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A contribution to fixed point theory
in quasi-metric spaces

By JACEK JACHYMSKI (ÃLódź)

1. Introduction

In [4], [6], [7] several fixed point theorems in quasi-metric spaces have
been obtained. By modifying the kind of contractive self-maps used in
the cited papers we show that it is possible to develop, in some direc-
tions, a unified fixed point theory in metric and quasi-metric spaces. By a
quasi-metric on a set X we mean a non-negative real function d on X×X
such that, for x, y, z ∈ X, we have d(x, y) = 0 if and only if x = y, and
d(x, y) ≤ d(x, z) + d(z, y). Thus the classical conditions on a metric are
relaxed here by omitting the requirement of the symmetry of d. In conse-
quence, a quasi-metric need not be continuous and this fact makes that the
proofs of fixed point theorems for quasi-metric spaces not always can be
slight modifications of the proofs of their metric counterparts. However,
several authors have been able to extend some fixed point theorems for
metric spaces to quasi-metric spaces. In 1982 Reilly, Subrahmanyam
and Vamanamurthy proved the Banach Contraction Principle for com-
plete Hausdorff quasi-metric spaces (Theorem 9 in [6]) and they observed
that the Hausdorff condition was then essential (see Example 6 in [6]). Re-
cently several authors have examined some more complicated conditions
of a contractive type. Let us recall some of them.

Definition 1 ([2]). A self-map T of a metric space X is a Ćirić con-
traction if it satisfies the condition

(C) d(Tx, Ty) ≤ hmax{d(x, y), d(x, Tx), d(y, Ty), d(x, Ty), d(y, Tx)} ,

for some 0 ≤ h < 1 and all x, y in X.

Ćirić’s theorem (Theorem 1 in [2]) states that any Ćirić contraction
on a complete metric space has a fixed point z and, for any x ∈ X,
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Tnx → z. It is worth underlining that there exist non-continuous Ćirić
contractions.

In 1988 Hicks [4] proved among others that any continuous Ćirić
contraction on a left K–sequentially complete (see Def. 3 in [6]) Hausdorff
quasi-metric space satisfying (C) with 0 ≤ h < 1/2 has a fixed point. In
1990 Romaguera and Checa extended Hick’s result to any continuous
Ćirić contraction on a complete Hausdorff quasi-metric space (Theorem 2
in [7]). They also demonstrated (see Example in [7]) that the continuity
of T is then essential.

In our paper we shall consider among others the following condition
(C’) for T :

(C’) d(Tx, Ty) ≤ h max{d(y, x), d(x, Tx), d(y, Ty), d(x, Ty), d(y, Tx)} ,

for some 0 ≤ h < 1 and all x, y in X.
Obviously, if (X, d) is a metric space then (C’) is equivalent to (C),

however, this equivalence need not hold in case of quasi-metric spaces.
Moreover, while a map satisfying (C) in a complete quasi-metric space
need not have fixed points, any map which fulfills (C’) does have a fixed
point, even if it is non-continuous and a space is not Hausdorff (see our
Corollary 1). Thus we obtain a unified result for metric and quasi-metric
spaces. The condition (C’) seems to be the only suitable one of this kind for
quasi-metric spaces: as we observed in [5], if we replaced terms d(x, Tx)
and d(y, Ty) in (C’) by d(Tx, x) and d(Ty, y) respectively, then a fixed
point theorem would not hold.

It seems that many other fixed point theorems for metric spaces can
also be carried over to quasi–metric spaces after a suitable ordering of the
arguments of d in concrete inequalities. We shall illustrate this by proving
Fisher’s fixed point theorem [3], which is an extension of the theorem of
Ćirić [2].

Definition 2 ([3]). A self-map T of a metric space X is a Fisher con-
traction, if it satisfies the condition

(F) d(T px, T qy) ≤ h max{d(T ix, T jy), d(T ix, T i′x), d(T jy, T j′y) :

0 ≤ i, i′ ≤ p and 0 ≤ j, j′ ≤ q} ,

for some fixed p, q in N , for some 0 ≤ h < 1 and all x, y in X.

Fisher’s Theorem 2 ([3]) states that any continuous Fisher contrac-
tion on a complete metric space has a unique fixed point. Moreover, his
Theorem 3 states that if T satisfies (F) with p (or q) =1, then the condi-
tion that T be continuous is unnecessary. Simultaneously, this condition
is essential if T satisfies (F) with p, q > 1 (see the example in [3]).

