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On the inverse problem for sprays

By MIKE CRAMPIN (Gent and London)

Abstract. The inverse problem for sprays, or in other words the Finsler-metriz-

ability problem, is discussed from the point of view of the holonomy of the non-linear

connection associated with a spray.

1. Introduction

In Finsler geometry, the geodesics of a Finsler function, parametrized so that
the tangent vector has constant Finsler length, define a spray. However, not every
spray is obtainable in this way. The inverse problem for sprays is the problem of
determining, for a given spray, whether or not there is a Finsler function of which
it is the geodesic spray; or more broadly, of giving criteria for distinguishing those
sprays which are geodesic.

The inverse problem for sprays, or the Finsler-metrizability problem as it is
sometimes called (for example in [16], [23]), is thus apparently a special case of
the inverse problem of the calculus of variations for arbitrary systems of second-
order ordinary differential equations, or in other words for semi-sprays, which has
been studied in numerous papers, starting with the celebrated paper of Douglas
in 1941 [8], and including for example [1], [2], [10], [14], [17], [18]. On the other
hand, the inverse problem for sprays includes as a special case its affine version,
namely the problem of determining whether a symmetric affine connection is the
Levi–Civita connection of some metric.
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For the most part, the inverse problem of the calculus of variations, and ipso
facto the inverse problem for sprays, has been tackled by formulating partial dif-
ferential equations which the unknown Lagrangian or Finsler function, or some
quantities derived from it, must satisfy, and subjecting them to some form of inte-
grability analysis: for example, Douglas [8] worked with the so-called Helmholtz
conditions for a multiplier matrix, and analysed them using the Riquier theory of
systems of partial differential equations. However, it was pointed out as long ago
as 1973 by Schmidt [19] that an alternative approach is possible, at least in the
case of the problem of affine connections and metrics. Here the relevant partial
differential equations, for the unknown functions gij which are the components of
the metric, are those that state that the metric has zero covariant derivative:

∂gij

∂xk
= gljΓ l

ik + gilΓ l
jk.

Repeated cross-differentiation gives a succession of conditions on the components
of the unknown metric and the connection coefficients Γk

ij and their derivatives,
or better the curvature and its covariant derivatives, which must be satisfied if
the connection is to be the Levi–Civita connection of the metric. Schmidt says,
in criticism of this method: ‘Very little insight however is gained . . . into the geo-
metrical meaning of the integrability conditions and the restrictions imposed by
them on the connection.’ He then proposes an alternative approach which is not
susceptible to this criticism, as follows. Since we have an affine connection at our
disposal, we can parallelly translate vectors along any path in our manifold M .
So given any pair of points x, y, and any curve joining them, we have a diffeo-
morphism – indeed linear isomorphism – of TxM with TyM . Now the defining
characteristic of the Levi–Civita connection of a metric is that parallel transport
preserves lengths and angles. Let us specify a metric gx at some point x ∈ M

(that is, a positive-definite symmetric bilinear form on TxM): we may then seek
to extend the definition of g to the whole of M by setting gy(u, v) = gx(u0, v0)
for any y ∈ M , where u, v ∈ TyM are the parallel translates of u0, v0 ∈ TxM

along a path joining x to y. The drawback is that u and v, and therefore gy, will
in general depend on the chosen path. This will not be the case, and g will be
well-defined, if and only if the isomorphism of TxM induced by parallel transport
around any piecewise smooth closed curve beginning and ending at x leaves gx

invariant. Thus the necessary and sufficient condition for a symmetric affine con-
nection to be derivable from a metric is that at a chosen point x ∈ M there is a
positive-definite symmetric bilinear form on TxM such that the holonomy group
of the connection is contained in the orthogonal group of the form. In short, a
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symmetric affine connection is Riemann-metrizable if and only if its holonomy
group at any one point is a subgroup of an orthogonal group.

As Schmidt himself concedes, the advantage of this approach is not a practical
one; indeed, the integrability conditions of the partial differential equations are
essentially an infinitesimal version of the holonomy criterion, as is apparent from
the fact that the infinitesimal generators of the holonomy group are expressible as
repeated covariant derivatives of the curvature. The value of Schmidt’s method
is the not inconsiderable geometrical light it throws on the problem.

