
Publ. Math. Debrecen
63/3 (2003), 495–510

A common characterization of euclidean and hyperbolic
geometry by functional equations
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Dedicated to Professor Lajos Tamássy on the occasion
of his 80th birthday, in friendship

Abstract. Non-standard translations are defined, which generalize euclid-
ean as well as hyperbolic translations. If there exist appropriate distance functions
invariant under such translations, Euclidean and Hyperbolic Geometry over arbi-
trary real inner product spaces of (finite or infinite) dimension ≥ 2 are character-
ized. The methods are based on the solution of special real Functional Equations.

1. Introduction

Let X be a real inner product space of (finite or infinite) dimension≥ 2,
O(X) be its orthogonal group of all surjective linear orthogonal mappings
ω : X → X, and e be a fixed element of X satisfying e2 = 1. Observe
X = H⊕Re with H := e⊥. If x ∈ X, there hence exist uniquely determined
h ∈ H and x0 ∈ R with x = h + x0e. Suppose that ϕ is a monotonically
increasing bijection of R with ϕ(0) = 0 and that ψ is a function from H
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into the set R>0 of positive reals. There hence is exactly one τ ∈ R with

x = h + x0e = h + ϕ(τ)ψ(h)e.

For t ∈ R define the (non-standard) translation

Tt

(
h + ϕ(τ)ψ(h)e

)
:= h + ϕ(τ + t)ψ(h)e, (1)

which, obviously, is a bijection of X. Mainly the following result will be
proved in this note.

Theorem 1. Suppose that there exists a function

d : X ×X → R≥0 := R>0 ∪ {0},

not identically 0, satisfying

(i) d(x, y) = d(y, x)

(ii) d(x, y) = d
(
ω(x), ω(y)

)
,

(iii) d(x, y) = d
(
Tt(x), Tt(y)

)
,

(iv) d(0, βe) = d
(
0, αe) + d(αe, βe)

for all x, y ∈ X, ω ∈ O(X), t, α, β ∈ R with 0 ≤ α ≤ β. Then, up to

isomorphism, ϕ(t) = t, ψ(h) = 1 and

d(x, y) =
√

(x− y)2,

or ϕ(t) = sinh t, ψ(h) =
√

1 + h2 and

cosh d(x, y) =
√

1 + x2
√

1 + y2 − xy

hold true for all x, y ∈ X, h ∈ H, and t ∈ R. Hence, (X, d) is the Euclid-

ean Metric Space with classical translations (1), or (X, d) is the Hyperbolic

Metric Space in the form of the Weierstrass model with hyperbolic trans-

lations (1).

Obviously, (i), (ii), (iii), (iv) are functional equations for the function d.
Moreover, the proof of our theorem depends heavily on the solution of
special real functional equations, which will be reduced to known ones.
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2. Separable translation groups

Suppose that X is a (left) vector space over a (commutative or non-
commutative) field F of (finite or infinite) dimension at least 2. Let

T : F → PermX

be a mapping of F into the group of all permutations of X, and let e 6= 0
be a fixed element of X.

The mapping T is called a translation group ([3, p. 300]), of X with
axis (or direction) e if and only if the following properties hold true.

(a) Tt+s = Tt · Ts for all t, s ∈ F ,

(b) For x, y ∈ X satisfying y − x ∈ Fe there exists exactly one t ∈ F with
Tt(x) = y,

(c) Tt(x)− x ∈ Fe for all x ∈ X and all t ∈ F .

Here Tt designates the image of t ∈ F under T , and Tt(x) the image
of x ∈ X under the permutation Tt of X. Property (a) is the socalled
translation equation (J. Aczél [1, pp. 245–253], Z. Moszner,

J. Tabor [7]).

{Tt | t ∈ F} is an abelian group under the multiplication in PermX,
isomorphic to the additive group of the field F ([3, p. 304]).

In [3] we proved the following

Theorem 2. Let e 6= 0 be an element of X and H be a maximal

subspace of X with

H ⊕ Fe = X

and let % : H × F → F satisfy

(α) For all h ∈ H and ξ ∈ F there exists exactly one t = t(h, ξ) in F with

%(h, t) = ξ.

