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Relaxed solutions for stochastic evolution equations
on Hilbert space with polynomial nonlinearities

By N. U. AHMED (Ottawa)

Abstract. In this paper we introduce a new concept of generalized solutions or
relaxed solutions for stochastic evolution equations on Hilbert space along the line of
concept recently introduced for deterministic evolution equations on Banach spaces
(see [1, 6]). We present here a result on the question of existence of generalized or mea-
sure valued solutions for stochastic semilinear evolution equations on Hilbert space. The
result is sufficiently general to admit drift and diffusion parameters having polynomial
growth without requiring Hilbert–Schmidt property for the later. As a corollary, an ex-
istence result of generalized solutions for forward Kolmogorov equation is obtained. Our
main result is illustrated by three different examples one of which arises from structural
mechanics.

1. Motivation

For motivation let us consider the deterministic evolution equation

(1.1)
ẋ = Ax + F (x), t ≥ 0

x(0) = x0

in a Banach space E where A is the infinitesimal generator of a C0-semi-
group, T (t), t ≥ 0, on E and F : E −→ E is a continuous map. It is well
known that if E is finite dimensional, mere continuity of F is good enough
to prove the existence of local solutions with possibly finite blow up time.
If E is an infinite dimensional Banach space mere continuity no longer
guarantees existence of even local solutions unless the semigroup T (t),
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t > 0 is compact. For example, see Theorem 5.3.6 [2]. Generalizing the
concept of solutions beyond the so called mild solutions it is possible to
prove the existence of (generalized) solutions without requiring either of
the hypothesis: the Lipschitz property of F and the compactness of the
semigroup. The same comment applies to the stochastic system,

(1.2)
dx = Axdt + F (x)dt + σ(x)dW, t ≥ 0

x(0) = x0,

where W is a Wiener process defined on a suitable probability space and
σ is a suitable operator valued function not necessarily Hilbert–Schmidt.
For example, if F is merely continuous and satisfies the polynomial growth
condition:

(1.3) ‖F (x)‖E ≤ K(1 + ‖x‖p
E), p ≥ 1,

standard results on stochastic differential equations in infinite dimensional
Hilbert spaces [5, 10] can not be applied unless some additional assump-
tions such as dissipativity are used. The usual notions of mild and mar-
tingale solutions do not apply. However the notion of generalized solu-
tions introduced in Section 3 does apply. There is an interesting similarity
between the notions of martingale [14, 15] and generalized solutions as
discussed later following Corollary 3.4. For simplicity of presentation we
have considered both F and σ independent of time. However the results
given here can be easily extended to the time varying case without any
difficulty.

The rest of the paper is organized as follows. In Section 2 we recall
some important results from analysis sufficient to serve our needs. In Sec-
tion 3 we introduce the new concept of generalized (or measure valued)
solutions and present some results on existence of generalized solutions
and their regularity properties. In Section 4, we introduce the notion of a
path process corresponding to a generalized solution and discuss its rela-
tionship with the standard notions of solutions. Further we present a brief
discussion relating the notions of generalized, weak and mild solutions. In
the final section we give three illustrating examples, the last one arising
from structural mechanics.
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2. Introduction

Recently we generalized the concept of relaxed solutions or equiva-
lently the measure valued solutions of Fattorini and proved the existence
of generalized solutions for the system (1.1) under much milder hypothesis
on F admitting polynomial growth. In this paper we extend this result to
stochastic systems given by equation (1.2). For this purpose we need the
characterization of the dual of the Banach space L1(I, X) where I ≡ [0, T ]
is a finite interval of the real line and X is a Banach space. Let X∗ denote
the dual of X, and 〈 · 〉 the duality pairing of X∗ and X. An X∗-valued
function h is X-weakly measurable or equivalently w∗-measurable if and
only if 〈h( · ), x〉 is an ordinary measurable function for each x ∈ X. Let
Lw
∞(I, X∗) denote the class of all w∗-measurable functions h for each of

which there exists a finite number α > 0 such that for every x ∈ X

|〈h(t), x〉| ≤ α‖x‖X , for almost all (possibly depending on x) t ∈ I.

The space is furnished with the norm ‖h‖Lw∞(I,X∗) = αh where αh is the
smallest number α for which the inequality is satisfied. As a consequence
of Dunford–Pettis theorem (see [7, Theorem 2.1; 8, Theorem 6, p. 503]),
the dual of L1(I,X) is isometrically isomorphic to Lw

∞(I, X∗). Based on
this result Fattorini constructed several classes of relaxed controls and later
in [6] relaxed trajectories. We also make critical use of this result.

Let Z denote any normal topological space and BC(Z) the space of
bounded continuous functions on Z with the topology of sup norm, and let
Σrba(Z) denote the space of regular bounded finitely additive set functions
on Φc with total variation norm where Φc denotes the algebra generated
by the closed subsets of Z. With respect to these topologies, these are
Banach spaces and the dual of BC(Z) is Σrba(Z) (see [8, Theorem 2,
p. 262]). Let Πrba(Z) ⊂ Σrba(Z) denote the class of regular finitely additive
probability measures furnished with the relative topology. It follows from
the characterization result discussed above that the dual of L1(I, BC(Z))
is given by Lw

∞(I,Σrba(Z)) which is furnished with the weak star topology.
For brevity we replace the phrase “L1 weak convergence in Lw

∞” often used
in [6, 7], by simply w∗ (weak star) convergence.

Let H, E be two separable Hilbert spaces and (Ω,F ,Ft ↑, P ) a com-
plete filtered probability space, W (t), t ∈ I, is an E valued Ft adapted
cylindrical Wiener process and σ : H 7→ L(E, H) where L(X, Y ) denotes
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the space of all bounded linear operators from X to Y. For the purpose
of this paper we consider Ft ≡ FW

t ∨ σ(x0), where σ(x0) is the smallest
σ-algebra with respect to which x0 is measurable. Let I ×Ω be furnished
with the predictable σ-field with reference to the filtration Ft, t ∈ I. Let
Mw
∞(I, L2(Ω, Σrba(H))) ⊂ Lw

∞(I, L2(Ω, Σrba(H))) denote the vector space
of Σrba(H) valued random processes {λt, t ∈ I}, which are Ft-adapted
and w∗-measurable in the sense that t −→ λt(φ) is Ft measurable for
each φ ∈ BC(H) and have finite second moments. We furnish this space
with the w∗ topology as before. Clearly this is the dual of the Banach
space M1(I, L2(Ω, BC(H))) ⊂ L1(I, L2(Ω, BC(H))). Here we have cho-
sen X ≡ L2(Ω, BC(H)) and X∗ ≡ L2(Ω,Σrba(H)).