In our paper we shall give only an extension of Fisher’s Theorem 3
to quasi-metric spaces. We are sure that after reading the proof of our
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main theorem, the reader (if he wants) will be able to carry over Fisher’s
Theorem 2 to Hausdorff quasi-metric spaces. This is much easier than in
the case of Theorem 3.

Main theorem

Throughout this section (X, d) is a quasi-metric space and d̄ defined
by d̄(x, y) = d(y, x) for x, y ∈ X is called the conjugate of d ([6]). For
convenience we use the term “completeness” instead of “d–sequential com-
pleteness” ([6]). Thus, (X, d) is complete if every d–Cauchy sequence is
left d–convergent. Observe that completeness of (X, d̄) means that every
d–Cauchy sequence is right d–convergent. We shall not use other notions
of completeness considered in [6] — each of them implies completeness in
the above sense.

Theorem. Let T be a self-map (not necessarily continuous) of a com-
plete quasi-metric space (X, d) (not necessarily Hausdorff). Assume that
for some fixed p in N, T satisfies the following condition:

(F’) d(T px, Ty) ≤ hmax{d(y, T ix), d(T ix, Ty), d(T ix, T jx), d(y, Ty) :

0 ≤ i, j ≤ p} ,

for some 0 ≤ h < 1 and all x, y in X. Then T has a unique fixed point
z, for any x in X the sequence {Tnx} is left and right d–convergent to z,
and z is the only limit of this sequence.

Proof. We denote by d∗ the metric defined on X by d∗(x, y) =
max{d(x, y), d(y, x)}. Then it is easy to show that T satisfies (F) in (X, d∗),
for a pair (p, p) of positive integers. From the proof of Theorem 2 in [3],
for any x ∈ X, {Tnx} is a Cauchy sequence in (X, d∗) and hence also in
(X, d). By completeness, {Tnx} is left d–convergent to some z ∈ X, that
is d(z, Tnx) → 0. We shall show that z = Tz. By the triangular inequality
we have:

(1) d(z, Tz) ≤ d(z, Tn+px) + d(Tn+px, Tz) .

From (F’) we get

(2) d(Tn+px, Tz) ≤
≤ h max{d(z, Tn+ix), d(Tn+ix, Tz), d(Tn+ix, Tn+jx), d(z, Tz) :

0 ≤ i, j ≤ p} .

Let an:=d(Tnx, Tz), bn:=max{d(z, Tn+ix), d(Tn+ix, Tn+jx) : 0≤i, j≤p},
r := d(z, Tz). From (2) we have:

(3) an+p ≤ h max{an, an+1, . . . , an+p, bn, r} .
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Observe, that if the above maximum is equal to an+p then an+p = 0, so
we may omit an+p on the right side of (3).

Suppose r is positive. Since bn → 0, for sufficiently large n we have,
by (3),

(4) an+p ≤ h max{an, an+1, . . . , an+p−1, r} .

Without loss of generality we may assume that (4) holds for any nonneg-
ative integer n. Now consider two cases:
a) p = 1. Then it is easily seen that (4) implies the inequality an ≤
max{hna0, hr}, and hence lim sup

n→∞
an ≤ hr.

b) p > 1. We shall apply induction to show that, for any n in N , the
following inequalities hold:

anp ≤ max{hna0, . . . , h
nap−1, hr} ,(5)

anp+k ≤ max{hn+1a0, . . . , h
n+1ak−1, h

nak, . . . , hnap−1, hr} ,(6)

for k = 1, . . . , p− 1.
The case n = 0 is trivial. Assuming that (5) and (6) hold for some n, we
shall prove them for n + 1. By (4) and the induction hypothesis, we get
that

a(n+1)p≤ h max{anp, anp+1, . . . , anp+p−1, r}≤ max{hn+1a0, . . . , h
n+1ap−1,

h2r, hn+2a0, . . . , h
n+2ak−1, h

n+1ak, . . . , hn+1ap−1, hr : 1 ≤ k ≤ p− 1} =

= max{hn+1a0, . . . , h
n+1ap−1, hr} ,

and thus (5) holds for n + 1. We leave it to the reader that (6) holds for
n + 1 (apply induction again, this time with respect to k).