The inverse problem for sprays may be tackled by a method similar to
Schmidt’s, with equal benefit in terms of geometrical insight. The 2-dimensional
case was discussed by Matsumoto and Tamássy in 1980 [15]; aspects of the
general case have been considered more recently by Kozma (see Section 2.5 of
his review article on holonomy in Finsler geometry [13], and references therein).
The method is similar to that of Schmidt described above in that it makes no
use of partial differential equations and their integrability conditions, and that
it is based on the idea of starting with a Finsler function at one point x of the
base manifold M (considered as a function on T ◦x M , the tangent space at x with
its origin deleted) and then spreading it out along curves, thereby arriving at
a consistency condition on the initial choice. This consistency condition can be
expressed in terms of the holonomy of the non-linear connection associated with
the spray. Whether or not a given spray is the geodesic spray of a Finsler func-
tion will be determined by whether or not it is possible to choose for that spray
an initial function consistent with the condition (which depends of course on the
spray).

I have three aims in the present paper. In the first place I shall discuss the
relationship between the conditions for metrizability obtained by the holonomy
method just described and those obtained in previous work. In particular a com-
parison should be made with the results obtained by analysing the integrability
of partial differential equations satisfied by the unknown Finsler function; I use
as my example of this approach the recent paper by Muzsnay [16], which ap-
pears to contain the most complete and definite results. In order to carry out the
comparison it is necessary to formulate an infinitesimal version of the conditions
obtained by the holonomy method.

Secondly, I shall discuss certain aspects of the holonomy construction in the
case where the spray is affine; I shall point out in particular that the holonomy
approach offers some illuminating insights into Szabó’s theorem [21] that any
Berwald space admits a Riemannian structure with the same geodesics, and es-
pecially into the new proof of this theorem given by Vincze [24].
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I said above that the inverse problem for sprays is apparently a special case
of the inverse problem of the calculus of variations for systems of second-order
ordinary differential equations. In fact there is a method of passing between such
systems on the one hand, and sprays on the other, which makes the two problems
essentially equivalent at the local level. For my third topic I will use this fact
to illustrate the results for sprays by giving a new proof of the variationality of
a class of systems of second-order differential equations discussed (in the case
of a pair of equations) by Douglas, namely case I of his case-by-case analysis;
the specification of case I and the proof of its variationality were extended to
an arbitrary number of equations in [18]. The very fact that this new proof is
possible reveals an interesting and unexpected fact about the nature of the case I
criterion.

I briefly review the relevant results from Finsler geometry and the geometry
of sprays in the next section; I then describe the holonomy construction, in rather
more detail than is to be found in [13], give the infinitesimal version, and discuss
the relationship of the results obtained by this approach with those of other
authors. Section 3 is devoted to a discussion of the affine case. Section 4 prepares
the ground for the consideration of the Douglas case I problem, which is carried
out in Section 5.

2. Sprays and Finsler functions

The geodesic spray Γ of a Finsler function F satisfies

Γ
(

∂F

∂ui

)
− ∂F

∂xi
= 0

(the Euler–Lagrange equations) and Γ(F ) = 0 (constant speed parametrization).
Indeed, Γ is uniquely determined by these conditions (and the fact that it is a
spray), assuming that F is strongly convex, as is required for it to be a Finsler
function. For then the fundamental tensor

gij = F
∂2F

∂ui∂uj
+

∂F

∂ui

∂F

∂uj

is positive-definite, and in particular is non-singular, from which it follows that if

V j ∂2F

∂ui∂uj
= 0
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then (V i) is a scalar multiple of (ui). Therefore since two sprays differ by a
vertical vector field, two sprays which both satisfy the Euler–Lagrange equations
for F differ by a multiple of the Liouville field ∆ = ui∂/∂ui. But ∆(F ) = F by
homogeneity, so the spray which satisfies the Euler–Lagrange equations for F and
has F as a first integral is unique.

One might describe this spray as the canonical geodesic spray. If on the
other hand one doesn’t insist on constant speed parametrization then the Euler–
Lagrange equations determine a projective equivalence class of sprays (in fact the
projective equivalence class of the canonical geodesic spray).