Then for all h ∈ H and all t, τ ∈ F

Tt

(
h + %(h, τ)e

)
:= h + %(h, τ + t)e (2)

defines a translation group of X with axis e. There are no other translation

groups of X with direction e.
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In addition to (α) it is possible to assume ([3, p. 304]) %(h, 0) = 0 for
all h ∈ H, without loss of generality. So, in fact, we will add %(h, 0) = 0 to
(α). The function % will be called the kernel of the translation group T .

From now on let X be a real inner product space of (finite or infinite)
dimension at least 2. We will call a translation group

T : R→ PermX

with kernel % and axis e, e2 = 1, separable if and only if the following
property holds true, where H = e⊥ := {h ∈ X | he = 0}.
(β) %(h, ξ) = ϕ(ξ)ψ(h) for all ξ ∈ R and h ∈ H with functions ϕ : R→ R

and ψ : H → R>0 satisfying ϕ(0) = 0 and ϕ(t1) ≤ ϕ(t2) for all reals
t1 ≤ t2.

Property (α) implies, by (β), that ϕ is a monotonically increasing bijec-
tion of R. Without loss of generality we may assume ψ(0) = 1, because
otherwise we would work with

ϕ1(ξ) = ϕ(ξ)ψ(0) and ψ1(h) =
ψ(h)
ψ(0)

.

Important examples of separable translation groups are given by

ϕ(ξ) = ξ, ψ(h) = 1 (euclidean case),

ϕ(ξ) = sinh ξ, ψ(h) =
√

1 + h2 (hyperbolic case, [3, p. 305])

for all ξ ∈ R and h ∈ H.

3. Consequences for the distance function d

For the sections to come let T be a separable translation group of X

with kernel % = ϕ · ψ, ψ(0) = 1, and axis e, and let

d : X ×X → R≥0

be a function, not identically 0, satisfying properties (i), (ii), (iii), (iv) of
Theorem 1.
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In view of property (ii) and of d(x, y) ≥ 0 for all x, y ∈ X we obtain,
by Theorem 2 ([4, p. 20]), that there exists a function f : K → R≥0 with

K := {(ξ1, ξ2, ξ3) ∈ R3 | ξ1, ξ2 ∈ R≥0 and ξ2
3 ≤ ξ1ξ2}

and
d(x, y) = f(x2, y2, xy) (3)

for all x, y ∈ X.
Given reals 0 ≤ α ≤ β we get 0 ≤ ϕ(α) ≤ ϕ(β), by ϕ(0) = 0 and

ϕ(t1) ≤ ϕ(t2) for t1 ≤ t2. Hence, in view of (iv) with ϕ(β) instead of β

and ϕ(α) instead of α,

d
(
0, ϕ(β)e

)
= d

(
0, ϕ(α)e) + d

(
ϕ(α)e, ϕ(β)e

)
. (4)

Observe, by (1),

T−α

(
0 + ϕ(β)ψ(0)e

)
= 0 + ϕ(β − α)ψ(0)e,

i.e. T−α

(
ϕ(β)e

)
= ϕ(β − α)e, i.e., by (iii),

d
(
ϕ(α)e, ϕ(β)e

)
= d

(
0, ϕ(β − α)e

)
.

Hence, in view of (3), (4),

f
(
0, ϕ2(β), 0

)
= f

(
0, ϕ2(α), 0

)
+ f

(
0, ϕ2(β − α), 0

)
,

which implies, for reals 0 ≤ ξ ≤ η with α := ξ, β := ξ + η,

f
(
0, ϕ2(ξ + η), 0

)
= f

(
0, ϕ2(ξ), 0

)
+ f

(
0, ϕ2(η), 0

)
.

There hence exists a real constant k ≥ 0 with

f
(
0, ϕ2(ξ), 0

)
= k · ξ (5)

for all ξ ≥ 0.