3. Existence of generalized solutions

Recently a notion of generalized solutions which consist of regular
finitely additive measure valued functions was introduced (see [6, 1, 11])
and existence of solutions for deterministic systems such as (1.1) was
proved. Our objective here is to prove similar results for the stochastic
system (1.2).

Since we do not impose the standard assumptions such as the drift
parameter having Lipschitz property with at most linear growth and the
diffusion operator being Lipschitz and Hilbert–Schmidt, we expect the so-
lutions to escape the original state space H at some point in time. Thus we
may extend our state space through various topological compactification
techniques (Alexandrov one point compactification, Stone–Cech compact-
ification or Wallman compactification) so as to capture the supports of our
measure solutions and that they may also posses the countable additivity
property. Unless the original space is a locally compact Hausdorff space the
Alexandrov compactification does not produce a compact Hausdorff space.
It is well known that for any Tychonoff space G, its Stone–Cech compact-
ification denoted by βG ≡ G+ is a compact Hausdorff space. In fact, for
the purpose of this paper, G = H where H is a Hilbert space and hence a
metric space with respect to its usual norm topology. Since every metric
space is a Tychonoff space, H is a Tychonoff space. Hence H+ is a compact
Hausdorff space and consequently bounded continuous functions on H can
be extended to continous functions on H+. We write H+ = H ∪ 4 and
consider 4 as the “dead Zone” or the “anihilator”. In view of this we shall
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often use H+ in place of H and hence the spaces M1(I, L2(Ω, BC(H+)))
with dual Mw

∞(I, L2(Ω,Σrba(H+))) ⊂ Mw
∞(I, L2(Ω, Πrba(H+))). Here

Mw
∞(I, L2(Ω, Πrba(H+))) is the set of probability measure valued pro-

cesses, a subset of the vector space Mw
∞(I, L2(Ω, Σrba(H+))). Note that

since H+ is a compact Hausdorff space Σrba(H+) = Σrca(H+). In view
of the fact that the measure solutions (of stochastic evolution equations
we consider) restricted to H are only finitely additive we prefer to use
the notation Σrba(H+) to emphasize this fact though they are countably
additive on H+.

Without further notice, throughout this paper we use Dφ and D2φ to
denote the first and second Frechet derivatives of the function φ whenever
they exist. We denote by Ψ the class of test functions as defined below

Ψ ≡ {φ ∈ BC(H) : Dφ, D2φ exist and are continuous

having bounded supports in H and sup
x∈H

‖D2φ(x)‖L1(H) < ∞},

where L1(H) denotes the space of nuclear operators in H. Define the
operators A and B with domain given by

D(A) ≡ {φ ∈ Ψ : Aφ ∈ BC(H+)}

where

(3.1)
Aφ)(ξ) = (1/2)Tr(σ∗(D2φ)σ)(ξ) + (A∗Dφ(ξ), ξ) + (F (ξ), Dφ(ξ))

for φ ∈ D(A), Bφ(ξ) ≡ (σ∗Dφ)(ξ) ∈ E.

Note that D(A) 6= ∅, for example, for ψ ∈ Ψ, the function φ given by
φ(x) ≡ ψ(λR(λ,A)x), belongs to D(A) for each λ ∈ ρ(A), the resolvent
set of A.

We consider the system

(3.2) dx = Axdt + F (x)dt + σ(x)dW, x(0) = x0,

and introduce a notion of generalized solutions which is applicable to sto-
chastic systems with polynomial nonlinearities.

Definition 3.1. A measure valued random process

µ ∈ Mw
∞

(
I, L2(Ω,Πrba(H+))

) ⊂ Mw
∞

(
I, L2(Ω, Σrba(H+))

)
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is said to be a generalized solution of equation (3.2) if for every φ ∈ D(A)
and t ∈ I, the following equality holds

µt(φ) = φ(x0) +
∫ t

0

µs(Aφ)ds +
∫ t

0

〈µs(Bφ), dW (s)〉, P -a.s.

where

µt(ψ) ≡
∫

H+
ψ(ξ)µt(dξ), t ∈ I.

Our first existence result is given in the following theorem.

Theorem 3.2. Let A be the generator of a C0-semigroup in H and
F : H −→ H is continuous, and bounded in x on bounded subsets of H,
and σ : H −→ L(E, H) is continuous and bounded on bounded subsets of
H satisfying the following approximation property:

(ai): there exists a sequence {Fn, σn} such that Fn(x) ∈ D(A), σn(x)∈
L(E, D(A)) for each x ∈ H, and

Fn(x) −→ F (x) in H uniformly on compact subsets of H,

σ∗n(x) −→ σ∗(x) strongly in L(H,E) uniformly
on compact subsets of H.

(aii): there exists a pair of sequences {αn, βn > 0} possibly αn,
βn →∞ as n →∞, such that

‖Fn(x)− Fn(y)‖ ≤ αn‖x− y‖; ‖Fn(x)‖ ≤ αn(1 + ‖x‖),
‖σn(x)− σn(y)‖L2(E,H) ≤ βn‖x− y‖; ‖σn(x)‖L2(E,H) ≤ βn(1 + ‖x‖)

for all x, y ∈ H.
Then for every x0 for which P{ω ∈ Ω : |x0|H < ∞} = 1 the evolution

equation (3.2) has at least one generalized solution
λ0 ∈ Mw

∞(I, L2(Ω, Σrba(H+))) in the sense of Definition 3.1. Further,
λ0 ∈ Mw

∞(I, L2(Ω, Πrba(H+))) and it is P -a.s w∗ continuous.

