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An improved proof of Numata and Shibata’s theorems
on Finsler spaces of scalar curvature

By MAKOTO MATSUMOTO (Kyoto)

Abstract. Let Fn, n ≥ 3, be a Finsler space of non-zero scalar curvature K.
S. Numata proved in 1975 a theorem: If Fn is a Landsberg space, then it is a
Riemannian space of constant curvature K. C. Shibata extended this theorem in
1978 under the condition that Fn has vanishing stretch curvature. But the notion
of the stretch curvature given by L. Berwald in 1925 has little relation to metrical
connections, and has been hidden from sight. We first clarifies the notion of this
curvature, and then give a brief proof of Shibata’s Theorem.

Introduction

The theorem called here Shibata’s Theorem is “Theorem 4” of his
paper [S]:

Theorem S. Let Fn, n ≥ 3, be a Finsler space of non-zero scalar

curvature K. If Fn has the vanishing stretch curvature tensor, then Fn is

a Riemannian space of constant curvature K.

He added a remark: This is a generalization of “Theorem 2” of Nu-

mata’s paper [N]:

Theorem N1. Let Fn, n ≥ 3, be a Finsler space of scalar curva-

ture K. If Fn is a Berwald space, then Fn is a Riemannian space of

Mathematics Subject Classification: 53B40.
Key words and phrases: stretch curvature, Finsler space of scalar curvature.



490 Makoto Matsumoto

constant curvature K or a locally Minkowski space, according as K 6= 0
or K = 0.

The main theorem of [N] is, however “Theorem 1”:

Theorem N2. Let Fn, n ≥ 3, be a Finsler space of non-zero scalar

curvature K. If Fn is a Landsberg space, then Fn is a Riamnnian space

of constant curvature K.

To prove this theorem, S. Numata showed first a lemma:

Lemma. If a Finsler space Fn, n ≥ 3, of non-zero scalar curvature is

a Landsberg space, then Fn is a C-reducible space.

Then, according to “Theorem 1” of [M1], the condition “Landsberg”
of Theorem N2 is reduced to “Berwald”, and hence Theorem N2 yields
Theorem N1.

Numata’s Theorem N2 will be well-known, because it was published
in §30 of the monograph [M2] and the condition “Landsberg” is attrac-
tive. While the notion “stretch curvature” in Shibata’s Theorem has little
relation to metrical connections and has been hidden from sight ever since
Berwald gave the definition [B].

Recently we have an interesting paper [BF]. The authors gave a gener-
alization of Numata’s Theorem by generalizing the condition “Landsberg”
to “generalized Landsberg” as follows:

Definition BF. A Finsler space Fn is called genaralized Landsberg, if
the h-curvature tensors H and K of the Berwald connection BΓ and the
Chern–Rund connection CRΓ coincide with each other.

The relation between H and K is written as

Hi
h

jk = Ki
h

jk + Ã(jk){P h
ij/k + P h

krP
r
ij},

where /k is the h-covariant differentiation with respect to CRΓ or the Car-
tan connection CΓ and P h

ij = Ci
h

j/0 ([M2], (18.16)). Hence “generalized
Landsberg” is defined by Ã(jk){P h

ij/k + P h
krP

r
ij} = 0, (cf. [M2], (25.2)),

which is equivalent to

(a) Phij/k − Phik/j = 0, (b) PhkrP
r
ij − PhjrP

r
ik = 0.
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Indeed, it must be confessed that the stretch curvature tensor Σhijk

is equal to 2(Phij/k − Phik/j), as shown later on, and hence (a) asserts
that a generalized Landsberg space has the vanishing stretch curvature Σ.
Therefore their theorem is more restrictive than Shibata’s, though more
general than Numata’s.

Furthermore their proof of Theorem 2 was done by means of the
positive-definiteness: grsCr/0Cs/0 = 0 → Cr/0 = 0, though Numata and
Shibata had not recoursed to such a restriction.

The main purpose of the present paper is to explane the notion of the
stretch curvature and to show an improved proof of Shibata’s Theorem
from the standpoint of recent developments of Finsler Geometry. (The
author’s recent paper [M3] is not published yet.)

