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On the generalized Einstein — Yang Mills equations

By VLADIMIR BALAN (Romania)

Abstract. Let £ = (E,p, M) be a vector bundle, with basis M — a real dif-
ferentiable manifold of dimension n, and fiber F' of dimension m. Considering the
automorphisms of § as gauge transformations, and the set of gauge fields {N?(z,y),
LYy (@,y), Ly (z,y), Ct,(z,y), Cf.(2,y), 9ij(2,y), hap(2,y)} given by a nonlinear con-
nection, a gauge linear d-connection [9,11], and a pair of metric gauge tensor fields in
local adapted coordinates, the author obtains the form of the generalized Einstein—Yang
Mills equations for the general case and for the quasi-metric A- and v-symmetrical cases.
These results generalise the ones obtained by G.S. AsaNoOv in [2,3], in a natural man-
ner, basically using the formalism, notations and mathematical theory of distinguished
geometrical object fields introduced by R. MIiroN [10, 11].

Let {N{(x,y)} be the coefficients of a nonlinear connection on the
vector bundle ¢ = (E,p, M) in local coordinates (z%,y*),i=1,n,a =1,m
[8,11].

Definition 1. A local adapted basis in X(E) is the set of vector fields
{6;,04}, 1= 1,n, a =1, m, where

0 0 . 0
1 0; = — — N} , 0 = .
(1) oz’ b Oy oy®
Definition 2. A linear d-connection on F is a linear connection V that
preserves the horizontal and the vertical distributions locally generated by
{6;,i = 1,n} and {0,,a = 1,m} respectively; in the local adapted basis
(1) its coefficients are given by

{Lik(z,y), Lix(z,y), Clalzy), Ciu(z,y)}
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where
@) { Vs,0; = L0k, Vs,00 = Lb,0,
V. 85 = Clubi, Vi 00 = Ch0a

Definition 3. The h- and v-covariant derivation laws associated to the
linear d-connection (2) are defined by

k k d
(3) D Wt b - 5wnb +LZ; ng Lni +Ldz nb Lbz Zbda
Dow™® = 9w™ 4+ Cwke — OF wite 4 0% wmd — O w™e.

Proposition 1. The transformation rules for the coeﬂicwnts of the
linear d-connection are

OmBj — Bf L, (2,9) + BB, LY, (x,y) =0

(4) 5 Ml? _]\411712771(j y) +MbB7?1LZn( ) =0
B, Ch.(%,5) = M¢B},Ci.(x,y)

Mc(llcbc<$7 y) = MlglMchdf(mu y)
where the coordinate transformations on FE have the form

(5) z* = 2'(2), det(9z"/02’) # 0

= My (2)y", det(My (z)) # 0
and we used the notations
0
0zi

Definition 4. A gauge transformation is a automorphism of E [7,2,3],
locally given by

= @-xi, 83 =

r' = XU(F),det(d; X%) # 0
Yo = Y7, 5), det(Y2) £0, 8.Y8 =0
where we denoted

Ve =0,Y?, 0=

(6)

0 ~ 0
oF ¥ ow

Definition 5. A (generalized [2,3]) gauge tensor field is a field on E,
which obeys tensorial rules of transformation relative to (5) and (6); e.g.

{ ia } obeys

B Ma — — Bﬁdeza
(7) k ]b 4d

XiYoaly = XY wig, where Xj = 0, X"
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Definition 6. A gauge covariant derivation (h-resp. v-) is given by the
h- and v-derivation laws in definition 3, which preserves the gauge tensorial
character relative to (5), (6).

Proposition 2. The coefficients of the h- and v-gauge covariant deri-
vations have with respect to (6) the transformation laws

OmXF — XFLL (2,9) + XIX2LE (z,y) =0

@ Om Yy =Y L (8.9) + Yy X L (0,9) = 0
X, Ca(Z,7) = Y7 X3.C5.(x,y)
YiC(2,9) = %chfoiLf(flf? Y)
Remarks.