Proof. Since D(A) is dense in H and x0 ∈ H, a.s (almost surely),
there exists a sequence {x0,n} ∈ D(A) such that x0,n

s−→ x0 a.s. Consider
the Cauchy problem:

(3.3)
dx = Anxdt + Fn(x)dt + σn(x)dW (t),

x(0) = x0,n,
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where An = nAR(n,A), n ∈ ρ(A), is the Yosida approximation of A.
Since for each n ∈ N and x ∈ H, Fn(x) ∈ D(A) and σn(x) : E 7→ D(A),
it follows from assumption (aii) that equation (3.3) has a unique strong
solution xn = {xn(t), t ∈ I} which is Ft- adapted, continuous P -a.s., and
for each n ∈ N

sup{E‖xn(t)‖2H , t ∈ I} < ∞,

and for almost all t ∈ I, xn(t) ∈ D(A). Now let φ ∈ D(A) with Dφ and
D2φ having compact supports in H. Since xn is a strong solution it follows
from Ito’s formula that for each t ∈ I,

(3.4) φ(xn(t))= φ(x0,n)+
∫ t

0

(Anφ)(xn(s))ds+
∫ t

0

〈(Bnφ)(xn(s)), dW (s)〉,

where the angle bracket denotes the scalar product in E and

(Anφ)(ξ) = (1/2)Tr((σ∗n(D2φ)σn)(ξ)) + (A∗nDφ(ξ), ξ) + (Fn(ξ), Dφ(ξ))

for φ ∈ D(A) (Bnφ)(ξ) ≡ (σ∗nDφ)(ξ) ∈ E.

Letting δe(dξ) denote the Dirac measure concentrated at the point
e ∈ H, and defining λn

t (dξ) ≡ δxn(t)(dξ), t ∈ I, λn
0 (dξ) ≡ δx0,n(dξ), and

using the notation of Definition 3.1 we can rewrite (3.4) as

(3.5) λn
t (φ) = λn

0 (φ) +
∫ t

0

λn
s (Anφ)ds +

∫ t

0

〈λn
s (Bnφ), dW (s)〉, t ∈ I.

For each integer n, λn ∈ Mw
∞(I, L2(Ω, Πrba(H))) and hence the set {λn} is

contained in

Mw
∞

(
I, L2(Ω,Πrba(H+))

) ⊂ Mw
∞(I, L2

(
Ω, Σrba(H+))

)
.

Indeed the functional `n, given by

`n(ψ) ≡ E

∫

I×H+
ψ(t, ξ)λn

t (dξ)dt ≡
∫

I×Ω×H+
ψ(t, ω, ξ)λn

t,ω(dξ) dPdt,

is well defined for each Ft adapted ψ ∈ M1(I, L2(Ω, BC(H+))) and

|`n(ψ)| ≤ ‖ψ‖M1(I,L2(Ω,BC(H+))), for all n ∈ N.
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Thus the sequence {`n} is contained in a bounded subset of
(M1(I, L2(Ω, BC(H+))))∗ and by the characterization of the dual space
the corresponding sequence of measures {λn} is confined in a bounded sub-
set of Mw

∞(I, L2(Ω,Σrba(H+))). Hence by Alaoglu’s theorem, there exists
a generalized subsequence (subnet) of the sequence (net) {λn}, relabeled

as {λn}, and a λ0 ∈ Mw
∞(I, L2(Ω, Σrba(H+))), so that λn w∗−−→ λ0. We

show that λ0 is a generalized solution of equation (3.2) in the sense of
Definition 3.1. Define

ψ1,n(ξ) ≡ (1/2)Tr(σ∗n(D2φ)σn)(ξ)

ψ1(ξ) ≡ (1/2)Tr(σ∗(D2φ)σ)(ξ).

Since σ∗n(x) −→ σ∗(x) strongly in L(H, E) uniformly on compact subsets
of H and D2φ has compact support, and for each φ ∈ D(A),
sup{‖D2φ(ξ)‖L1(H), ξ ∈ H} < ∞, we have ψ1,n, ψ1 ∈ BC(H) and ψ1,n −→
ψ1 uniformly on H. Hence it follows from the weak* convergence of λn to
λ0 that for any z ∈ L2(Ω,F , P ) = L2(Ω), and t ∈ I, we have

(3.6)
∫

Ω×[0,t]

zλn
s (ψ1,n)ds dP −→

∫

Ω×[0,t]

zλ0
s(ψ1)ds dP.

Define

ψ2,n(ξ) ≡ (A∗n(Dφ)(ξ), ξ) and ψ2(ξ) ≡ (A∗(Dφ)(ξ), ξ).

Since An −→ A on D(A) in the strong operator topology and, for φ ∈
D(A), Dφ(x) ∈ D(A∗), and further, by our choice of φ, Dφ is continuous
having compact support, we can deduce that ψ2,n −→ ψ2 uniformly on H.
Hence, again we have

(3.7)
∫

Ω×[0,t]

zλn
s (ψ2,n)ds dP −→

∫

Ω×[0,t]

zλ0(ψ2)ds dP.

Similarly define

ψ3,n(ξ) ≡ (Fn(ξ), Dφ(ξ)) and ψ3(ξ) ≡ (F (ξ), Dφ(ξ)).

Again since φ ∈ D(A) and Dφ has compact support and by our assumption
Fn −→ F uniformly on compact subsets of H, it follows that ψ3,n −→ ψ3

in the topology of BC(H). Thus we have

(3.8)
∫

Ω×[0,t]

zλn
s (ψ3,n)ds dP −→

∫

Ω×[0,t]

zλ0
s(ψ3)dsdP
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for every z ∈ L2(Ω). Combining (3.6)–(3.8) we conclude that for every
z ∈ L2(Ω) and φ ∈ D(A) with Dφ, D2φ having compact supports,

(3.9)
∫

Ω×[0,t]

zλn
s (Anφ)ds dP −→

∫

Ω×[0,t]

zλ0
s(Aφ)ds dP.

Since x0,n
s−→ x0 a.s and φ ∈ BC(H+), we have φ(x0,n) −→ φ(x0) a.s.

Then by Lebesgue dominated convergence theorem, for every z ∈ L2(Ω),
we have

(3.10)
∫

Ω

zφ(x0,n)dP −→
∫

Ω

zφ(x0)dP ≡
∫

Ω

zλ0(φ)dP

where λ0(φ) ≡ ∫
H

φ(ξ)δx0(dξ). For the stochastic integral in (3.5), note
that since Dφ is continuous having compact support, Bnφ ∈ BC(H+, E)
and

E

∫

I

‖(Bnφ)(xn(s))‖2Eds < ∞.

Thus the stochastic integral in (3.5) is well defined and for any z ∈ L2(Ω),
it follows from the properties of conditional expectation and the martingale
theory that

(3.11) E

(
z

∫ t

0

〈λn
s (Bnφ), dW (s)〉

)
= E

(
zt

∫ t

0

〈λn
s (Bnφ), dW (s)〉

)

where zt ≡ E{z|Ft} is a square integrable Ft martingale. Hence there
exists an Ft-adapted E-valued process η(t), t ∈ I, and a square integrable
random variable z0 independent of the Brownian increments such that

E

∫

I

‖η(t)‖2Edt < ∞,

and that zt = z0 +
∫ t

0
〈η(s), dW (s)〉. Hence

(3.12) E

(
z

∫ t

0

〈λn
s (Bnφ), dW (s)〉

)
= E

(∫ t

0

〈η(s), λn
s (Bnφ)〉ds

)
.