1. The stretch curvature tensor

We consider a Finsler space Fn = (M, L(x, y)), equipped with a
Finsler connection FΓ = (N i

j , Fj
i
k, Uj

i
k). Let us denote the fundamental

tensor by gij(x, y) and the h- and v-covariant differentiations with respect
to FΓ by (; , :) respectively.

Take an infinitesimal circuit of M which consists of four points P (x),
Q(x + d1x), R(x + d1x + d2(x + d1x)), S(x + d2x) and P , and a vector
field v(vi) which is defined along the circuit and transformed parallel with
respect to a parallel supporting element y. Thus we have

dvi + vrFr
i
jdxj = 0, dyj + N j

idxi = 0.

For a function f(x, y), we have

df = (∂if)dxi + (∂̇jf)dyj = (δif)dxi,

where δi := ∂i − (∂̇j)N j
i.

We treat of the fundamental tensor ghi(x, y):

dghi = (δjghi)dxj = (ghi; j + griFh
r
j + ghrFi

r
j)dxj .

Then, for the covariant components vi = gijv
j of v we have

dvi = (dgij)vj + gijdvj = (gij ; h + grjFi
r
h)vjdxh.
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We are concerned with the length V of vi : V 2 = vivi.

d1V
2 = (d1v

i)vi + vi(d1vi) = (−vrFr
i
jd1x

j)vi

+ vi(gij ; k + grjFi
r
k)vjd1x

k = gij ; kv
ivjd1x

k,

d2d1V
2 = d2(gij ; kv

ivjd1x
k)

= δh(gij ; kv
ivj)d2x

hd1x
k + gij ; kv

ivjd2d1x
k

=
[
δh(gij ; k)vivj + gij ; k{(−vrFr

i
h)vj

+ vi(−vrFr
j
h)}]d2x

hd1x
k + gij ; kv

ivjd2d1x
k

= {δh(gij ; k)− grj ; kFi
r
h − gir; kFj

r
h}vivjd2x

hd1x
k

+ gij ; kv
ivjd2d1x

k

= (gij ; k; h + gij ; rFk
r
h)vivjd2x

hd1x
k + gij ; kv

ivjd2d1x
k.

Therefore, putting

(d2d1 − d1d2)V 2 = −1/2Σijhkv
ivj(d1x

hd2x
k − d2x

hd1x
k),

then we have
Σijhk = gij ; k; h − gij ; h; k − gij ; rTh

r
k, (1.1)

where T is the (h)h-torsion tensor of FΓ ([M2], §10). The tensor field
Σ =

(
Σijhk(x, y)

)
is called the stretch curvature tensor of FΓ. As shown

by (1.1), if we are concerned with a h-metrical connection FΓ, then we have
gij ; k = 0, and hence its stretch curvature tensor Σ vanishes identically.

We observe the standard four connections ([M2], §17, §18):

BΓ = (Gi
j , Gj

i
k, 0) CΓ = (Gi

j , Fj
i
k, Cj

i
k),

CRΓ = (Gi
j , Fj

i
k, 0), HΓ = (Gi

j , Gj
i
k, Cj

i
k).

The Cartan connection CΓ is h- and v-metrical and, throughout the
following, we denote by (/, |) the h- and v-covariant differentiations with
respect to CΓ.

The Berwald connection BΓ is not h-metrical (gij ; k = −2Cijk/0) and
not v-metrical (gij :k = ∂̇kgij = 2Cijk). In the following the symbols (; , :)
are mainly used for BΓ.

The Chern–Rund connection CRΓ has the same Fj
i
k with CΓ, while

the Hashiguchi connection HΓ has the same Gj
i
k with BΓ.
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Definition. The stretch curvature tensor Σ of a Finsler space Fn =
(M, L(x, y)) is the stretch curvature tensor of the Berwald connection BΓ.