Lemma 1. If a 6= b are elements of X, there exist ω1, ω2 ∈ O(X) and

λ, t ∈ R with λ > 0 and

ω1Ttω2(a) = 0, ω1Ttω2(b) = λe.
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Proof. There exists ω2 ∈ O(X) with ω2(a) = µe for a suitable µ ∈ R
(see step 1 of the proof of Theorem 1 in [4, p. 19]). Now take, by (b)
of Section 2, t ∈ R with Tt(µe) = 0. Hence Ttω2(a) = 0. Finally take
ω1 ∈ O(X) with ω1(c) = λe, λ ≥ 0, where c := Ttω2(b). Hence g(a) = 0
and g(b) = λe with g := ω1Ttω2. Since a 6= b, we obtain λ > 0. ¤

Since the function d is not identically 0, there exist p, q ∈ X with
d(p, q) > 0. If p = q, take, on account of the proof of Lemma 1, Ttω2 with
Ttω2(p) = 0. Hence, by (ii), (iii),

0 < d(p, q) = d
(
Ttω2(p), Ttω2(p)

)
= d(0, 0),

contradicting (iv), here α = β = 0. Hence p 6= q. In view of Lemma 1 and
(ii), (iii), we obtain

0 < d(p, q) = d(0, λe)

with a real λ > 0. Define ξ ∈ R by λ = ϕ(ξ). Since 0 < λ implies
0 = ϕ(0) < ϕ(ξ), we get 0 < ξ. Now (3), (5) lead to

0 < d
(
0, ϕ(ξ)e

)
= f

(
0, ϕ2(ξ), 0

)
= k · ξ.

The constant k ≥ 0 in (5) must hence be positive.

A consequence of our considerations before is

Proposition 1. d(x, y) = 0 if and only if x = y holds true for all

x, y ∈ X.

Proof. We will prove that d(x, y) > 0 is equivalent with x 6= y. But
we already realized that d(p, p) > 0 leads to a contradiction. If x 6= y, we
already got, for a real ξ > 0,

d(x, y) = d
(
0, ϕ(ξ)e

)
> 0.

Assume t < 0 and define ϕ(τ) := −ϕ(t). Hence τ > 0. Observe, by (i),

d
(
0, ϕ(−t)e

)
= d

(
Tt(0), Tt

(
ϕ(−t)e

))
= d

(
ϕ(t)e, 0

)
= d

(
0, ϕ(t)e

)
,

i.e. f
(
0, ϕ2(−t), 0

)
= f

(
0, ϕ2(t), 0

)
= f

(
0, ϕ2(τ), 0

)
. Hence, by (5),

k · (−t) = k · τ,
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i.e. ϕ(−t) = −ϕ(t) for all t < 0. Thus

ϕ(−t) = −ϕ(t) for all reals t. (6)

This implies, by (5),

f
(
0, ϕ2(ξ), 0

)
= k · |ξ| for all reals ξ. (7)

For t ≥ 0 put t = ϕ(ξ). Hence ξ ≥ 0. Now (7) implies

ϕ

(
f
(
0, ϕ2(ξ), 0

)

k

)
= ϕ(ξ),

i.e.

ϕ

(
f(0, t2, 0)

k

)
= t for all t ≥ 0. (8)

Hence

ϕ

(
d(0, y)

k

)
=

√
y2 =: ‖y‖ for all y ∈ X. (9)

Let now x, y be elements of X with x 6= 0, and let j ∈ H be given with
j2 = 1. Hence, by (3) and j ∈ e⊥,

d(x, y) = f(x2, y2, xy) = d

(
‖x‖e, 1

‖x‖
[
(xy)e +

√
x2y2 − (xy)2j

])
. (10)

Observe (xy)2 ≤ x2y2 because of the inequality of Cauchy–Schwarz. Put

‖x‖ =: ϕ(ξ). (11)

Hence ξ > 0 because of x 6= 0, and, moreover, T−ξ(‖x‖e) = 0. Define
λx2 := x2y2 − (xy)2, and η ∈ R by

xy

‖x‖ = ϕ(η) · ψ(√
λj

)
. (12)

Hence T−ξ

(√
λj + ϕ(η)ψ(

√
λj)e

)
=
√

λj + ϕ(η − ξ)ψ(
√

λj)e.
Applying (iii), we obtain, by transforming the elements of X of the

right hand side of (10) under T−ξ,

d(x, y) = d
(
0,
√

λj + ϕ(η − ξ)ψ(
√

λj)e
)
.