Since Dφ has compact support, Bnφ −→ Bφ in the topology of BC(H+, E)
and hence

〈η,Bnφ〉 s−→ 〈η,Bφ〉
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in M1(I, L2(Ω, BC(H+))). It follows from this and the fact that λn w∗−−→ λ0

that, for each t ∈ I,

(3.13)
E

(∫ t

0

〈η(s), λn
s (Bnφ)〉ds

)
−→ E

(∫ t

0

〈η(s), λ0
s(Bφ)〉ds

)

= E

(
z

∫ t

0

〈λ0
s(Bφ), dW (s)〉

)
.

Thus multiplying both sides of equation (3.5) by arbitrary z ∈ L2(Ω)
and taking the limit of the expected values, it follows from (3.9), (3.10)
and (3.13) that

E(zλ0
t (φ)) = E(zλ0(φ))+E

(
z

∫ t

0

λ0
s(Aφ)ds

)
+E

(
z

∫ t

0

〈λ0
s(Bφ), dW (s)〉

)
.

Since this holds for arbitrary z ∈ L2(Ω), for each t ∈ I we have

(3.14) λ0
t (φ) = λ0(φ) +

∫ t

0

λ0
s(Aφ)ds +

∫ t

0

〈λ0
s(Bφ), dW (s)〉 P -a.s.

By virtue of the fact that λ0 ∈ Mω
∞(I, L2(Ω, Σrba(H+))), it is evident

that for each φ ∈ D(A), λ0
t (Aφ), λ0

t (Bφ) are well defined Ft adapted pro-
cesses and that λ0(Aφ) ∈ L2(I, L2(Ω)), λ0(Bφ) ∈ L2(I, L2(Ω, E)). Thus
equation (3.14) holds for all φ ∈ D(A) and not just those having first
and second Frechet differentials with compact supports. Hence λ0 is a
generalized solution of equation (3.2) in the sense of Definition 3.1. The
proof of the last assertion of the theorem follows from the fact that the
approximating sequence is a sequence of Dirac measures and clearly are
all positive and that positivity is preserved under weak star limit. Thus
λ0 ∈ Mw

∞(I, L2(Ω, Πrba(H+))). The a.s. weak star continuity t −→ λ0
t

follows immediately from the expression (3.14). This completes the proof.

Remark 3.3. It is clear from the above result that for generalized (re-
laxed) solutions it suffices if the drift F and the dispersion σ are merely
locally Lipschitz and bounded on bounded subsets of H. Thus these pa-
rameters may have polynomial growth. In contrast, for standard mild
solutions, it is usually assumed that F is Lipschitz (or locally Lipschitz)
and admits linear growth and σ is Hilbert–Schmidt, Lipschitz and has
linear growth (see [5, Chapter 7]). This of course guarantees uniqueness
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and continuity of the path process. Our result sacrifices the path process
and countable additivity and provides a stochastic finitely additive regular
measure valued process as the solution. However it is countably additive
on the compact Hausdorff space H+ containing the original state space H

as a dense subspace.

The following corollary is an immediate consequence of Theorem 3.2.

Corollary 3.4. Consider the forward Kolmogorov equation

(3.15)
(d/dt)ν(t) = A∗ν(t)

ν(0) = µ0,

where A∗ is the dual of the operator A (see (3.1)) with F , σ satisfying the

assumptions of Theorem 3.2. Then for every µ0 ∈ Πrba(H) equation (3.15)
has at least one weak solution ν ∈ Lw

∞(I,Πrba(H+)) ⊂ Lw
∞(I,Σrba(H+))

in the sense that for each φ ∈ D(A) the following equality holds

ν(t)(φ) = µ0(φ) +
∫ t

0

ν(s)(Aφ) ds, t ∈ I.

Proof. Since µ0 ∈ Πrba(H) there exists a random variable x0 taking
values P -a.s in H (possibly on a Skorokhod extension) such that for each
φ ∈ BC(H),

Eφ(x0) = E

∫

H+
φ(ξ)δx0(dξ) ≡ E

∫

H+
φ(ξ)λ0(dξ) =

∫

H+
φ(ξ)µ0(dξ).

Here we have used φ itself to denote its extension from H to H+. Using x0

defined above as the initial state, it follows from Theorem 3.2 that equation
(3.2) has at least one generalized solution λ0 ∈ Mw

∞(I, L2(Ω,Πrba(H+)))
satisfying equation (3.14) for each φ ∈ D(A). Then the the map

ψ −→ E

(∫

I

λ0
t (ψ)dt

)

is a continuous linear functional on L1(I, BC(H+)). Hence there exists a
unique ν ∈ Lw

∞(I,Πrba(H+)) so that

(3.16) E

(∫

I

λ0
t (ψ)dt

)
= 〈ν, ψ〉Lw∞(I,Πrba(H+)),L1(I,BC(H+)) ≡

∫

I

νt(ψ)dt.
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Clearly by equation (3.14), for φ ∈ D(A), the Ito differential of λ0
t (φ) is

given by
dλ0

t (φ) = λ0
t (Aφ)dt + 〈λ0

t (Bφ), dW (t)〉.
Evaluating the Ito differential of the scalar random process λ0

t (ξ(t)φ) for
any ξ ∈ C1

0 (0, T ), a C1-function with compact support, and integrating,
we have

(3.17) −
∫

I

λ0
t (ξ̇(t)φ)dt =

∫

I

λ0
t (A(ξ(t)φ))dt +

∫

I

〈λ0
t (B(ξ(t)φ)), dW (t)〉.

Taking the expectation of either side of equation (3.17) and noting that,
for φ ∈ D(A) and ξ as given,

(ξ̇φ), (ξφ),A(ξφ), and B(ξφ) ∈ L1(I, BC(H+)),

it follows from the representation (3.16) that

−
∫

I

νt(ξ̇(t)φ)dt =
∫

I

νt(A(ξ(t)φ))dt.

