18 (1979), 58-80.).
[10] T.-K. Lee, Semiprime rings with differential identities, Bull. Inst. Math. Acad. Sinica 20 (1992), 27-38.
[11] T.-K. Lee, Semiprime rings with hypercentral derivations, Canad. Math. Bull. 38 (4) (1995), 445-449.
[12] T.-K. Lee, Power reduction property for generalized identities of one-sided ideals, Algebra Colloq. 3 (1996), 19-24.
[13] T.-K. Lee, Derivations and centralizing mappings in prime rings, Taiwanese J. Math. 1 (1997), 333-342.
[14] T.-K. LEe, σ-Commuting maps in semiprime rings, Comm. Algebra $29(7)$ (2001), 2945-2951.
[15] T.-K. Lee, Posner's theorem for (σ, τ)-derivations and σ-centralizing maps, Houston J. Math. (to appear).
[16] T.-K. Lee and T.-C. Lee, Commuting mappings in semiprime rings, Bull. Inst. Math. Acad. Sinica 24 (1996), 259-268.
[17] J. H. Mayne, Centralizing automorphisms of prime rings, Canad. Math. Bull. 19 (1976), 113-115.
[18] J. H. Mayne, Centralizing mappings of prime rings, Canad. Math. Bull. 35 (1992), 510-514.
[19] J. H. Mayne, Centralizing automorphisms of Lie ideals in prime rings, Canad. Math. Bull. 19 (1976), 113-115.
[20] K.-H. Park and Y.-S. Jung, Skew-commuting and commuting mappings in rings, Aequationes Math. 64 (2002), 136-144.
[21] E. C. Posner, Derivations in prime rings, Proc. Amer. Math. Soc. 8 (1957), 1093-1100.
[22] L. H. Rowen, On rings with central polynomials, J. Algebra 31 (1974), 393-426.
tSiU-KWEN LEE
department of mathematics
national taiwan university taipei 106
taiwan
E-mail: tklee@math.ntu.edu.tw
KUN-SHAN LIU
department of mathematics
NATIONAL TAIWAN UNIVERSITY TAIPEI 106 taiwan

E-mail: ksliu@math.ntu.edu.tw

WEN-KWEI SHIUE
department of computer science
DAhAN INSTITUTE OF TECHNOLOGY
hualien 971
taiwan
E-mail: wkxue@yahoo.com.tw
(Received March 26, 2003; revised September 5, 2003)

[^0]: Mathematics Subject Classification: 16N60, 16W25, 16R50.
 Key words and phrases: derivation, prime ring, extended centroid, n-commuting map, differential polynomial.
 Corressponding author: Tsiu-Kwen Lee, ksliu@math.ntu.edu.tw.