We have one of the Ricci identities of BΓ: For a (1, 1)-tensor field K

we have

Kh
i; j ; k −Kh

i; k; j = Kr
iHr

i
jk −Kh

rHi
r
jk −Kh

i:rRr
jk,

where Hi
h

jk is the h-curvature tensor and Ri
jk = (yrHr

i
jk) the (v)h-

torsion tensor. It is noted that the (h)h-torsion Gj
i
k−Gk

i
j of BΓ vanishes

identically. Thus, for the fundamental tensor ghi

ghi; j ; k − ghi; k; j = −griHh
r
jk − ghrHi

r
jk − 2ChirR

r
jk.

Consequently (1.1) shows

Proposition 1.1. The stretch curvature tensor Σ of a Finsler space

Fn is given by

Σhijk = Hhijk + Hihjk + 2ChirR
r
jk,

in the Berwald connection BΓ.

On the other hand, if we are concerned with HΓ, [M2], (14.16) gives
its h-curvature tensor ∗Rh

i
jk = Hh

i
jk + Ch

i
rR

r
jk. Thus

Σhijk = ∗Rhijk + ∗Rihjk, in HΓ. (1.2)

In the following it is important to write the stretch curvature tensor
Σ in terms of the Cartan connection CΓ. We have [M2], (17.22), (18.2)
and (18.16):

Pijk = Cijk/0, Rhijk = Khijk + ChirR
r
jk,

Khijk = Hhijk − Ã(jk){Phij/k + PhjrP
r
ik}.

The symbol Ã(jk) is used to interchange indices j, k and subtract. It
follows from the well-known Rhijk = −Rihjk that we get

Σhijk = 2(Phij/k − Phik/j), in CΓ. (1.3)
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The well-known relation Gj
i
k = Fj

i
k + Pj

i
k leads to

Σhijk = 2(Phij ; k − Phik; j), in BΓ. (1.4)

In order to derive an interesting expression of Σ we need the identity

yrGi
r
jk = −2Pijk, yr := griy

i.

The proof is as follows: One of the Ricci identities of BΓ shows

yi; j :k − yi:k; j = −yrGi
r
jk

= (giry
r); j :k − (giry

r):k; j = −gik; j = 2Pikj .

The Bianchi identities (18.21) and (18.22) of [M2] lead to

yr(Hh
r
kj :i + Gh

r
ji; k −Gh

r
ik; j)

= yrR
r
kj :h:i − 2(Phij ; k − Phik; j) = 0.

Thus (1.4) yields
Σhijk = −yr∂̇h∂̇iR

r
jk. (1.5)

Remark. The four connections we considered have the common non-
linear connection (Gi

j) and hence the common (v)h-torsion tensor

Ri
jk = Ã(jk){∂kG

i
j − (∂̇rG

i
j)Gr

k}.

Thus the formula (1.5) is common to those connections.

Proposition 1.2. The stretch curvature tensor Σ of a Finsler space

Fn is written in the forms (1.2) in HΓ, (1.3) in CΓ, (1.4) in BΓ and (1.5).

We pay attention to a two-dimensional Finsler space F 2 with the
Berwald frame (1,m) ([M2], §28; [AIM], §3.5). Then we have

Phij = I, 1mhmimj , Phij/k = (I, 1, 1`k + I, 1, 2mk)mhmimj ,

where I is the main scalar. Thus (1.3) leads to the stretch curvature tensor
Σ of the form

Σhijk = −2I, 1, 1mhmiGjk, Gjk := `jmk − `kmj . (1.6)
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We have the Bianchi identity of the form

εR; 2 + RI + I, 1, 1 = 0,

where R is the h-scalar curvature: Rhijk = εRGhiGjk. Hence we have
another form

Σhijk = 2(εR; 2 + RI)mhmiGjk. (1.6’)

The latter shows that Σ = 0 is equivalent to R; 2 + RIε = 0, that is,

∂ log(εR)/∂θ + I = 0, (1.7)

where θ is the Landsberg angle ([M2], (28.6)).
Next we consider g = det(gij). From L∂̇ig=2εgImi we get L∂̇i(R2g)=

2Rgε (R; 2 + RI)mi and hence

L∂̇i(R
√
|g|) = −ε

√
|g|I, 1, 1mi.