Since ξ ∈ C1
0 is arbitrary it follows from this that

(3.18) (d/dt)νt(φ) = νt(Aφ), for t > 0,

in the sense of distribution. This holds for each φ ∈ D(A) and thus ν ∈
Lw
∞(I, Πrba(H+)) satisfies the differential equation of (3.15) in the sense

of distribution and further t −→ νt is weak* continuous. For the initial
condition, we use any ξ ∈ C1 satisfying ξ(T ) = 0, ξ(0)(6= 0) arbitrary, and
compute the integrals

∫

I

ξ(t)dλ0
t (φ),

∫

I

ξ(t)dνt(φ).

This gives us

−λ0(φ)ξ(0) =
∫

I

λ0
t (ξ̇(t)φ)dt +

∫

I

λ0
t (A(ξ(t)φ)dt

+
∫

I

〈λ0
t (B(ξ(t)φ)), dW (t)〉 P -a.s. and

−ν0(φ)ξ(0) =
∫

I

νt(ξ̇(t)φ)dt +
∫

I

νt(A(ξ(t)φ))dt,
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respectively. Since t −→ λ0
t is weak* continuous P -a.s. and t −→ νt

is weak* continuous, the leading terms in the above expressions are well
defined. Taking expectation of either side of the first equation, exploiting
the representation (3.16) again, and equating terms associated with ξ(0),
which is arbitrary, with those of the second equation we obtain

ν0(φ) = E(λ0(φ)), φ ∈ D(A).

Since by definition E(λ0(φ)) = µ0(φ), for all φ ∈ D(A) this completes the
proof.

Martingale vs Generalized Solutions

As mentioned earlier, there is a similarity between the definition of
martingale solution and our concept of generalized solution. In the formu-
lation of martingale solution a probability space is constructed using the
standard canonical sample space, for example, Ω ≡ C(I, H) equipped with
the filtration Ft ≡ σ{x(s), s ≤ t, x ∈ C(I, H)} and then looking for the
existence of a measure P satisfying certain initial or boundary conditions
such that (Ω,Ft ↑, P ) is a filtered probability space and the functional
Ct(φ), with values

(3.19) Ct(φ)(ω) ≡ φ(ω(t))− φ(ω(0))−
∫ t

0

(Aφ(ω(s))ds, t ∈ I, ω ∈ Ω

is a P − Ft martingale for each φ ∈ Φ where Φ is a suitable class of test
functions, such as cylinder functions on H. For more details including in-
teresting application to control theory see Gatarek and Sobczyk [14, 15].

On the other hand, according to the notion of generalized solution, we
are looking for solutions {µt, t ≥ 0}, which are Ft adapted w∗-continuous
random processes with values in Πrba(H) ⊂ Πrba(H+) = Πrca(H+) satis-
fying the identity in Definition 3.1.

In the martingale formulation represented by (3.19), the structure and
regularity of the path space is imposed on the problem requiring that the
process evolves continuously in H. If H is finite dimensional there is no
problem, but if it is infinite dimensional the process may not continuously
evolve in H. On the other hand, in the formulation of measure solution
the process evolves in the space Σrba(H) in place of H and the temporal
regularity such as w∗ continuity is consequential not an imposition. This
admits substantial relaxation in the whole notion of solutions. Further,
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in the martingale formulation the parameters F and σ are assumed to
admit atmost linear growth where as in the formulation of generalized
solutions polynomial growth (or even better) is allowed and further σ is not
required to be Hilbert–Schmidt valued. Most important point however is
not these generalities but the fact that even an innocent looking semilinear
deterministic problem may have no H-valued solution but may very well
possess a measure solution (see [6]).

Remark 3.5. It may be tempting to construct a martingale solution
using C(I, Σrba(H)) as the canonical sample space for the evolution equa-
tion

(3.20)
dµt = A∗µt + 〈B∗µt, dW (t)〉, t ∈ I

µ0 = ν0.

But again this imposes a strong temporal regularity. Further it requires
characterization of the duals of the operators A and B and apparently a
martingale formulation is not easy even if feasible. It is not clear how
nonseparability of the Banach space BC(H) would affect the choice of
cylinder functions on Σrba(H). Any way if such a theory is feasible, it is
not very clear how one can use the results in control applications.

4. Path process and equivalence of solutions

A generalized solution as considered in this paper is an Ft-adapted
stochastic process with values in the space of regular bounded finitely
additive measures on H. In case the measure valued solution {λ0

t , t ≥ 0}
degenerates into a Dirac measure concentrated on a process {y0(t), t ≥ 0},
taking values possibly in H+ then y0 is the genuine path process. In general
there is no path process. It is conceivable that a measure solution has a
Dirac structure over certain periods of time while it is a genuine measure
over others. At this time we do not know of any necessary or sufficient
conditions required of the parameters F and σ so that such a phenomenon
may be observed. However for generalized solutions of equation (3.2) we
can still introduce (fabricate) a path process as follows. One could call
this process as the stochastic mean flow. For each open ball Br ≡ {x ∈
H : ‖x‖H < r}, of radius r > 0, define the function

(4.1) φr(ξ) ≡
{

(ξ, h), for ξ ∈ Br;

(r/|ξ|H)(ξ, h), for ξ ∈ B′
r
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where h ∈ D(A) ⊂ H is arbitrary and B′
r ≡ H+\Br. Clearly this function

is continuous and bounded on H and converges point wise to the linear
functional φ(ξ) ≡ (ξ, h) as r → ∞. For convenience of notation we use
φ and φr also to denote their extensions to H+. Introduce the process
xr ≡ {xr(t), t ≥ 0} given by

(4.2) (xr(t), h) ≡
∫

H+
φr(ξ)λ0

t (dξ).

Clearly, for each r > 0, xr is H-valued and xr(t) ∈ Br for all t ∈ I with
probability one. In other words for each r > 0, φr ∈ BC(H+) and hence
φr ∈ L1(H+, λ0

t ) for each t ∈ I; but its limit φ /∈ BC(H+) and hence may
not be in L1(H+, λ0

t ) unless it turns out that λ0
t has a bounded support.

This can occur in the deterministic case (σ ≡ 0) with F being merely
continuous and satisfying at most a linear growth. Note that even in this
case the system does not have a pathwise solution (strong, mild or weak)
(see [6]) but has a deterministic finitely additive measure valued solution.
So again (4.2) can be used to fabricate a path process. Define

Γ+ ≡ {ξ ∈ H+ : φ(ξ) > 0},
Γ− ≡ {ξ ∈ H+ : φ(ξ) ≤ 0}.