502 W. Benz

Hence, by (9),

ϕ2

(
d(x, y)

k

)
= λ + ϕ2(η − ξ)ψ2(

√
λj).

Applying this formula for xy = 0, we get, with η = 0 from (12), and
λ = y2,

ψ2(‖y‖j) =
(

ϕ2

(
d(x, y)

k

)
− y2

)
· 1
x2

,

by observing ϕ2(−ξ) = ϕ2(ξ) = x2, in view of (6). The right-hand side of
this equation does not depend on the chosen j of H satisfying j2 = 1. So
we get

ψ2(αj) = ψ2(αj′)

for all real α ≥ 0 and all j, j′ ∈ H with j2 = 1 = j′2. Since ψ-values are
positive, we hence get

ψ(h) = ψ(h′)

for all h, h′ ∈ H with h2 = (h′)2. So we may define

ψ0(η) := ψ(
√

ηj)

for η ≥ 0, where j ∈ H is chosen arbitrarily with j2 = 1. Hence we obtain

ϕ2

(
d(x, y)

k

)
= λ + ϕ2(η − ξ)ψ2

0(λ) (13)

for all x, y ∈ X with x 6= 0 and λx2 = x2y2 − (xy)2.
Take an arbitrary element h 6= 0 of H. Because of (i) we get d(e, h) =

d(h, e). Hence, by (13), we obtain

h2 + ϕ2(η − ξ)ψ2
0(h

2) = 1 + ϕ2(η′ − ξ′)ψ2
0(1) (14)

with (compare (11) and (12))

1 = ϕ(ξ), ‖h‖ = ϕ(ξ′), 0 = ϕ(η)ψ0(h2), 0 = ϕ(η′)ψ0(1),

i.e. η = 0 = η′. Thus, by (14), (6),

h2 + ψ2
0(h

2) = 1 + h2ψ2
0(1),
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i.e. ψ2
0(h

2) = 1 + h2
(
ψ2

0(1) − 1
)
. If ψ2

0(1) were < 1, then for sufficiently
large h2, ψ2

0(h
2) would become negative. So we get with ψ0(h2) ≥ 1 for all

h ∈ H

ψ0(h2) =
√

1 + δh2 with δ := ψ2
0(1)− 1 ≥ 0. (15)

From (15) we get with ψ(h) = ψ0(h2) for h ∈ H,

ψ(h) =
√

1 + δh2 (16)

with a constant δ ≥ 0. ¤

4. Motions, the triangle inequality, other directions

A surjective mapping f : X → X is called a distance preserving trans-
formation or a motion of X (or of (X, d)) if and only if

d(x, y) = d
(
f(x), f(y)

)

holds true for all x, y ∈ X. Distance preserving transformations must
also be injective on account of Proposition 1. We hence will speak of the
group G of distance preserving transformations of X, or also of the group
of motions of X.

Proposition 2. The group of motions of (X, d) is given by

G = {αTtβ | α, β ∈ O(X), t ∈ R}.
Proof. By (ii), (iii), αTtβ must be a motion. Let now γ be an ar-

bitrary motion and put γ(0) =: a. Then there exists ω ∈ O(X) with
ω(a) = ‖a‖e. According to property (b) of a separable translation group
there exists s ∈ R with

Ts

(
ω(a)

)
= Ts(‖a‖e) = 0.

Hence λ(0) = 0 with λ := Tsωγ. Since, in view of (9),

z2 = ϕ2

(
d(0, z)

k

)
= ϕ2

(
d
(
0, λ(z)

)

k

)
=

(
λ(z)

)2

for all z ∈ X, we get vw = λ(v)λ(w) for all v, w ∈ X. This implies
λ ∈ O(X), i.e. γ = ω−1T−sλ ∈ G. ¤
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From Proposition 2 follows

Proposition 3. The stabilizer of G in 0 is O(X).