Therefore we have

Theorem 1.1. (1) The main scalar I of a Finsler surface F 2 having

zero stretch curvature is given from the h-scalar curvature R by (1.7).
(2) R

√ |g| of F 2 depends on a position alone, if and only if F 2 has

the zero stretch curvature.

Therefore the total curvature
∫∫

R
√ |g|dx1dx2 can be defined only in

a Finsler surface with Σ = 0.

2. Finsler spaces of scalar curvature

Let Fn = (M, L), n ≥ 3, be a Finsler space of dimension n, equipped
with the Berwald connection BΓ, and denote by (; , :) the h- and v-covariant
differentiations in BΓ, where :i = ∂/∂yi. The (v)h-torsion tensor Ri

jk and
the h-curvature tensor Hh

i
jk of BΓ satisfy the equations

Hh
i
jk = Ri

jk:h, Ri
jk = (1/3)(Ri

0k:j −Ri
0j :k).

It is noted that Ri0k = girR
r
0k is a symmetric tensor. Then we get

(a) Hhijk = Rijk:h − 2Ci
r
hRrjk,

(b) Rijk = (1/3)Ã(jk){Ri0k:j − 2Ci
r
jRr0k}.

(2.1)
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It is well-known that Fn is called of scalar curvature K, if and only if

Ri0k = L2Khik, (2.2)

holds, where hik = gik − `i`k is the angular metric tensor.
It follows from (b) of (2.1) that

Rijk = hikKj − hijKk, Kj := L(K`j + LK:j/3). (2.3)

Kj(x, y) is (1)p-homogeneous in y and K0 = L2K. Next it follows from
(a) of (2.1) that

Hhijk = Ã(jk){hikKj :h + (hih`j + hjh`i)Kk/L}. (2.4)

These three equations are equivalent to each other.
Since any Finsler surface satisfies (2.2), we are concerned in the fol-

lowing with n(≥ 3)-dimensional Finsler spaces of scalar curvature. A Rie-
mannian space of scalar curvature K is necessarily of constant curvature K.

We treat of the stretch curvature tensor Σ of a Finsler space Fn of
scalar curvature K. (2.4) gives

Hhijk + Hihjk = Ã(jk){hik(Kj :h −Kj`h/L)

+ hhk(Kj :i −Kj`i/L) + 2hih`jKk/L}.
Then, putting

Mij = Kj :i −Kj`i/L−Khij

= L2K:i:j/3 + L(K:i`j + K:j`i/3), (2.5)

we get

Hhijk + Hihjk = Ã(jk){hikMhj + hhkMij + hhiMkj}.
On the other hand, (18.16) and (17.22) of [M2] give

Hhijk + Hihjk = Khijk + Kihjk + 2Ã(jk){Phij/k},
and hence (18.11) of [M2] and (1.3) lead to

= −2Ch
r
iRrjk + Σhijk.

Consequently (2.3) yields the form of Σ as

Σhijk = Ã(jk){hikMhj + hhkMij + hhiMkj − 2ChijKk}. (2.6)
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Proposition 2.1. The stretch curvature tensor of a Finsler space Fn

of scalar curvature K is given by (2.6) where Mij is defined by (2.5).

Now (1.3) and (2.5) give

Σhij0 = 2Phij/0,

Mi0 = (2L2/3)K:i, M0j = 0.

Then (2.6) yields

Phij/0 + (L2/3)$(hij){hijK:h}+ L2KChij = 0,

where and in the following the symbol $(hij) is used to permute indices h,
i, j and sum.

Multiplying by ghj , the above gives

(n + 1)L2K:i + 3(L2KCi + Pi/0) = 0. (2.7)

Consequently the above is rewritten in the form

Phij/0 + L2KChij = $(hij){hhi(Pj/0 + L2KCj)}/(n + 1). (2.8)

Proposition 2.2. (1) In a Finsler space of scalar curvature K the

equation (2.8) are satisfied. (2) If a Finsler space of non-zero scalar cur-

vature K satisfies Phij/0 = 0, then the space is C-reducible.