1. {C},} and {C}.,} are gauge tensor fields.

2. The coefficients {L%;, Ly, Ck,, C.} of the h- and v-gauge covariant
derivations (3) are in fact the coefficients of a linear d-connection which
satisfies the supplementary rules (8) (gauge linear d-connection).

Proposition 3. The torsion and the curvature gauge tensor fields of
a gauge linear d-connection are given by [11]

© Tje = Lijry, By = —0Ng,  Fje=Cje
jb = O Nj — Ly, Spe = Ol
and respectively
Ripp = 0Ly + L?[kLZM} +C}, Ry,
Ripe = 01eLipyy + Ly Lgg + CocRiges
;kc = aCL;k; - ch;c + C}bplgcﬂ
Pbak:c = 80sz: - chl()lc + ngplgm
ji‘bc = a[ccjzb} + th[b ;LC]
Sted = 01cCha + Cpi.Ceg
where we used the notation for [i ... j]:
LZ[iLiszj] = LZi Zj - LZj ?u

Proposition 4. The following mixed Lagrangian is invariant under
(5) and (6) (i.e. it is a scalar gauge field)

(100 L= m-L; n,€R,  iel={1571I16,2L,22}
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where

Ly =THT!*, Lo=RYRIF,  Ly=Pi P/ L= PP’
= S.S%, Loy = RiyRIM, Lay = 5,50,

Lii =R, Lo = Ry R, Lis = P PI™

bk jbc
L14 - Pbch ¢ L15 - chSj ’ L16 - Sa ab

(11)

The proof is computational.

Remark. The Lagrangian L contains, relative to [2], the supplemen-
tary terms ngLs and ni5L15, and the terms nq1 L1 and ni3L13 are altered
(are more general) since the present context doesn’t impose the restrictive

condition C’;a =0.

The raising/lowering of the corresponding indices in (11) were per-
formed via the gauge metric tensor fields {g;;(z,vy)} and {hqe(z,9)} [3,2].
Then, introducing the Lagrangian density

(12) L=LG

where G' = | det(g;;)|*/? - | det(hap)|'/?, We notice that it depends on the
gauge fields

(13) d)e {Nia7 j‘k? gka C;aa Cl?ca Gij» hab}
and their derivatives; considering the variational principle [1,3]
) / Ldz"dy™ =

one can derive the extremum condition of vanishing the Euler-Lagrange
derivatives

%:6(65)_‘_8(8/:)_%_
0p — 01 \9(;0))  Oy* \9(d,0)) 00

Theorem 1. The generalized FEinstein—Yang Mills equations associ-
ated to the Lagrangian (10) for the set of arguments (13) are

5L
SN?

1
= —4ny (D R + PS,RF + ZT,’f R™)—

—2n4(Dj P + C¢, PP% + P’be”b)

(15.1)

1 .
—Anyn [D;V* + PRV + STVt — BRI (P

—nn [D;UF + PSUL + 2Tj§ Urt —w!™(p

+ DyPj, — P, P2 )]—

jla J

jla + DgP - ;bPZba)]+




On the generalized Einstein — Yang Mills equations 277

1
+4n12[P,me“k + Cg, - Z(SL12 JOLE, ]+
i ikc * pjkc k inc i
n13(S%, P + (D P/ — PY.P") P}, ]+