Clearly the limit of the path process as defined above may fail to exist if
for any set of t ∈ I having positive Lebesgue measure both of the following
equalities hold

(i):
∫

Γ+
φ(ξ)λ0

t (dξ) = +∞, (ii):
∫

Γ−
φ(ξ)λ0

t (dξ) = −∞.

But if only one of them holds then the path process exists as an H+-
valued process. On the other hand, for each h ∈ H and s ∈ N , s ≥ 1, one
can verify that

|〈xr+s(t)− xr(t), h〉| ≤ s|h|Hλ0
t (B

′
r) P -a.s.

Clearly if limr→∞ λ0
t (B′

r) −→ 0 in P -measure then for each t ∈ I, {xr(t)}
is weakly sequentially Cauchy in P -measure. Hence there exists a subnet
of the net {xr(t), r > 0} that converges weakly in P -measure to a limit
x0(t) with values possibly in H+.
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In case the system is linear, the solution (strong, weak or mild) is al-
ways a genuine path process or equivalently a Dirac measure concentrated
on this path process. Thus in this case there is no need to construct an
artificial path process. But one may be interested to see how the defini-
tion of the fabricated path process as introduced here may lead to the true
solution process at least for linear systems. For example let us consider
the simple linear system

dx = −Axdt + dW

in the Hilbert space H and suppose W is a cylindrical Wiener process
in this space and A is a positive selfadjoint (unbounded) operator with
domain and range in H generating a C0-semigroup T (t), t ≥ 0, in H. The
mild solution for this system with initial state x0 is given by

(4.3) x(t) = T (t)x0 +
∫ t

0

T (t− s)dW (s), t ≥ 0.

Since W is cylindrical and the semigroup is not necessarily Hilbert–Schmidt,
the process x also is cylindrical in H irrespective of whether or not the
initial state has nuclear covariance operator. Assuming that x0 has a co-
variance operator P0 ∈ L(H), not necessarily nuclear, one can verify that
the covariance operator P (t) for x(t) satisfies the following estimate

0 ≤ (P (t)h, h) ≤ M2
t ‖P0‖H |h|2H + tM2

t |h|2H < ∞

for every h ∈ H where Mt ≡ sup{‖T (s)‖H , 0 ≤ s ≤ t} for 0 ≤ t < ∞.
This ofcourse also means that for any h ∈ H (and not just for h ∈ D(A)),
E(x(t), h)2 < ∞. Thus P (t) ∈ L(H) but not nuclear and hence the corre-
sponding measure µt which is deterministic is only finitely additive on H,

more precisely on the algebra Φc(H) of closed subsets of H. But for this
simple example one can construct a suitably larger Hilbert space contain-
ing H as a dense subspace on which P (t) is nuclear and the corresponding
µt is countably additive. This is based on the property that A is positive
selfadjoint. In general for an arbitrary semigroup generator A and nonlin-
ear operators F and σ this is not always possible. Hence the introduction
of the Stone–Cech compactification H+ of H, which is very large, is useful.
Further it also offers a compact Hausdorff space on which our measure so-
lutions are supported and are actually countably additive. For the linear
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example, using the positive selfadjoint operator A we can easily construct
a larger space (containing H) on which the measures are countably addi-
tive. Thus given that A is a positive selfadjoint operator we introduce the
hierarchie of Hilbert spaces using the graph norms given by

Hβ ≡ [D(Aβ)], β ≥ 0

‖ξ‖β ≡ ‖Aβξ‖H , ξ ∈ D(Aβ)

(ξ, η)β ≡ (Aβξ,Aβη)H , ξ, η ∈ Hβ .

Clearly H0 = H. Corresponding to these family there exists a family of
dual spaces denoted by

H−β ≡ H∗
β

which are in fact completion of H with respect to the norm topology

‖ζ‖−β ≡ ‖A−βζ‖H .

Identifying H with its own dual we have the following inclusions

Hγ ↪→ Hβ ↪→ H ↪→ H−β ↪→ H−γ

for γ ≥ β ≥ 0 with the injections being continuous and dense. Now
returning to the process x one can easily show that it is a well defined
(P -a.s) continuous process with values in H−β for β > (1/2), and the
corresponding covariance operator P (t) ∈ L+

n (Hβ ,H−β). Further, since
every mild solution is a weak solution, x is also a weak solution and for
each h ∈ D(A∗) = D(A)

(4.4) (x(t), h) = (x0, h)−
∫ t

0

(Ah, x(s))ds + (W (t), h), t ≥ 0.

Define the stochastic measure process as the Dirac measure concentrated
along the solution process, that is, λt(dξ) ≡ δx(t) This measure valued
process off course satisfies our general expression (3.14). Using the function
φr as defined by equation (4.1) for any h ∈ D(A∗) = D(A), we fabricate
the path process according to the formula given by equation (4.2). This
yields, for each t ≥ 0,

(4.5) (xr(t), h) = φr(x(t)),
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and that xr(t) ∈ Br ⊂ H with probability one. Thus by virtue of point
wise convergence of φr to φ it follows from (4.5) that for any t ≥ 0, and
h ∈ D(A∗) = D(A)

(4.6) lim
r→∞

(xr(t), h) = lim
r→∞

φr(x(t)) = φ(x(t)) ≡ (x(t), h) P -a.s.

In this sense the fabricated path process converges to the true solution
process. No such implication has any meaning in case of genuine measure
solutions. Only if the nonlinear system (3.2) has a strong, or mild or a
weak solution (a genuine path process) one can consider the Dirac measure
concentrated along the solution process x as the generalized solution and
the expression (3.14) holds. The standard weak form given by

(4.7)
(x(t), η) = (x0, η) +

∫ t

0

{(x(s), A∗η) + (F (x(s)), η)}ds

+
∫ t

0

〈σ∗(x(s))η, dW (s)〉, P -a.s,

which holds for each η ∈ D(A∗) follows from (3.14) as a special case.
This is easily proved by using φr and limiting arguments noting that the
Frechet derivatives Dφr has Br as its support and equals h on Br and
the second Frechet derivative vanishes every where. However in general
for nonlinear systems the limit of the fabricated path process, if it exists,
has no other implication. But it may have interesting applications. For
example, in control problems if one wishes to control the support of the
measure process {λ0

t , t ≥ 0}, so as to capture a target set, or equivalently
have its support concentrated on the target set with high probability, one
may instead use and control the mean flow process to hit the target.