The notion of C-reducibility was defined in the paper [M1]: A Finsler
space Fn = (M, L), n ≥ 3, is called C-reducible, if the C-tensor is of the
form

(n + 1)Chij = hhiCj + hijCh + hjhCi. (2.9)

It was proved by [MH] that the fundamental function L(x, y) of a C-
reducible space is given only by a quadratic form

R(x)L2 + 2{Ri(x)yi}L + Rij(x)yiyj = 0,

where three R’s are functions of position alone. According as R(x) vanishes
or not, the metric L is called Kropina or Randers.
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For a C-reducible Finsler space the equation (2.9) leads to

(a) (n + 1)Phij = hhiPj + hijPh + hjhPi,

(b) (n + 1)Phij/0 = hhiPj/0 + hijPh/0 + hjhPi/0.
(2.10)

Hence we get (2.8).
Let us recall the T -tensor

Thijk = LChij |k + `hCijk + `iCjkh + `jCkhi + `kChij ,

where (|) is the v-covariant differentiation with respect to the Cartan con-
nection CΓ ([M2], (28.20)).

It is remarked that the T -tensor is completely symmetric because
Chij |k is completely symmetric. For a C-reducible space we shall observe
this fact. First, we have from (2.9)

(n + 1)Chij |k = $(hij){hhiCj |k − hhk(Ci`j + Cj`i)/L}.
If we consider the contracted T -tensor

Tjk = ghiThijk = LCj |k + Cj`k + Ck`j ,

the identity Chij |k − Chik|j = 0 is written in the form

hijThk + hjhTik − hikThj − hhkTij = 0,

which gives

Tij = Thij/(n− 1), T := gijTij = LCr|r. (2.11)

Therefore we have

Chij |k = {T/L(n2 − 1)}$(hij){hhkhij}
− (`hCijk + `iChjk + `jChik + `kChij)/L,

and hence
Thijk = {T/(n2 − 1)}$(hij){hhihjk}. (2.12)

It is obvious that (2.12) implies (2.11) ([M2], Proposition 30.2).

Proposition 2.3. The T -tensor of a C-reducible Finsler space is writ-

ten in the form (2.12).
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3. Shibata’s theorem

We consider a Finsler space Fn, n ≥ 3, of non-zero scalar curvature K

and vanishing stretch curvature Σ. For Fn we have Phij/0 = 0 from (1.3)
and hence it is C-reducible from Proposition 2.2. Further (2.7) gives

(n + 1)K:i + 3KCi = 0, (3.1)

and hence (2.6) leads to

(a) Ã(jk){hikNhj + hhkNij + hhiNkj} = 0,

(b) Nij := Mij + 2CiKj/(n + 1).
(3.2)

Substituting from(2.5) and (3.1), Nij can be written in the form

3Nij = L2K:i:j + L(K:i`j + K:j`i)− (2L2/3K)K:iK:j ,

which is symmetric and Ni0 = 0. Multiplying by ghj , (3.2) (a) yields

Nik = Nhik/(n− 1), N := ghjNhj . (3.3)

On the other hand, (3.1) gives

K:i:j = −3(CiK:j + KCi:j)/(n + 1). (3.4)

(2.11) is written in the form

LCi:j = {LC2/(n + 1) + T/(n− 1)}hij

+ {2L/(n + 1)}CiCj − `iCj − `jCi,

where C2 = gijCiCj . Consequently (3.4) can be rewritten as

(n + 1)K:i:j = −(3K/L){LC2/(n + 1) + T/(n− 1)}hij

+ (3K/(n + 1))CiCj + (3K/L)(`iCj + `jCi).

Thus, according to (3.1), etc., (3.3) is written in the form

Λhij = KCiCj ,

with some scalar Λ. If Λ does not vanish, then the rank(hij) = n − 1 is
less than two, contradict to n ≥ 3. Thus we must have Λ = 0, and hence
Ci = 0, which shows Cijk = 0 from the C-reducibility. Therefore the space
Fn must be Riemannian and we proved Theorem S.



500 M. Matsumoto : An improved proof of Numata. . .

References

[AIM] P. Antonelli, R. S. Ingarden and M. Matsumoto, The Theory of Sprays
and Finsler Spaces with Applications in Physics and Biology, Kluwer Acad. Publ.,
Dordrecht, 1993.
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