+2n14[5bac bkc (D*Pbkc Pk anc)Clzjia] — 07

oL

ikl ind
(15.2) 5Li- = —4n1T] + 4no (Dé R] 2Tn RJ )
1 n c inc
#n (Djw!) = SThwl™) + 201y (DIPI = PLPI™) =0,
oL 1
153 T = 214 PP* 4 dnyo (D) RO — 3 T*, Rb)
. bk
+2n14(D; P2 — Py PY) =0,
SL . . _
o =~ 2n3P)" + 2o Ry RYY — nay R
ja
(15.4) — 2n,3(D} P — PP -
‘ 1 ‘
— 4n15(D3S" — 5 85.81") = 0,
5L be c bkt * abed 1 c bed
(155) (50“ = —4n55a + 2n12ngRa + 4n22(DdSa - 5 edSa )—|—
be
1
+ nyg(Djwlled — ) cqwiledly — 2ny (Dj PP — P§, PP =0,
(15.6) oL __OL _ 1gijL =0,
09i; 09gi; 2
oL OL 1
15.7 = — — —h®L =0
( ) Ohap Ohgy 2 ’
where we denoted
D,G
D;=Dy+V,, Vi= é + T, + PY,
D.G
D;=D.+V, V.= G +Sdc

sz C ngze Uke C' w Jlke]

Jja= " ]az
5L _ 14L

gkt _ gk gt bcd be d = _ =
w; 9770, w " = h’0y; 56 = G oo
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Hint. The Euler—Lagrange derivatives for the elementary Lagrangians
(11) computed using the relations

DG = 6,G — G(Lyy, + Lgy,)
D.G = 0,G — G(C™, + C4).
give by addition the equations above.

Remark. The underscored terms are new with respect to [2], and the
equations in [1,2] can be viewed as a particular case of (15.1)—(15.7). The
notations of tensor fields and vertical indices are changed from those used
by G.S. ASANOV to the corresponding ones used in the papers [8,9,11] in
the theory of Finsler spaces. Also, the fact that in [1,2] the coefficients of
the nonlinear connection considered in (1) are taken with opposite sign,
induce related differences of sign in (15.1)—(15.7).

In the following we consider the quasi-metric case, i.e. the situation
in which the gauge metric tensor fields obey

(16) Dkg%] = 07 thab = 07 Dchab - 07

and impose for the gauge linear d-connection (2) to be h- and v-symmetri-
cal, l.e. Tj; =0 and sj, = 0. Then we can state the following

Theorem 2. The generalized FEinstein—Yang Mills equations in the
quasi-metric h- and v-symmetrical case, for the generalized gauge Lagran-
gian [2]

L =n1 R RIF + ng PG PI® + 01 R™ 1y + Lo R®F Ryppet
+ 0108 + A, A e F(E)

with respect to the set of arguments

(17)

1 .
(18) ¢ € {N", Aapi = §L[ab]iu Ca» Gigr hav }
are the following
5L * m 7 * D1 n 7
5Nia :4n1(DmRa - Pli)aRbk) + 2n3(DbPab - Pa anb>+
(19.1) +6[DIUS + UY P — w7 (=0, LK + Vi g™ Dugimy) ]+
‘ 1 oL
45 R** Py e + =Clopg - —— =0
+ 4o beka T 5 Leb 5 A, )
s = §g L+2nR"“"R), +n3P" P, + 2lyRqp," R +
(19.2) ©94

+ ‘61 (Rzn]n + ngzvk o §D*{ZVJ} + §P{2naRJ}an) — 0,
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oL L ab kal pb * plb pealkel 1 {a oL
MMb:_Eh L —n,R** R, + (,D: R\ R —§L@5A%M
a jC a 1bc 1 * 1{a
(19.3) + ng(chPJ b chP]b . 5Djp]{ b})_|_

1
+ glo(sacbc + habD:VC _ §l)>(<{<l‘/*b}) — 0,

oL . .
(194) 5A — nSPZ[ba] _ 4£2D:;Rabnl — 0,
abi
oL .
(19.5) R — 0,
5Ci,

where we denoted
D; =D¢+V,, Vi=Pj,

D} = Do+ Va, Vo=0aIn,/|det(gs)|

ng — Onmawnmjk7 wnmjk — gn[jgmk:]
16L

= Tij T Tjis Tij) = Tij = Tji-

Hint. The same procedure as in Theorem 1 can be applied, using the
relations [2,11]:

1
Labi = hbstm' = Aabi + §5ihab

1 . .
Che = §had(3{bhdc} — Oghic)-

Remark. As in theorem 1, the vanishing of the underscored terms in
(19.1)—(19.5) give, as a particular case, the corresponding equations in [2].