The inverse problem for a spray in the natural sense (in the terminology of
[23]) is the problem of determining whether or not there is a Finsler function
of which it is the canonical geodesic spray. When there is, the spray is said to
be Finsler-metrizable in the natural sense [23], or Finslerian [20]. The inverse
problem for a spray in the broad sense is the problem of determining whether or
not there is a Finsler function of which the base integral curves of the spray are
the geodesic paths (with parametrization unspecified). When there is, the spray
is said to be Finsler-metrizable in the broad sense, or projectively Finslerian.
In fact the inverse problem in the broad sense more properly refers to a whole
projective class of sprays rather than an individual one. To begin with I deal with
the inverse problem in the natural sense.

Recall that the horizontal distribution of an arbitrary spray

Γ = ui ∂

∂xi
− 2Γi ∂

∂ui

is spanned by the vector fields

Hi =
∂

∂xi
− Γj

i

∂

∂uj
, Γj

i =
∂Γj

∂ui
;

furthermore [
Γ,

∂

∂ui

]
= − ∂

∂xi
+ 2Γj

i

∂

∂uj
=

∂

∂xi
− 2Hi.

I now apply this observation when the spray is the canonical geodesic spray
of a Finsler function F , to obtain

0 = Γ
(

∂F

∂ui

)
− ∂F

∂xi
=

[
Γ,

∂

∂ui

]
(F ) +

∂

∂ui
(Γ(F ))− ∂F

∂xi
= −2Hi(F ).

Thus a Finsler function F has the property that for any vector H which is horizon-
tal (with respect to the horizontal distribution of its geodesic spray), H(F ) = 0.
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(This is a straightforward proof of a result which is quite well known, though it
is usually expressed in terms of the energy of the Finsler function rather than the
Finsler function itself; the result appears in this form in for example [12], [20],
[22], and it is the basis also of Muzsnay’s account of the Finsler-metrizability
problem in [16].)

A curve on T ◦M (the slit tangent bundle of M) is called horizontal if its
tangent vector is horizontal at each point of it. Clearly the property of being
horizontal is unaffected by a reparametrization, even one which reverses the sense
in which the curve is traversed. Given any curve σ in M , any point x on σ,
and any u ∈ T ◦x M there is a unique horizontal curve σH passing through (x, u)
and projecting onto σ; it is determined by solving the differential equations u̇i +
Γi

j(x
k(t), uk(t))ẋj = 0 for ui(t), where σ(t) = (xi(t)), with initial conditions

(ui(0)) = u (assuming that x = σ(0)). The curve σH is called the horizontal lift
of σ through (x, u). Every horizontal curve is a horizontal lift (of its projection
onto M). Furthermore, given any two points x and y in M , a curve σ joining them
defines a map hσ : T ◦x M → T ◦y M by hσ(u) = σH(1) where σH is the horizontal
lift of σ through (x, u) and y = σ(1). This map is a diffeomorphism, and it is
homogeneous in the sense that it commutes with dilations.

Now since H(F ) = 0 for every horizontal vector H, F is constant along
any horizontal curve, therefore along any piecewise horizontal curve, that is, any
piecewise smooth curve each of whose smooth segments is horizontal. Thus in
particular, if we take any point x ∈ M , and suppose that u, u′ ∈ T ◦x M are
such that (x, u′) can be joined to (x, u) by a piecewise horizontal curve, then
F (x, u′) = F (x, u).

Every piecewise smooth curve σ in M beginning and ending at x defines a
diffeomorphism hσ of T ◦x M ; the collection of such diffeomorphisms forms a group,
with multiplication induced from joining curves in M . This is the holonomy group
Hx of the non-linear connection (or horizontal distribution) associated with the
spray. Thus for any Finsler function F , and for any point x ∈ M , the restriction
Fx of F to T ◦x M is invariant under Hx: for any h ∈ Hx, Fx ◦h = Fx. (See [13] for
an encyclopaedic account of holonomy in Finsler geometry, including a statement
of this fact, and numerous references.)

This is the consistency condition referred to in the introduction, and will lead
to the criterion for determining whether or not a spray is Finsler-metrizable.