Proof. If αTtβ(0) = 0, then α−1(0) = Ttβ(0), i.e. 0 = Tt(0), i.e.
t = 0. ¤

Proposition 4. For all x, y, z ∈ X,

d(x, y) ≤ d(x, z) + d(z, y) (17)

holds true.

Proof. Instead of (17) we prove

d(0, λe) ≤ d(0, p) + d(λe, p) (18)

for all real λ > 0 and all p ∈ X: if x, y, z are arbitrary elements of X,
then, excluding the trivial case x = y, we take, by Lemma 1, g ∈ G with
g(x) = 0 and g(y) = λe, λ > 0, and we obtain from (25) for p := g(z),

d
(
g−1(0), g−1(λe)

) ≤ d
(
g−1(0), g−1(p)

)
+ d

(
g−1(λe), g−1(p)

)
,

i.e. (17), by (i), (ii), (iii). Put

p := h + ϕ(τ)
√

1 + δh2e, h ∈ H.

Then, by (9), (11)–(13),

ϕ

(
d(0, λe)

k

)
= λ, ϕ

(
d(0, p)

k

)
=

√
h2 + ϕ2(τ)(1 + δh2)

and

ϕ

(
d(λe, p)

k

)
= h2 + ϕ2(η − ξ)(1 + δh2)

with ϕ(ξ) = λ and η = τ . For α ∈ R put

ϕ
(
F (α)

)
:=

√
h2 + ϕ2(α)(1 + δh2),

and observe F (−α) = F (α), moreover, for 0 ≤ α < β,

0 ≤ F (α) < F (β). (19)
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Obviously, ϕ(α) ≤
√

h2 + ϕ2(α)(1 + δh2), i.e. α ≤ F (α). In order to prove
(18), we must show

ϕ−1(λ) ≤ F (τ) + F
(
ϕ−1(λ)− τ

)
, (20)

by noticing F (η − ξ) = F (ξ − η) = F
(
ϕ−1(λ)− τ

)
.

Case 1. 0 ≤ ϕ(τ) ≤ λ.
Hence 0 ≤ τ ≤ ϕ−1(λ), and thus

ϕ−1(λ) = τ +
(
ϕ−1(λ)− τ

) ≤ F (τ) + F
(
ϕ−1(λ)− τ

)
,

i.e. (20).

Case 2. ϕ(τ) < 0.
Hence τ < 0, i.e. ϕ−1(λ)− τ > ϕ−1(λ), and thus, by (19),

ϕ−1(λ) ≤ F
(
ϕ−1(λ)

)
< F

(
ϕ−1(λ)− τ

)
,

i.e. (20).

Case 3. λ < ϕ(τ).
Because of ϕ−1(λ) < τ ≤ F (τ), we obtain (20). ¤

Now (i) and Propositions 1, 4 imply that (X, d) is a metric space.

If v ∈ X satisfies v2 = 1, there exists ω′ ∈ O(X) with ω′(v) = µe for
a suitable µ ∈ R. Hence v · v = ω′(v)ω′(v) implies µ2 = 1. For µ = 1
put ω := ω′, otherwise ω := −ω′. So ω(v) = e with ω ∈ O(X). Observe
v⊥ = ω(H). If

x = h + ϕ(τ)
√

1 + δh2e,

we get ω(x) = ω(h) + ϕ(τ)
√

1 + δ[ω(h)]2ω(e), and thus

ωTtω
−1

(
ω(x)

)
= ω(h) + ϕ(τ + t)

√
1 + δ[ω(h)]2ω(e).