The attempt of solving the equations in theorem 2 leads to the fol-
lowing results

Theorem 3. The generalized Einstein—Yang Mills equations (19.1)—
(19.5) admit the solution

(20) {N?, gij, Pab, Aabis Cl }
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given by

ceran. (%) #0

C’iy“

NO = —
v 2C
gi; = 1(x), ve F(E)

C

&) hab = Yab() + (2, Y)yayy, With ya =apy’, bz, y) = ULQ
Aapk =0

C’;a satisfying: D;UY =n,UY, U = Chrmag™ig™!
where 7;;(x) satisfies the Einstein equations of Riemannian type
(22) Eij = m[rij(ap + Via) — ¢*i% — %V{iaj}]

and (21) are subject to the following conditions

(23) Opyap =0, v =[C(x)—y*]"/?

2 k
= =1 ith k € R} %, (v = yay”
Az, y) nﬂ(@ C(a;)), with k€ RY, C(x) >y~ (¥~ = yay")

n=d [ln(|C(m)|(1*m)/2)} , A= —m(m — 1)l10/C(z).

In (21)—(23) 0ij, 0 and V, are the Ricci tensor field, the scalar curvature

and the covariant derivative associated to 7;;, and we used the notations

( oC C;
C == R
T YT o0

1
Ei; = 0ij — 207ij (the FEinstein tensor field)

a = a;a;y"Y

~ m(3—n) _om
L PT om—2) 1T n 2

ProOF. The equations (19.1)—(19.5) have a general form; it becomes
possible to search for solutions of the family (22) of the form (23)—(23’)
under additional simplifying assumptions, namely

(A1) Ophay =0

1
(A2) b= 5= b(z, z), with z = 32
(A3) the differential equation of Riccati type obtained from
oL
5hab
(A4) 5]€)\ = 0, 5k7ab =0.

= 0, to become one of Bernoulli type
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The cosmologycal constant A is obtained from S0 0, equation which

Gij

provides the classical Einstein equations in (24). The conditions (A1)—(A4)
yield to the form of the class of solutions stated in the theorem.

For the case when ¢ is the tangent bundle of M, and L™ = (M, ¢,;(x,y))

is a structure of a generalised Lagrange space [11] endowed with the non-

linear connection { N/ (z,y)}

24 No = j = s (S Ak
(24) i {zy}y {jk} 27 (axk T B axs)

and the fundamental tensor field

1
(25) gij(x,y) = vij(x) + YV Y= Yisy®, ¢ >0,

where {v;;(2)} is a Riemannian metric on M, we consider the N-lift of g;;
to TM ([11])
(26) G = gij(z,y)da’ @ da? + gap(z,y)0y* @ 0y".

Then, for the case of the canonic metrical h- and v-symmetric linear
d-connection, we obtain the coefficients

7 1 n
L, = 29 (0(iGnky — OnGjk)

1 . .
(27) Cl?c = ih’ad<a{bhdc} - 6)dhbc)

with hab = GJab — gij(535g, and
o = L1000, O, = Cpiol
and can formulate the following

Theorem 4. If L™ is locally Minkowskian, then the gauge fields (13)
given by (24), (25), (27) provide solutions for the generalized Einstein—
Yang Mills equations (19.1)—(19.5) iff n = 2 and

A= 6610/(1 + 3y2)
where y* = v;;y'y? and {;} are the Christoffel coefficients for v;;(z), (see
(24)).

Remark. The vanishing of the cosmological constant A would infer
that (19.1)—(19.5) have no solution of the given form, unless ¢1o = 0.

Acknowledgement. The author is grateful to the referee for his re-
marks which improve the previous version of the paper.
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