I now wish therefore to show that if a given spray Γ is such that for a point
x ∈ M there is a smooth function Fx on T ◦x M which is positively homogeneous
and strongly convex and is invariant under Hx, then at least locally there is a
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Finsler function F of which Γ is the geodesic spray, such that Fx is the restriction
of F to T ◦x M . I assume that M is pathwise connected.

I propose to define F as follows. For a point (y, v) ∈ T ◦M , let σ(t) be a
curve in M with σ(0) = x, σ(1) = y; let σH be the horizontal lift of σ with
σH(1) = (y, v). Then provisionally I set

F (y, v) = Fx(σH(0)).

The key point is to show that F is well-defined by this construction; that is to
say, that if σ̂ is another curve in M with σ̂(0) = x, σ̂(1) = y, then Fx(σ̂H(0)) =
Fx(σH(0)). But one can construct out of σ and σ̂ a piecewise smooth curve τ

beginning and ending at x, in the usual way:

τ(t) =





σ(2t) 0 ≤ t ≤ 1
2

σ̂(2− 2t)
1
2
≤ t ≤ 1.

By assumption, Fx is invariant under the element hτ of Hx determined by τ .
Thus

Fx(σH(0)) = Fx(hτ (σH(0))) = Fx(σ̂H(0))

and F (y, v) is well-defined.
When Fx is invariant under Hx, any choice of curves in M serves to define F .

In particular, one can take t 7→ (tyi) in a coordinate patch with x as origin as a
curve joining x to y = (yi). To define F (y, v) one needs the solution at t =0 of
the system of differential equations u̇i+Γi

j(ty
k, uk)yj= 0 with ‘initial conditions’

ui = vi at t = 1. It follows from the smooth dependence of solutions of a system
of differential equations on initial conditions, vi, and parameters, yi, that F is
smooth.

The fact that F is positively homogeneous follows from the fact that hor-
izontal lifting commutes with positive dilations, and the assumption that Fx is
positively homogeneous. Finally, F will be strongly convex on a neighbourhood
of x if Fx is strongly convex, by continuity.

It remains to show that Γ is the canonical geodesic spray of F . By construc-
tion, F is constant along horizontal curves. Thus H(F ) = 0 for any horizontal
vector field H. But Γ is horizontal, so Γ(F ) = 0. It follows from the calculations
at the beginning of this section that

Γ
(

∂F

∂ui

)
− ∂F

∂xi
=

∂

∂ui
(Γ(F ))− 2Hi(F ) = 0,
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so Γ satisfies the Euler–Lagrange equation, and since Γ(F ) = 0, Γ is the geodesic
spray of F .

I summarize the foregoing discussion in the form of a theorem.

Theorem. A spray Γ is locally Finsler-metrizable in the natural sense if

and only if for a point x ∈ M there is a function Fx on T ◦x M which is positively

homogeneous and strongly convex and is invariant under Hx, the holonomy group

at x of the non-linear connection associated with Γ.

I now draw some consequences from this theorem, which extend and illumi-
nate results obtained previously by other authors.

As I pointed out earlier, elements of Hx commute with dilations, and there-
fore map rays in T ◦x M to rays; that is, Hx may be considered to act on T ◦x M/R+,
the space of rays. Note in particular that if some element h of Hx maps a ray to
itself then if the spray is metrizable h must leave the ray pointwise fixed. Sup-
pose now that Hx acts transitively on T ◦x M/R+, in such a way that the elements
of the isotropy group of any ray leave that ray pointwise fixed. Then there is
a unique positively homogeneous Hx-invariant function Fx on T ◦x M taking the
value 1 at a chosen point u ∈ T ◦x M , and it is positive-valued. Moreover, if F̂x is
the corresponding function which takes the value 1 at some other point û ∈ T ◦x M

then F̂x = cFx for some constant c (in fact c = F̂x(u)). Whether or not the spray
is metrizable in this case depends entirely on whether or not the function Fx is
strongly convex; when it is the Finsler function is unique, up to homothety. This
result generalizes one given by Matsumoto and Tamássy in [15].