Equivalence of weakened, weak and mild solutions for stochastic dif-
ferential equations of the form

dx = Axdt + dMt(x)

where Mt is a state dependent martingale process was thoroughly studied
in an important paper [13] by Michalik. The same conclusion remains
valid for the system (3.2) provided the coefficients F, σ satisfy the standard
(slightly weakened) assumptions. In other words, under the standard as-
sumptions guaranteeing existence of weakened or mild or weak solutions,
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all the notions consisting of the generalized, weak, mild and weakened so-
lutions coincide and in this case the classical concept of solutions as path
processes holds. However existence of generalized or measure solutions
does not imply existence of solution in any one of the other senses as
demonstrated by the deterministic example given above.

Remark. Since A is a positive selfadjoint operator, the map Aβ is a
homeomorphism of H onto H−β and hence these spaces are topologically
equivalent. Therefore the Stone-Cech compactification H+ of H is equiv-
alent to the Stone–Cech compactification H+

−β of H−β . In fact they are
identical. In other words H−β ⊂ H+ also.

Explosion Time

Let S(λ) denote the support of any measure λ. It is well known that a
cylindrical H-valued Gaussian random variable has nonnuclear covariance
operator and hence the corresponding S(λ) * H. Suppose S(λ0) ⊂ H
where λ0 is the law of the initial state x0. This, off course, holds if x0

is either a fixed element of H or an H-valued random variable having
finite second moment. Consider the system (3.2) with the initial state as
specified above. In this case

P{{t ≥ 0,S(λ0
t ) ⊂ H} 6= ∅} > 0.

We define the explosion time as

τ4 ≡ Inf{t ≥ 0 : S(λ0
t ) * H}

= Inf{t ≥ 0 : x0(t) ∈ 4},

where x0 denotes the path process corresponding to λ0. Note that the
event {τ4〉t} is Ft measurable. The mean explosion time is given by the
solution of an elliptic problem in Hilbert space with Dirichlet boundary
condition as stated below.

Proposition 4.1. Suppose there exists a φ̃ ∈ D(A) such that

(Aφ̃)(x) = −1, for x ∈ H

φ̃|4 = 0.

Then

Eτ4 =
∫

H+
φ̃(x)µ0(dx).
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Proof. This is easily verified by the result of Theorem 3.2. Replacing
φ by φ̃ and t by the explosion time τ4 in (3.14) and taking expectation on
either side we obtain the result as stated. Here µ0 is the initial data for
the measure equation (3.15).

The explosion time problem can of course be approximated by a se-
quence of hitting time problems as follows. For r > 0, consider the Dirich-
let problem:

(Aφ)(x) = −1, x ∈ Br

φ|∂Br
= 0,

and let φr ∈ BC(Br) denote the corresponding solution. Let τr denote
the first exit time of the path process x0 from the ball Br. Then

E(τr) ≡
∫

H

φr(x)µ0(dx),

and E(τ4) = limr→∞E(τr).

Remark 4.2. The operator A has unbounded coefficients. Thus the
question of existence of solution of the Dirichlet problem as stated above
is very delicate and remains open. For results in this direction on finite
dimensional problems with unbounded coefficients see [9, 10].

5. Three illustrative examples

For illustration of Theorem 3.2, we present the following three exam-
ples.

Example 1. First we provide a general characterization of drift and
dispersion parameters which satisfy our basic assumptions and for which
our results obviously hold. Let Hk ≡ H × H × H × · · · × H denote
the k-fold cartesian product of H and let L(Hk, H) denote the class of
bounded linear operators from Hk to H completed with respect to the
norm topology induced by

‖Lk‖L(Hk,H) ≡ sup{‖Lk(h1, h2, . . . , hk)‖H , ‖hi‖H = 1, i = 1, 2, . . . , k},
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where Lk ∈ L(Hk, H). For k = 0, set L(H0,H) ≡ H. Define

Pk(x) ≡ Lk(x, x, x, . . . , x) and

Pm(x) ≡
∑

0≤k≤m

Pk(x), x ∈ H.

Then we introduce the class

F ≡ {Pm, m ∈ N, m < ∞},

as the class of admissible drifts. We show that this class satisfies our basic
assumptions. Let Qr denote the retraction of the ball Br ⊂ H of radius r

centered at the origin. That is

Qr(x) ≡
{

x, for x ∈ Br;

(r/‖x‖)x, otherwise.

For F ∈ F , by definition there exists an integer m ∈ N such that F =
Pm. Let ρ(A) denote the resolvent set of A and R(λ,A) the resolvent
corresponding to λ ∈ ρ(A). Define

Fn(x) ≡ nR(n,A)F (Qn(x)) = nR(n,A)Pm(Qn(x)), n ∈ ρ(A).

Clearly {Fn} is a sequence of continuous and bounded maps in H and for
each x ∈ H, Fn(x) ∈ D(A) and Fn(x) −→ F (x) point wise in H and hence
uniformly on compact subsets of H. It is straight forward to verify that
for any fixed m ∈ N , there exist constants {αn = αn(m) > 0}, dependent
on m, such that limn αn = ∞ and for each n

‖Fn(x)‖ ≤ αn(1 + ‖x‖H), for all x ∈ H

‖Fn(x)− Fn(y)‖ ≤ αn(‖x− y‖H) for all x, y ∈ H.

For the diffusion parameters we introduce the set K a subset of
C(H,L(E, H)) to denote the class of locally Lipschitz maps. Let Pn be any
increasing sequence of finite dimensional (possibly orthogonal) projections
in the Hilbert space E converging strongly to the identity. For each σ ∈ K
define

σn(x) ≡ nR(n,A)σ(Qnx)Pn.
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It is easy to verify that the sequence {σn} satisfies our basic hypotheses and
hence the class K is covered by our result. In view of this characterization,
for each F ∈ F and σ ∈ K, the system (3.2)

dx = Axdt + F (x)dt + σ(x)dW,

x(0) = x0,

has generalized (measure) solutions but not classical, weak or mild solu-
tions. Note σσ∗ is not required to be Hilbert–Schmidt.

Example 2. For a more specific example, consider the system (3.2)
with F given by F (x) ≡ ‖x‖p−1x, for any p > 1. Clearly F is locally
Lipschitz but not dissipative. For γ > 0, define

Gγ(x) =
(‖x‖p−1/(1 + γ‖x‖p−1)

)
x, γ > 0.

It is easy to verify that

‖Gγ(x)‖ ≤ (1/γ)‖x‖,
‖Gγ(x)−Gγ(y)‖ ≤ (p/γ)‖x− y‖, γ > 0.