So {ωTtω
−1 | t ∈ R} is a separable translation group in the direction of v

with kernel
%(h′, ξ) = ϕ(ξ)

√
1 + δ(h′)2

for ξ ∈ R and h′ ∈ v⊥. The arbitrary motion αTtβ can be written as

αTtα
−1(αβ) = (αβ) · β−1Ttβ,

where αTtα
−1, β−1Ttβ are translations with axis α−1(e), β(e), respectively,

and where αβ is in O(X).
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5. A functional equation for ϕ

If 0 6= h ∈ H and t ∈ R, then, by (i), (iii),

d(0, h) = d(h, 0) = d
(
Tt(h), Tt(0)

)

holds true, i.e., by (9), (11)–(13), (16), we get the functional equation
for ϕ,

h2 =
h2ϕ2(t)
ϕ2(ξ)

+ ϕ2(η − ξ)
(

1 +
δh2ϕ2(t)

ϕ2(ξ)

)
, (21)

where ξ > 0 and η are given by

ϕ2(ξ) = h2 + ϕ2(t)(1 + δh2), (22)

ϕ2(t)
√

1 + δh2 = ϕ(ξ)ϕ(η)

√
1 +

δh2ϕ2(t)
ϕ2(ξ)

. (23)

Take a fixed j ∈ H with j2 = 1, and take an arbitrary real number µ > 0.
Put h =

√
µj. Then 0 6= h ∈ H. Defining ξ > 0 by, see (22),

ϕ2(ξ) = µ + ϕ2(t)(1 + δµ), (24)

and η by, see (23),

ϕ2(t)
√

1 + δµ = ϕ(η)
√

ϕ2(ξ) + δµϕ2(t), (25)

we obtain, see (21),

µ · (ϕ2(ξ)− ϕ2(t)
)

= ϕ2(ξ − η)
(
ϕ2(ξ) + δµϕ2(t)

)
, (26)

by observing (6).
We pose the following question: Given arbitrarily real numbers ξ >

η ≥ 0, is it possible to find real numbers µ > 0 and t such that (24), (25)
hold true? The answer is yes. ξ > η ≥ 0 implies ϕ(ξ) > ϕ(η) ≥ 0, i.e.

µ := ϕ2(ξ)− ϕ(ξ)ϕ(η)

√
1 + δϕ2(ξ)
1 + δϕ2(η)

> 0. (27)
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(27) yields ϕ2(ξ)− µ ≥ 0. Take a t ∈ R with

ϕ2(t) :=
ϕ2(ξ)− µ

1 + δµ
. (28)

Obviously, (28) implies (24), and (27),

µ2 − 2ϕ2(ξ)µ = ϕ2(ξ)
ϕ2(η)− ϕ2(ξ)

1 + δϕ2(η)
, (29)

i.e. (25), if we square both sides of (25) by observing ϕ(η′) ≥ 0, and replace
there ϕ2(t) by (28).

Hence (26) holds true for arbitrarily given ξ > η ≥ 0, if we define µ

by (27), and ϕ2(t) by (28). Replacing now these values in (26), we obtain
with α := ϕ2(ξ), β := ϕ2(η),

µ

(
α− α− µ

1 + δµ

)
= ϕ2(ξ − η)

(
α + δµ · α− µ

1 + δµ

)
,

i.e. µ2(1 + δα) = ϕ2(ξ − η)(α + δ[2αµ − µ2]), i.e. by (29), µ2(1 + δβ) =
αϕ2(ξ − η), i.e., by (27),

(√
α(1 + δβ)−

√
β(1 + δα)

)2 = ϕ2(ξ − η). (30)

Since ϕ(ξ) > ϕ(η) ≥ 0, we get α > β, i.e. α(1 + δβ) > β(1 + δα). Hence,
by (30) and ξ > η ≥ 0,

ϕ(ξ − η) = ϕ(ξ)
√

1 + δϕ2(η)− ϕ(η)
√

1 + δϕ2(ξ) (31)

holds true for all ξ > η ≥ 0. Since ϕ(0) = 0, (31) also holds true for
ξ = η ≥ 0.

By observing δ ≥ 0 (see (15)), we will distinguish two cases, namely
δ = 0, δ > 0, respectively.