More generally, one can consider the case in which Hx does not act transi-
tively, but still has the property that any element of Hx which leaves a ray fixed
leaves it pointwise fixed, as follows. Let Σ be a section of the action of Hx on
T ◦x M/R+, that is, a subset of T ◦x M/R+ containing one point of each orbit of Hx

on T ◦x M/R+. For each point, in other words ray, in Σ choose a point u on that
ray: then there is a unique positively homogeneous Hx-invariant function Fx on
T ◦x M taking the value 1 at each chosen point u, and it is positive-valued. If this
function is smooth and strongly convex it is a Finsler function. Moreover, if the
spray admits Finsler functions Fx and F̂x, and for each ray in Σ there is a point u

on the ray such that F̂x(u) = Fx(u) (in which case equality will hold throughout
the ray by homogeneity) then F̂x = Fx.

Kozma, in his theorem on metrizability in [13], takes a somewhat different
approach. He shows that when the holonomy group Hx is a compact Lie group
the spray is metrizable by constructing an invariant function Fx by averaging over
the group with respect to its Haar measure. This method is based on that used
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by Szabó in the Berwald case, which I shall come back to later. However, there
is no reason to suppose in general that the holonomy group is compact.

I next describe an infinitesimal version of the holonomy criterion for Finsler-
metrizability.

For any spray, letD be the smallest integrable distribution on T ◦M containing
its horizontal distributionH; assume that D is regular (that is, that the dimension
of D is constant). Then the set of points of T ◦M that can be connected to a given
point (x, u) by piecewise horizontal curves is the leaf of the distribution D through
(x, u). In particular, the set of points in T ◦x M that can be connected to (x, u) by
piecewise horizontal curves is the intersection of the leaf with T ◦x M .

Let V be the vertical distribution on T ◦M ; it is of course integrable, and its
leaves are the fibres of T ◦M → M . Let W = D ∩ V. Since H ⊆ D and H and
V are complementary, dimW = dimD − dimH; in particular, W is regular since
D is, by assumption. Moreover, W is integrable. The leaf of W through a point
(x, u) is the intersection of the leaf of D through (x, u) with T ◦x M , the leaf of V
through (x, u).

So much is true for any spray for which D is regular. But for the geodesic
spray of a Finsler function F we have in addition that for any x ∈ M , the
restriction of F to T ◦x M is constant on the leaves of Wx, the restriction of W to
T ◦x M ; in other words, it is an integral function of Wx. By a slight modification
of the argument given earlier, it can be seen that this is a sufficient as well as
a necessary condition for the existence of a Finsler function of which the given
spray is the geodesic spray. We therefore have the following infinitesimal version
of the Theorem.

Theorem. A spray is locally Finsler-metrizable in the natural sense if and

only if for any x ∈ M the distribution Wx on T ◦x M determined by it admits an

integral function which is positively homogeneous and strictly convex.

Note in particular that a spray for which Wx contains the dilation field of
T ◦x M cannot be metrizable.

These results appear to be essentially equivalent to those obtained by Muzs-

nay in [16]. However, Muzsnay works with the energy E rather than the Finsler
function, and uses Spencer’s technique of formal integrability applied to the par-
tial differential system D(E) = 0, ∆(E) = 2E. His results are expressed in terms
of the distribution D rather than Wx.

Finally, since a Finsler function is positively homogeneous in the velocity
variables this criterion, in either form, can be stated in terms of the indicatrix:
for example, the necessary and sufficient condition for local Finsler-metrizability
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is that for x ∈ M there is smooth strongly convex codimension 1 submanifold of
T ◦x M which is invariant under Hx.

3. The affine case

When the spray is an affine spray (the geodesic spray of a symmetric affine
connection), the condition for a curve t 7→ (xi(t), ui(t)) to be horizontal is that
u̇i + Γ i

jkẋjuk = 0; thus the horizontal lift of a curve in M can be identified with
that curve with a parallel vector field along it. Then if

F (xi, ui) =
√

gjkujuk,

F is constant along horizontal lifts if and only if any parallelly translated vector
field has constant length. But then by polarization the angle between any pair of
parallelly translated vector fields is constant too.

The criterion for the existence of a Finsler function which takes the form
above at the initial point x ∈ M , say

Fx(ui) =
√

ajkujuk,

is that for any piecewise smooth closed curve σ in M beginning and ending at x,
if v ∈ TxM is the parallel translate of u ∈ TxM along σ then (at x)

√
ajkujuk =

√
ajkvjvk.