Then define

Fn(x) = nR(n,A)G1/n(x), n ∈ N ∩ ρ(A).

One can easily check that, for αn ≡ 2np‖nR(n,A)‖,

‖Fn(x)‖ ≤ αn(1 + ‖x‖) for all x ∈ H

‖Fn(x)− Fn(y)‖ ≤ αn‖x− y‖, for all x, y ∈ H.

Clearly αn −→ ∞ as n −→ ∞. Note that Fn(x) ∈ D(A) for each n ∈ N
and Fn −→ F uniformly on compact sets of H. Let σ, given by

σ(x) = β(x)Γ,

denote the diffusion operator where β ∈ BC(H) and Lipschitz and Γ ∈
L(E, H) (not necessarily Hilbert–Schmidt). Then the sequence of opera-
tors {σn} given by

σn(x) ≡ β(x)nR(n,A)ΓPn
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satisfy all the hypothesis of Theorem 3.2. Indeed one can easily verify the
existence of a constant K such that

‖σn(x)‖L2(E,H) ≤ K
√

n‖nR(n,A)‖‖Γ‖L(E,H)(1 + ‖x‖) ≤ βn(1 + ‖x‖)
and ‖σn(x)− σn(y)‖L2(E,H) ≤ βn(‖x− y‖),

and that βn −→ ∞. Further σn : H 7→ L(E,D(A)) and σn(x) −→ σ(x)
strongly in L(E, H) uniformly on compact subsets of H. In other words
the sequence {σn} is an Hilbert–Schmidt approximation of σ in L(E, H).

Thus both F and σ satisfy all the hypothesis of Theorem 3.2, and
hence equation (3.2), with these F and σ, has a generalized solution.

Example 3 (Nonlinear Beams). Here we give a more practical example
arising from random vibration of structures. To admit moderately large
vibrations, the following model has been considered to be more appropriate
[12] for beam dynamics:

(5.1)

ρ

(
∂2y

∂t2

)
+

∂2

∂x2

(
EI

∂2y

∂x2

)
−N(y)

(
∂2y

∂x2

)
+ Kyt = q(t, x),

t > 0, x ∈ (0, `)

y(t, 0) = 0, Dy(t, 0) ≡ yx(t, 0) = 0

EID2y(t, `) = u1, D
(
EI(D2y(t, `))

)−Nyx(t, `) = u2

where, in general, the nonlinear operator N is given by

N ≡ a + b

∫ `

0

(
∂y

∂x

)2

dx.

The nonlinear term represents membrane force. Here a and b are constants.
If a > 0 and b = 0, it represents a linear extensible beam. The parameters
ρ, EI and K denote the mass density (per unit length), flexural rigidity
and aero-dynamic damping coefficient respectively. Normally feedback
controls of the form

(5.2)
u1 ≡ −δDyt(t, `),

u2 ≡ γyt(t, `)−N(y)Dy(t, `)

are used to stabilize the system [11, 12]. The term q represents random
load. We write the system (5.1)–(5.2) as an abstract (ordinary) differential
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equation on a Hilbert space. The most suitable space is the energy space
given by

H ≡ H2
0 × L2(0, `),

where

H2
0 ≡

{
ϕ ∈ L2 :

∂ϕ

∂x
≡ Dϕ ∈ L2, D2ϕ ∈ L2 and ϕ(0) = 0, Dϕ(0) = 0

}
.

Let B denote the formal beam operator given by

Bψ ≡ (1/ρ)
∂2

∂x2

(
EI

∂2

∂x2
ψ

)
≡ (1/ρ)D2

(
EID2ψ

)
.

Define the state as

z ≡
(

z1

z2

)
≡

(
y

yt

)
.

Then the system (5.1) can be written as

(5.3) (d/dt)z = Az + F(z) + q̃

where the operator A is given by the restriction of the formal differential
operator

L ≡
(

0 1
−B 0

)
,

to the domain D(A) given by

D(A) ≡ {z ∈ H : Lz ∈ H and EID2z1(`) + δDz2(`) = 0,

D
(
EID2z1(`)

)− γz2(`) = 0};

and

q̃ ≡
(

0
q

)
.

The operator A as defined above is dissipative and generates a contraction
semigroup in H.

The nonlinear operator F is given by

F(z) ≡ −(1/ρ)
(

0
N(z1)D2z1 + Kz2

)
.



Relaxed solutions for stochastic evolution equations . . . 99

Since the modulus of rigidity EI and the mass density ρ are strictly pos-
itive, in view of the given boundary conditions the space H is a Hilbert
space with respect to the scalar product,

〈ϕ,ψ〉 ≡ (EID2ϕ1, D
2ψ1) + (ρϕ2, ψ2),

where the first term corresponds to elastic potential energy and the last
term to a measure of kinetic energy. For the random load, we assume that
{ei, i = 1, 2, 3, . . . } is a complete orthonormal basis of E ≡ L2(0, `) and
{βi(t), t ≥ 0, i = 1, 2, 3, . . . } is a sequence of one dimensional standard
Brownian motions. Define

(5.4) W (t) ≡
∑

i≥1

√
λi βi(t)ei, t ≥ 0,

where the sequence of numbers {λi} are nonnegative. This is an E-valued
Wiener process. It is easy to verify that

E{(W (t), f)(W (s), g)} = (t ∧ s)
∑

i≥1

λi (f, ei)(g, ei).

For the random load q we choose the model

(5.5) q(t, ξ) ≡
∑

i≥1

√
λiβ̇i(t)ei(ξ), t ≥ 0, ξ ∈ (0, `),

where β̇i is the distributional derivative of the Brownian motion βi and
is called the white noise. If {λi = 1, i = 1, 2, 3, . . . } then W is called a
cylindrical Brownian motion in E. Using this model for the random load,
equation (5.3) can be rigorously interpreted as the Stochastic differential
equation given by

(5.5) dz = (Az + F (z))dt + σdW,

where σ ≡ (
0
I

) ∈ L(E, H) with I denoting the identity operator in E. It
is easy to verify that F is Locally Lipschitz and maps bounded sets of H
into bounded sets of H. For the approximating sequence we choose σn ≡
nR(n,A)σPn and Fn ≡ nR(n, A)F (Qn(.)) which satisfy the basic hypothe-
ses of our Theorem 3.2. Hence for any given initial measure µ0 ∈ Πrba(H),
the system (5.5) has generalized solutions in Mw

∞(I, L2(Ω, Πrba(H+))).

Acknowledgement. The author is very thankful to the reviewer for de-
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