For δ = 0 we get the well-known functional equation
(Aczél–Dhombres [2])

ϕ(ξ − η) = ϕ(ξ)− ϕ(η) (32)

for all ξ ≥ η ≥ 0, from (31). Given real numbers t ≥ 0 and s ≥ 0, put
η := s and ξ := t + s. Hence

ϕ(t + s) = ϕ(t) + ϕ(s).
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Since ϕ(t) ≥ 0 for t ≥ 0, there exists a constant l ≥ 0 with ϕ(t) = lt.
Because of 1 > 0, i.e. of ϕ(1) > 0 we get l > 0. Hence, in view of (6), we
obtain for all t ∈ R,

ϕ(t) = lt. (33)

For δ > 0 write f(t) :=
√

δ ·ϕ(t) for t ≥ 0, and (31) leads to the well-known
functional equation

f(ξ − η) = f(ξ)
√

1 + f2(η)− f(η)
√

1 + f2(ξ) (34)

(Aczél–Dhombres [2], in the form of two unknown functions; see in this
context also Z. Daróczy [6]). Since ϕ is a monotonically increasing bi-
jection of R, satisfying (6), f must be a monotonically increasing bijection
of R≥0. So put

f(ξ) =: sinh g(ξ), ξ ≥ 0,

and g must be a monotonically increasing bijection of R≥0 as well. (34)
implies

sinh g(ξ − η) = sinh
(
g(ξ)− g(η)

)

for all ξ ≥ η ≥ 0. Hence g(ξ − η) = g(ξ)− g(η) and we get again

g(ξ) = lξ

for all ξ ≥ 0 with a constant l > 0. Thus

ϕ(t) =
1√
δ

sinh(lt) (35)

for all t ≥ 0. This implies, in view of (6), that (35) holds true for all t ∈ R
with a constant l > 0.

6. The case δ = 0 as euclidean geometry

With (33) we obtain, by (9), (13), (11), (12), for all x, y ∈ X,

d(x, y) = eucl
(
σ(x), σ(y)

)
(36)
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where we put σ(x) := k
l · x for x ∈ X and

eucl(x, y) :=
√

(x− y)2.

A geometry in the sense of Felix Klein is a set S 6= ∅ together with a sub-
group G of the group of permutations of S. Two geometries (S,G), (S′,G′)
are called isomorphic if, and only if, there exist bijections

σ : S → S′ and τ : G → G′

with τ(g1g2) = τ(g1)τ(g2) and σ
(
g(s)

)
= τ(g)σ(s) for all x ∈ S and

g1, g2, g ∈ G (see [5]).
Define S = X = S′ and let G, G′ be the group of motions of (X, d),

(X, eucl), respectively. If g ∈ G, then (36) implies

eucl
(
σgσ−1

(
σ(x)

)
, σgσ−1

(
σ((y)

))
= eucl

(
σ(x), σ(y)

)
,

in view of
d
(
g(x), %(y)

)
= d(x, y).

Hence τ(g) := σgσ−1 leads to an isomorphism τ : G → G′. Moreover,
σ : X → X is a bijection satisfying for x ∈ X and g ∈ G,

τ(g)σ(x) = σgσ−1
(
σ(x)

)
= σg(x).

Hence (X,G) ' (X,G′).

7. The case δ > 0 as hyperbolic geometry

With (35) we obtain, by (9), (13), (11), (12), for all x, y ∈ X,

d(x, y) =
k

l
hyp(

√
δx,

√
δy), (37)

where we put hyp(x, y) ≥ 0 and

cosh hyp(x, y) :=
√

1 + x2
√

1 + y2 − xy
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(see [4]). Define σ(x) :=
√

δ · x, S = X = S′, and let G, G′ be the group of
motions of (X, d), (X,hyp), respectively. If g ∈ G, then (37) implies

d(x, y) = d
(
g(x), g(y)

)
=

k

l
hyp

(
σg(x), σg(y)

)
,

i.e. hyp
(
σ(x), σ(y)

)
= hyp

(
σgσ−1

(
σ(x)

)
, σgσ−1

(
σ(y)

))
. Hence σgσ−1 ∈

G′. If g′ ∈ G′, a similar argument leads to σ−1g′σ ∈ G. We thus get an
isomorphism τ : G → G′ with τ(g) = σgσ−1. We also observe that the
bijection σ : X → X satisfies

τ(g)σ(x) = σgσ−1
(
σ(x)

)
= σg(x).

Hence (X,G) ' (X,G′).
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