This means that the holonomy group must preserve lengths (as measured by aij);
but then, again by polarization, it preserves angles too (it consists after all of
linear isomorphisms of TxM). So the criterion is the same as the one given by
Schmidt. Furthermore, since the diffeomorphism TxM → TyM generated by
the horizontal lift of any curve is in this case a linear isomorphism, the Finsler
function obtained will have the form

F (xi, ui) =
√

gjkujuk,

where gjk are the components of a metric on M .
Of course one need not begin with the square root of a quadratic function

on TxM ; indeed, if the zero vector is excised from TxM then any positively
homogeneous strictly convex function which satisfies the criterion will do. If
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there is such a function then the Finsler space obtained from it will be a Berwald
space.

Suppose given a Berwald space; then Hx, which is the holonomy group of
a linear connection, leaves the indicatrix invariant. It is easy to see that as a
consequence, as linear isomorphisms of TxM the elements of Hx are uniformly
bounded, so Hx is a compact Lie subgroup of the linear isomorphism group of
TxM . One can then construct a positive-definite bilinear form on TxM which is
invariant under Hx by averaging an arbitrary one over the group with respect to
an invariant measure. This shows how Szabó’s theorem [21] that any Berwald
space admits a Riemannian structure with the same geodesics fits into the picture.

There is a little bit more to this part of the story than meets the eye. For
a general spray, and for a fixed curve σ joining x to y in M , I have denoted by
hσ : T ◦x M → T ◦y M the diffeomorphism defined by the horizontal lift. The differ-
ential hσ∗ : Tu(T ◦x M) → Thσ(u)(T ◦y M) of hσ represents the Berwald connection
associated with the spray, in the following sense: if v ∈ Tu(T ◦x M) then hσ∗(v) is
the element of Thσ(u)(T ◦y M) obtained by parallelly translating v, relative to the
Berwald connection, along the horizontal curve σH from (x, u) to (y, hσ(u)) (see
[3] for a construction of the Berwald connection along these lines). Then hσ∗ is a
linear isomorphism of Tu(T ◦x M) with Thσ(u)(T ◦y M). In the affine case, when hσ is
already linear, it coincides with its differential (when Tu(TxM) is identified with
TxM and Thσ(u)(TyM) with TyM); but in general this will not be so.

Let us consider the Levi–Civita connection of a metric g from this point
of view. We may regard gx as a bilinear form on TxM for each x ∈ M : then
hσ : TxM → TyM preserves bilinear forms. But we may equally regard gx

as defining a metric on TxM , that is, as a bilinear form on Tu(TxM) for each
u ∈ TxM : then hσ is an isometry of the Riemannian spaces TxM and TyM . In
this case the metric on TxM is of course constant, and the two points of view are
essentially identical.

It is instructive to take a similar view of the general Finsler case. We may
regard the fundamental tensor

gij = F
∂2F

∂ui∂uj
+

∂F

∂ui

∂F

∂uj

as defining a Riemannian metric on T ◦x M for each x ∈ M (no longer constant
in general). In general, hσ : T ◦x M → T ◦y M will not be an isometry. In view
of the remarks made earlier about the relation between the differential of hσ

and the Berwald connection, the condition for hσ to be an isometry is that the
fundamental tensor be Berwald parallel along all horizontal lifts of σ. That is, a
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Finsler space in which the horizontal lift mapping is an isometry for all curves is
a Landsberg space.

For a Landsberg space, therefore, the holonomy group Hx is a subgroup of
the isometry group of the Riemannian space T ◦x M equipped with the fundamental
tensor. (For further information on these issues see [13].)

Since a Berwald space is a Landsberg space, the holonomy group at any point
is contained in the isometry group of the fundamental tensor; this also follows
directly from the fact that Hx consists of linear isomorphisms of TxM and leaves
Fx invariant. Thus the volume form on TxM defined by the Riemannian structure
is invariant under Hx, and so is the volume form it induces on the indicatrix in
T ◦x M , which is itself invariant. These facts lead to an alternative way of proving
Szabó’s theorem, as has been pointed out by Vincze [24]: one can construct an
Hx-invariant positive-definite bilinear form on TxM by averaging the fundamental
tensor field over the indicatrix with respect to the induced volume, rather than
averaging an arbitrary bilinear form over the group with respect to an invariant
measure.