Now, it follows from (5) and (6) that

lim sup
n→∞

anp+k ≤ hr, for k = 0, 1, . . . , p− 1 .

Thus, in both cases a) and b) we have:

(7) lim sup
n→∞

an ≤ hr .

Hence and by (1) we get:

d(z, Tz) ≤ lim
n→∞

d(z, Tn+px) + lim sup
n→∞

an+p ≤ hd(z, Tz) .

Since 0 ≤ h < 1, we get z = Tz.
To prove that {Tnx} is right d–convergent to z, observe that since

z = Tz, by (7), an → 0, so d(Tnx, z) → 0. Thus {Tnx} is simultaneously
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left and right d–convergent to z, so z is the only limit point of any kind of
{Tnx} (see [8]).

Finally, we shall prove the uniqueness of the fixed point. Let z1 = Tz1

and z2 = Tz2. Applying (F’) we get

d(z1, z2) ≤ h max{d(z2, z1), d(z1, z2)} = hd∗(z1, z2) .

Interchanging z1 and z2 we obtain that d(z2, z1) ≤ hd∗(z1, z2), so finally
d∗(z1, z2) = 0 and thus the fixed point is unique.

The following corollary is immediate:
Corollary 1. Let T be a self-map on a complete quasi-metric space

(X, d), and let T satisfy the condition (C’). Then T has a unique fixed
point in X.

By duality, we easily obtain the following result:

Corollary 2. Let (X, d̄) be complete and let T fulfil the inequality

(C”) d(Tx, Ty) ≤ hmax{d(y, x), d(Tx, x), d(Ty, y), d(Ty, x), d(Tx, y)} ,

for some 0 ≤ h < 1 and all x, y in X. Then T has a unique fixed point.

Remark. The above corollaries extend Ćirić’s theorem [2] to quasi–
metric spaces. The conditions (C’) and (C”) are adjusted to a type of
convergence (left or right) in (X, d), and they can be interchanged neither
in Corollary 1, nor in Corollary 2 (see the example in [5]).

Corollary 3 (the Banach Contraction Principle). Assume that (X, d)
or (X, d̄) (not necessarily Hausdorff) is complete and T satisfies the in-
equality

(B) d(Tx, Ty) ≤ hd(y, x) for some 0 ≤ h < 1 and all x, y in X .

Then T has a unique fixed point.

Proof. Apply Corollaries 1 and 2.

The following example shows that it can happen that f satisfies (B)
in a quasi-metric space (X, d) which is not complete yet Corollary 3 is
applicable here since (X, d̄) is complete in this case.

Example. Let X := [−1; 1] and fx := 1
2 |x|, for x ∈ X. Define the

function d as follows:
d(x, y) := 2, for 0 ≤ x ≤ 1 and − 1 ≤ y < 0; d(x, y) := |x− y|

in the remaining cases.
Then one can verify that the triangle inequality,

(8) d(x, y) ≤ d(x, z) + d(z, y) ,
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holds for x ∈ [0; 1], y ∈ [−1; 0) and z ∈ X. Since |x − y| ≤ d(x, y) for
all x, y in X and the function (x, y) → |x − y|, (x, y ∈ X) satisfies the
triangle inequality we get that (8) holds in all remaining cases. Thus d is
a quasi-metric. Observe that the sequence {−1/n}∞n=1 is Cauchy but it is
not d–convergent. We leave it to the reader to verify that, nevertheless,
(X, d̄) is complete. Finally, for all x, y in X we have, by the definition of
d, that

d(fx, fy) = | 12 |x| − 1
2 |y‖ ≤ 1

2 |x− y| ≤ 1
2
d(y, x)

so f satisfies (B) with h = 1
2 .

The following corollary can be immediately deduced from Corollary 1.

Corollary 4 (Theorem 1 in [7]). Let (X, d) be complete and let T
satisfy Bianchini’s condition ([1]):

d(Tx, Ty) ≤ h max{d(x, Tx), d(y, Ty)} ,

for some 0 ≤ h < 1 and all x, y in X. Then T has a unique fixed point.
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[5] J. Jachymski, Ćirić’s contractions on quasi-metric spaces, Sci. Bull. ÃLódź Tech.
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