4. R-flat and isotropic sprays

One situation in which the criterion for a spray to be Finsler-metrizable is
manifestly satisfied is when the spray’s horizontal distribution is integrable (so
thatWx = {0}), or equivalently when the spray has vanishing Riemann curvature,
or in the terminology of Shen [20] is R-flat. Clearly, any R-flat spray is Finsler-
metrizable, and we can choose the value Fx of a Finsler function F for it on the
fibre over x ∈ M at will, subject only to the restrictions of homogeneity and
strong convexity.

So far I have considered only the natural Finsler inverse problem; but once
having shown that any particular spray is naturally Finsler-metrizable we can
conclude immediately that all sprays projectively equivalent to it are metrizable
in the broad sense, or are projectively Finslerian. The question now arises, which
sprays are projectively equivalent to an R-flat spray?

To answer this question I must remind the reader about isotropic sprays.
The Riemann curvature Ri

jkl of a spray determines and is determined by the
type (1, 1) tensor Ri

j = Ri
kjlu

kul; the spray is isotropic if there is a function λ

and a covector field µi such that

Ri
j = λδi

j + µju
i.

The property of being isotropic is easily seen to be projectively invariant. It turns
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out to have another equivalent formulation, which will be highly relevant. One
can construct from the (full) Riemann curvature a projectively invariant tensor
P i

jkl, related to it in much the same way as the projective curvature is to the
Riemann curvature of an affine connection. (One version of this construction
was given already by Douglas in his classic paper [7]; Douglas calls the tensor
the Weyl tensor, but Weyl has so many tensors named after him that to avoid
confusion it seems best not to use this name.) It turns out that for n > 2 a spray
is isotropic if and only if P i

jkl = 0. (In dimension 2, P i
jkl is automatically zero,

just as in the affine case, so it is advisable to exclude n = 2 from the following
discussion. See [4], [5], [20] for more details about isotropic sprays.) It is clear
that the projective class of an R-flat spray consists of isotropic sprays. But just
as in the affine case, the vanishing of P i

jkl is sufficient, as well as necessary,
for the projective class to include an R-flat spray (see [4] for a proof). (Unlike
the situation in the affine case, however, this does not mean that an isotropic
spray is projectively flat: there is after all another projectively invariant tensor
associated with a spray, namely its Douglas tensor, and in order for the spray to
be projectively flat its Douglas tensor must also vanish.)

It follows from the discussion above that all isotropic sprays are projectively
Finslerian. (Despite its title, [10] deals with semi-sprays rather than sprays as
the terms are used here; and to the extent that isotropic sprays are covered it is
in the context of the problem of metrizability in the natural sense.)

5. The inverse problem of the calculus of variations

This observation can be used to give a new and simple proof of the variation-
ality of a system of second-order ordinary differential equations in n independent
variables, when the system belongs to Douglas’s case I.

Suppose given an (n + 1)-dimensional manifold with a projective class of
sprays. Take a coordinate patch of the base manifold with coordinates (x0, xi) =
(xa), i = 1, 2, . . . , n, and over this patch the open subset of the tangent bundle
where u0 6= 0 (the fibre coordinates are (u0, ui) = (ua)). In this open subset of
the tangent bundle one can select from the projective class of sprays one, say Γ,
such that Γ(u0) = 0; the restriction of Γ to the submanifold u0 = 1 is tangent to
it, and its base integral curves are parametrized by x0. In fact Γ0, the restriction
of Γ to u0 = 1, is given by

Γ0 =
∂

∂x0
+ ẋi ∂

∂xi
− 2Γi(x0, xj , 1, ẋj)

∂

∂ẋi
,
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where the ẋi are the restrictions of the ui to u0 = 1, and so the base integral
curves of Γ0 are the solutions of the system of second-order ordinary differential
equations

ẍi = f i(t, xj , ẋj), where f i(t, xj , ẋj) = −2Γi(t, xj , 1, ẋj).

Conversely, given any such system of differential equations we can at least locally
reconstruct a spray by setting

Γ0 = 0, Γi(xa, ua) = −1
2
(u0)2f i(x0, xj , uj/u0),

bearing in mind the homogeneity requirement for the Γa.
Suppose now that we have a Finsler function F , and we take for the pro-

jective class of sprays in the construction just described that determined by the
(unparametrized) geodesics of F . Define a function L(t, xi, ẋi) by

L(t, xi, ẋi) = F (t, xi, 1, ẋi)

(so that L is effectively the restriction of F to u0 = 1). Then Γ0 given above
satisfies

Γ0

(
∂L

∂ẋi

)
− ∂L

∂xi
= 0;

moreover, the Hessian
∂2L

∂ẋi∂ẋj

is non-singular (as follows from the assumption of strong convexity of F ), which
is to say that the second-order differential equations ẍi = f i(t, xj , ẋj) are the
Euler–Lagrange equations of the Lagrangian L. Incidentally, the equation

Γ
(

∂F

∂u0

)
− ∂F

∂x0
= 0,

which has so far been left out of consideration here, is

dE

dt
+

∂L

∂t
= 0, E = ẋi ∂L

∂ẋi
− L,

the energy equation.
Thus a possible method of solving the inverse problem for a system of second-

order ordinary differential equations is to construct the corresponding spray by
passing to the homogeneous formalism as described above; if this spray is pro-
jectively Finslerian then the original equations are variational. Of course this will
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in general be only a local construction: that is to say, the spray is only locally
defined, and one cannot expect to do more than find a local Finsler function.

Any isotropic spray is projectively Finslerian, so it is natural to ask for the
conditions under which a system of second-order differential equations gives rise
to an isotropic spray. For this purpose it is necessary to express the Riemann cur-
vature of the spray in terms of quantities derived from the differential equations,
that is from the coefficients f i. It turns out (see [5], [20]) that

R0
0 = R0

i = 0

Ri
0 = u0ujΦi

j

Ri
j = −(u0)2Φi

j ,

where Φi
j is the so-called Jacobi endomorphism of the system of differential equa-

tions,

Φi
j =

∂f i

∂xj
+

dγi
j

dt
+ γi

kγk
j , γi

j = − 1
2

∂f i

∂ẋj
.

Now the differential equations comprising Douglas’s case I are those for which
the Jacobi endomorphism is a scalar multiple of the identity, that is, for which
Φi

j = Φδi
j say. For such differential equations the curvature of the corresponding

spray is given by
R0

0 = R0
i = 0

Ri
0 = u0uiΦ

Ri
j = −(u0)2Φδi

j ;

but then Ra
b = λδa

b + µbu
a (a, b = 0, 1, . . . , n) with λ = −(u0)2Φ, µ0 = u0Φ,

µi = 0, so the spray is isotropic. Conversely, if the spray is isotropic, with
Ra

b = λδa
b + µbu

a where the Ra
b are given in terms of the Φi

j as above, then we
have R0

i = µiu
0 = 0, so µi = 0; and then Ri

j = λδi
j = −(u0)2Φi

j , whence Φi
j is a

multiple of δi
j . Thus when expressed in terms of spray geometry, Douglas’s case

I criterion corresponds exactly to the condition for a spray to be isotropic. It
follows that systems of differential equations in case I are variational.

Finally, I want to point out an unexpected and interesting fact about the
case I criterion that follows from this analysis. It is clearly necessary that for any
such criterion to be useful it must be invariant under coordinate transformations
of the form t 7→ t, xi 7→ χi(t, xj). However, as has just been shown this criterion
is equivalent to the fact that the corresponding spray is isotropic, and this is a
projective property of sprays, that is, it holds for all members of the projective
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class. To put it another way, the criterion will hold regardless of the choice of
parametrization of the base integral curves of the spray; or another way still,
it is actually invariant under the larger class of coordinate transformations t 7→
τ(t, xi), xi 7→ χi(t, xj), the so-called point transformations. This observation
is in fact implicit in studies of Cartan connections associated with systems of
second-order differential equations under point transformations [5], [6], [9], [11],
where the trace-free part of the Jacobi endomorphism appears as the torsion of
the connection; but the relation of this work to the inverse problem has not been
recognized before, to my knowledge.
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